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Abstract. In this paper we obtain convergence rates for sieved 
maximum-likelihood &timators of the log-hazard function in a cen- 
soring model. We also establish convergence results for an adaptive 
version of the d imator  based on the method of structural risk-mini- 
mization. Applications are discussed to tensor product spline estima- 
tors as well as to neural net and radial basis function sieves. We obtain 
simplified bounds in comparison to the known literature. This allows 
us to derive several new classes of estimators and to obtain improved 
estimation rates. Our results extend to a more general class of 
estimation problems and estimation methods (minimum contrast es- 
timators). 
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I. INTRODUCTION 

In this paper we establish convergence rates for sieved maximum-likeli- 
hood estimators (sieved ML-estimators) for the log-hazard function in a cen- 
soring model. We also establish an adaptive version of the estimator based on 
the method of structural risk minimization (complexity regularization) as intro- 
duced in Vapnik 1241. Our results are obtained for general sieves and then are 
applied to some special types of sieves like tensor product splines or neural 
nets. We also state extensions of these results to more general estimation proce- 
dures (minimum contrast estimators) and to other types of estimation problems 
like regression problems comparable to those considered in BirgC and Massart 
[5 ]  or in Barron et al. [4]. For related results see also Krzyzak and Linder 
[16], Lugosi and Zeger [18], Wong and Shen [25], Yang and Barron [26], and 
Kohler [12], [13]. 

Sieved ML-estimators are defined in the general framework of empirical 
risk-minimization. The main tools for their analysis are from empirical process 
theory. The main part of the proof of convergence properties is to establish an 
exponential maximal inequality for the log-likelihood functional and to obtain 
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estimates for the covering numbers and ~apnik-Cervonenkis dimension of 
the involved function classes. In comparison to a similar maximal inequality in 
Birg6 and Massart [5] we avoid the somewhat complicated condition M2 on 
control of fluctuations in the L,-metric and replace it by some more handy 
growth condition on L?-covering numbers. Our C-covering condition is related 
to the condition , (L1-metric with bracketing) in Barron et al. [4], which is 
used in that paper to ded with model selection in a general framework and 
applied to several examples (see Sections 4.1.5 and 4.1.6). In comparison our 
covering condition seems to be particularly simple and well suited for the 
examples considered in this paper. Our proof is based on an exponential maxi- 
mal inequality in Lee et al. [17]. In several examples we obtain improved 
convergence rates in comparison to the literature and some'of them are estab- 
lished for the first time in this paper. 

In the case of tensor product splines we obtain up to a logarithmic factor 
the optimal convergence rate in the minimax sense in smoothness classes as 
derived in Kooperberg et al. [15], the only paper on convergence rates in this 
context so far. For general background on censoring models and reference to 
martingale based estimation methods we refer to Andersen et al. [I]. Related 
consistency results for kernel type estimators and further references on non- 
-parametric functional estimation of hazard functions can be found in'van 
Keilegom and Veraverbeke [23]. In comparison to Kooperberg et al. [I51 we 
consider the stronger MISE (mean integrated square error). The convergence 
rate obtained in this paper depends on the smoothness parameter p of the 
underIying class of hazard functions as we11 as on the dimension of the covaria- 
bles. Sorne empirical study of an adaptive estimator ('HARE') has been given in 
Kooperberg et al. [14]. The related complexity regularized estimator intro- 
duced in Section 4 of this paper is proved to be adaptive up to a logarithmic order 
and, therefore, approximatively minimax adaptive. We also discuss applica- 
tions to general net sieves assuming that the log-hazard function allows an 
integral representation. In particular, we consider neural nets, radial basis-func- 
tion nets and wavelet nets. For further details related to this paper we refer to 
the thesis by Dohler [7]. Some related consistency results (without rates) have 
been given in Dohler [6]. 

The paper is organized as follows: In Section 2 we establish an exponential 
inequality for the log-likelihood functional in the case of right censored data 
and indicate how similar exponential inequalities can be derived in a general 
framework. We use this result to obtain general error bounds for sieved ML- 
estimators (Section 3) and their complexity regularized versions (Section 4). In 
Section 5 we apply these results to tensor product splines and neural net type 
sieves. We conclude the paper with a short outlook. 

The framework of hazard function estimation is as in Kooperberg et al. 
1151 where however also additive models are considered. Let (52, d ,  P) be the 
underlying probability space, T: IR + R ,  a survival (failure) time, C: D + F 
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a bounded censoring time, X: B + 9" = 10, 11% vector of covariates, and 
Y = T A C the observable time. By normalization we assume without loss of 
generality that F = [ O ,  11. With the censoring indicator 6 = (right cen- 
soring) the observation vector is Z = (X, Y, 6). We assume the existence of 
a conditional density fo (t  I x) and denote by F ,  (t [ x )  the conditional distribu- 
tion function of T given X = x.  Further, we define the conditional hazard 
function 

with conditional survival function Fo (t I x) = 1 - F ,  (t I x), and finally the con- 
ditional log-hazard function uo It 1 x) = log A, (t 1 x). Based bn i.i.d. data 
(TI, C1, XI), ..., (T,,, C,, X,), respectively, the corresponding observed data 
Zi = (Xi, x, 41, 1 < i < n, our aim is to estimate the underlying conditional 
log-hazard function u, . 

According to Kooperberg et al. [lS] the conditional log-likelihood of 
a sample zl ,  . . ., z, is given by 

where l ( ( x ,  y, 6 ) ,  a) = da(y, x)-jiexpct(u, x)du. 
The underlying log-hazard function is assumed to be in a class 9 of 

functions on F x  X to be specified later. Generally, we assume that a is 
bounded on F x  5 and that T and C are conditionally independent given X. 

Let 

denote the expected conditional log-likelihood function. Then A is maximized 
at the underlying conditional log-hazard functional a,. The sieved maximurn- 
-likelihood estimator din will be defined by 

Oi, = arg max L, (a) 

over some net (sieve) 9, c 9 depending on the number n of observations. 
For the 'A-distance' between an arbitrary element a ~ 9  and the under- 

lying true ct, the following representation is useful (see Dohler [a): 

I (1.4) IA(a)-A(ao)l = A@,)-A(ol)= 1 Fc,xG(a-ao)dPcT.v, 
I s x  4t 
! 

where Fclx is the conditional survival-function of the censoring time C and 
1 G(y) = exp (y) - (1 + y). A standard argument leads to the decomposition of the 

estimation error of the ML-estimator 8, (in A-distance) in an approximation 
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enor and a stochastic error: 

(1.5) [A(&)- A(ao)l G inf IA(u)- A(uo)l +2 sup 1n-l L, (a)- A (u)l. 
a€*" 

The main too1 for proving convergence rates for the stochastic error of dZ, will 
be an exponential maximal inequality derived in Section 2. As in Kooperberg 
et al. [I51 we introduce the I?-distance pn F modified by the conditional 
survival function: 

(1.6) 1 1 .  -811; = J F~~~ - f i l p d ~ [ ~ ~ ~ ) .  
- 

r x  z 

From the representation in (1.4) we obtain (see Dohler [6]):  

(1.7) A-convergence of un + a, implies Ilan - mo 1 1  1 -+ 0. 
Also, for a,  B E F ,  1011 < Ad, IBI G M we have 

where k = k ( M )  = 1/4M, k' = K (M) = [exp (2A4)]/4M2 
For the proof of (1.8) define 

where G is as in (1.4). Then it is easy to establish that F is strictly increasing on 
R and F ( 2 M )  < k'(M), F( -2M)  2 k(M) for M 3 1. Therefore, k(M)y2 < 
G (y) < k' (M) y2, which implies k (M) (a - 8)' < G (a - 8) < k' (M) (a - fi)2, and 
the result follows. 

Finally, we note that for 8, ~ € 9 ,  181, la1 < M 

where Bo = exp (M) exp (exp (M)). For the proof see Dbhler [7], Proposi- 
tion 2.9. So the L2-norm allows us to control the expected squared loss in 
the likelihood. 

2. EXPONENTIAL MAXIMAL INEQUALlTY 
FOR THE LOG-LIgELIHOOD FUNCTIONAL 

In this section we derive an exponential maximal inequality for the log-likeli- 
hood functional L, (a). The proof is based on the following exponential inequality 
of Lee et al. [ l q  which was used in their paper and also in Kohler [ll] and 
Krzyzak and Linder [lq for regression estimation by minimum I?-empirical risk 
estimators. Using the error decomposition in (1.5) and relations (1.6H1.8) we 
wiU apply this result to obtain convergence rates of ML-estimators for right 
censored data. 
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Let N ( E ,  9, d )  denote the &-covering number of 9 with respect to a metric d.  
In the following we will use LP-rnetrics denoted by dLqp) on certain E-spaces. 
The notion of permissibility of F means a weak measurability condition on 
9 allowing to measure sets involving suprema over f E 9. For a formal d e f i -  
tion see Pollard 1201, p. 196. For this and related notions and some basic results 
on VC-classes we refer to van der Vaart and Wellner [22] and Pollard [21]. 

THEOREM 2.1 (Lee, Bartlett, and Williamson [17]). Let d be a permissibb 
class offunctions on E with If  1 6 K1, Ef 2 0 and Ef < K2 Ef for all f E F. Let 
v ,  vc > 0 ,  0 < u < $. Then for - 

rn 3 max (4 (K, + K2)/a2 (v + v,), K?/a2 (v + v,)) 

the following holds: 

2m 
where v, = (2m)-I zi= 6,. 

Let now 3 = X x F x  (0, 1) and for zi = (xi, yi, J i ) € 5 Y ,  1 < i < n, and 
.? = (zl, . . ., 2.) let v,- = n-l z;=, b,,, fi = n-I z;=, b,, and let U [0 ,  11 be the 
uniform distribution on [0, 11. 

THEOREM 2.2 (maximal inequality for the log-likelihood). There exists 
3, = Bo (llololl) > 0 such that for ail M 2 Mo : = I I ~ l ~ l l  m, for all admissible 
F c (u :  9 x 3 + [- M ,  MI] ,  for any v ,  vc > 0,  0 < y d $ and 

n 2 
24M (Bo exp (M) + 

rvv + v c )  

the following holds: 

where 

x(vC, 9) = 6 sup Y vc 
F 3  dL1(vg)) N (64 exp (2M)7 9 3  d ~ l { ~ Z @ ~ [ ~ , ~ ] )  

*32n 

and yo = 2608/3. 
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Proof. Without loss of generality assume that M o ,  Bo 2 1 .  Define 

F = {f, = 1 ( . ,  a o ) - I ( . , a ) ; ~ ~ F ) .  

Then, by (1.41, If,l < 2(M+exp(M)). Also by (1.4) we have Ef, 2 0 and by the 
application of (1.9) and (1.8) we obtain 

This implies that the conditions of Theorem 2.1 are fulfilled with 

Kl  = 2 (M + exp (M)), K, = 4M (3, exp ( M )  + 
Therefore, for 

the following holds: 

By easy calculations, 

4K1 + 162Kz 
3 

< xo Bi  M exp (2M) 

and 

Kl +Kz < no := 
24M (Bo exp (M) + 

r"v+vc) Y (v  + v,) 

Therefore, using 4exp (M) 2 K ,  2 1 we infer that for n 2 no the right-hand 
side of (2.3) is bounded above by 

6 sup N (e, F, dLltVd) exp (- 
ies2n 4K xo Bg M exp (2M) 

< 6 sup N 
i ~ s n  (16e:(M)I)' " dL'(vd) ( - rco Bg Mexp (2M) 

Now Theorem 2.2 will be a consequence of the following estimate for E > 0: 
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For the proof of (2.4) let us introduce F" = Ex(-) = I(-, a); ~ E F ) ,  Then 

Let us define 

Jf = {g,(x, YY 6) = Ga(y, 4; ~ E P I  
and 

Then, obviously, N(E, A?, dLIIvr)) G N (6, g, dLiIv,-)). Further, 

= ~L~(+~BU[O,I~] (exp 0 a,, exp 0 a,), 

which implies 

by using the fact that for 9 with If 1 < K for f €9 and Lipschitz functions 
q: [-K, Iq + R  

Consequently, using a well-known upper bound for the covering number of the 
sum of two function classes we obtain 

Thus, combining the above estimates we get the statement of Theorem 2.2. BI 

Re m a r k  2.3 (more general loss functions and estimation problems). 
From the proof of Theorem 2.2 one obtains a similar maximal inequality for 
more general loss functions I (i.e. for more general estimation problems and 

11 - PAMS 222 
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(minimum contrast) estimation methods) satisfying the following three con- 
ditions: 

0 -  s 1 ,  El (a01 3 El (4, 
(2.6) E ( I  (a,) - 1 (a))' < K2 E (2 (010) - 1 (01)).  

For (2.6) the following two conditions corresponding to (1.8) and (1.9) are 
sufficient : 

Therefore, under condition (2.6) we obtain exponential hequalities with 

replacing the capacity term 

64 exp (M) ' 

in (2.2), where F = {f, = E (ao) - 1 (a); a E F )  is defined as in the proof of Theo- 
rem 2.2. This exponential inequality can be applied to prove convergence rates 
for the corresponding empirical minimum risk estimators. Condition (2.8) cor- 
responds roughly to condition M1 in Birgk and Massart [5]. Condition (2.7) 
together with an upper bound as in (1.8) corresponds to condition C in Birge 
and Massart [ 5 ] .  Their growth condition M2 involving also the L,-metric is 
replaced in our approach by corresponding growth conditions on the C-cov- 
ering numbers N ( - ,  F ,  dL~(v,-) which then is closer reIated to the I?-metric 
condition with bracketing MI,[ , in Barron et al. [4]. 

3. ERROR BOUNDS FOR MAXIMUM-LJKELMOOD ESTIMATORS 
FOR COPJDITIONAL LQG-HAZARD FUNCTIONS 

As a measure of complexity of a model 9 we define 

which arises from the first part of the estimate in (2.2). The following theorem 
estimates the mean A-error and the MISE of the ML-estimator in a model 9. 
The admissibility of F is a weak measurability condition (cf. Lee et al. [17]) 
which is satisfied for the examples considered in this paper. 

THEOREM 3.1. Let 9 c (a:  9 x  X + [- M, MI) be admissible where 
M 2 Mo = Ilololl, and Boy KO are as in Theorem 2.2. Assume that qrn ( 9 )  < ao. 
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Then for the ML-estimator 6, = arg maxEEF Ln(or) the following error estimates 
hold: 

(3.2) JA (&)-A (a011 

and 
< 2 inf IA (a) - A (olo)l + 8 uo Bi M exp (2M) 

lo#n ($r) + 1 
ES n 

Proof. In our proof we use a similar technique to that in the context of 
the regression estimation in Kohler [ll]-[13]. We decompose the A-error into 
two parts: 

(3.4) IA (43)- A (%)I = T i , ,  + T2,a 
with 

2 2 
T,,, = A (uO) - A (123 --(L,, (ao) -L. (4)) and Tz,, = -(L, ( ~ 0 )  - L. (4)). 

n n 

From the defisition of din we obtain, by a standard argument, 

ET,,, < 2inf IA(a)-A(ao)l. 
OTEJ 

It remains to establish the inequality 

E T 1 ,  < 8 uo Bi M exp (2M) 
log%n (9) + 1 

n 

For t 2 to = [96M (Bo exp (M) + 1)']/n we obtain from Theorem 2.2 with y = $ 
and v = v, = t/2 the relation 

4 6 s u p  [N( 4 (t0/2) 4 (t0/2) 

5esZn 
64exp (M) yry 4 1 ( v d )  N(&lexp (2M)' 9, ~ L ~ [ F Z @ U [ O , ~ ~ )  

For M 2 1 we have 
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and, therefore, 

tn  
P (%,, 2 t )  < W,, (9) exp 

8 KO Bi M exp (2M) 

This implies for u 2- to 

8 KO B$ M exp (2M) < u+gn{g) 
n ( - 8 B$ A4 exp (2M)  ). 

The right-hand side of (3.6) is minimized by 

1 
U, = - 8 uo Bi Mexp (2M) log%, (9). 

n 

It is easy to see that uo 2 to. With this u0 inserted in (3.6) we obtain the 
inequality (3.5), and so the statement (3.2). 

From (1.8) we then conclude 

Remark 3.2 (general estimation problem). The error estimates in Theo- 
rem 3.1 decompose the error as usual into an approximation error and a sto- 
chastic error of order [?og%, ( 9 )  + l]/n. As in Remark 2.3 (see (2.9)) we obtain 
a similar estimate for general loss functions 1 by replacing the model complexity 
term Vn(9) by 

with F = {fa = I (-, a,)- I(-, a); a E 9). In comparison to a related result in 
Birgb and Massart ( [ 5 ] ,  Corollary 11, Section 5) which uses in the condition 
M2 assumptions on the I?- and Lm-covering numbers of 9 our estimate uses 
only I?-covering numbers in the model complexity term Wn (P), respectively, 
gn(F). Our condition is closer to the L1-condition with bracketing M I , [  in 
Barron et al. [4],  Section 6. 

By Pollard's estimate for bounded VC-classes 9, d = dim,, 9, with ma- 
jorant H stating that for E > 0 
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(see van der Vaart and Wellner [22], Theorem 2.6.7), we obtain from our 
estimate in (3.3) a direct connection of convergence rates to the VC-dimension 
of the class F. 

As a consequence of this remark we obtain 

COROLLARY 3.3. Under the conditions of Thorem 3.1, where 9 is a bounded 
VC-class, we obtain 

log n 
(3.9) E llin-aoll$ < CI (M) i d  ]lor-aOllf + c z ( M ,  Bo)dimvc(=WT. 

REF 

A similar convergence rate result holds for general estimation problems as 
in Remarks 2.3 and 3.2. 

Remark  3.4 (sieve estimators). Let (FK)KGN be a sieve of VC-cIasses 
in the underlying model F with DK = dim,FK and approximation rate 
b, = infa,*, 11% - moll;. Assume that for some r, s > 0 

There are two well-studied types of sieves, linear sieves, i.e. kte-dimensional 
vector spaces which approximate typically smooth function classes and, sec- 
ondly, nets (like neural nets, radial basis function nets, etc.). Under assumption 
(3.10) we obtain from the estimate in (3.9), when choosing the optimal parame- 
ter K, in the bias-variance decomposition (3.9), an estimate for the MISE of 
oi, of the form 

Here r determines the approximation rate of the sieve which is usually for 
splines, wavelets, polynomials related to smoothness of the parameter, and 
s determines the complexity of the net. 

If FK is a subset of a K-dimensional vector space, then s = 1, and if r = 2p/d 
(where p is a degree of smoothness, and d a dimension of space), in some exam- 
ples we will obtain optimal convergence rates up to logarithmic terms. 

Polynomial rates (i.e. bK are as in (3.10)) can also be obtained for function 
classes which are derived from VC-classes by some operations like transfor- 
mations, sums, etc. 

4. STRUCTURAL RISK-MINLMIZATION 

From the maximal inequality in Theorem 2.2, for q E (0, 1) and any data 
dependent estimator GE 9 we infer that with probability 1 -q 

1 2 
(4.1) In (an)- A (a011 < - ~ K O  B$ M exp (2M) log - +-(L, (ao)-,!+, (a,)). n V n  
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The idea of structural risk minimization (complexity regularization) due to 
Vapnik [24] is to construct an estimator minimizing approximatively the right- 
-hand side of (4.1), i.e. minimizing 

where c, is a slowly increasing function independent of the unknown parame- 
ters, which asymptotically majorizes the corresponding constant in (4.1). The 
minimization is carried out not only over a in one fixed class F = 9, but also 
allows us to choose u within a finite set of model classes {S,,,; p ~ p , , ) ,  p typi- 
cally describing some smoothness or network complexity.. The error term 

can be interpreted as a penalization term for the complexity of the model. 
A detailed and general description of this approach with several applica- , 

tions has been given in Barron et al. [4], based on the error estimates in Birgi 
and Massart [S] as well as on new tools. In that paper one also finds several 
references to this method. In our paper we use some technical ideas from 
Kohler ([Ill, the proof of Theorem 4.2), concerning regression estimates which 
minimize the empirical penalized squared loss in that paper. 

Let Mo = Ilaol(, > 0 and Bo = Bo (llaoll m) > 0 be as in Theorem 2.2, let 
~ n b e ~ t e s e t s f o r n ~ N , a n d f o r p ~ 8 n l e t ~ n , p c ( u :  F x E + [ - M , M j ) b e  
admissible models, M 2 Mo with %,(Pn,P) c 00 for all PEP,. Then the com- 
plexity regularized estimator ol: is defined in two steps: 

S tep  1. Let 

(4.3) p t  = argmin(-n-I sup L,(u)+pen,(p)), 
K% 

where pen, (p) is a penalization term for complexity of the model FnPp satisfying 
asymptotically as n + ca 

Step 2. 

pen. Ip) 2 4rco 3; M exp (2M) 
10gqn (%,PI . 

n 

(4- 5) a: = arg max L, (a). 
'=~",Ic. 

It is important to note that the right-hand side of (4.4) is not supposed to 
be the actual penalty term used in application since it depends on the unknown 
Mo and Bo. This expression represents a lower bound for the penalty, sufficient 
for Theorem 4.1 to hold (6. also (4.2)). For asymptotic results the actual penal- 
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ty term should be chosen independently of M ,  and B,, majorizing the right- 
-hand side of (4.4) for large sample sizes. An example of how this can be done is 
given in Theorem 5.3. The following theorem gives an error bound for com- 
plexity regularized sieve estimators based on the maximal inequality in Theo- 
rem 2.2. A general related error bound is given in Barron et al. ([4], The- 
orem 8) under some alternative conditions on the L,-L,-covering, respectively, 
the Ll-covering, with bracketing. 

THEOREM 4.1. For the complexity regularized MLestimator a: the follow- 
ing error estimates hold: - 

(4.6) E lA (a:) - A (P?o)I 6 2 inf (pen, (p) + id IA (a) - A  (ao)l) 
K% a&n., 

41co B$ M exp (2M) + 
n (1 +log l%l) 

and 

(4.7) E lla,* - CIOII~ 6 2 inf (4M pen,,  ex^ ( 2 ~ )  inf Ila-olollz) 
PEP, a ~ * ~ ,  , 

16xo B; M' exp (2M) + 
n (1 + 1% l%l)- 

Proof. As in the proof d Theorem 3.1 we consider the decomposition of 
the error into two terms: 

(4.8) 
TI,, : = A (a,) -A (u,*)- 2n-I (L, (ao) - L (0::)) --2penn Ip,*), 

T,,, : = 2n- (L (ao) - I, (a,*)) + 2penn (~3 .  
Our first aim is to prove 

4x0 Bg M exp (2M) 
ET1.n G n (1 -+log IPnI). 

For the proof we obtain, as in Kohler ([Ill, p. 85), 

Then for 

24M (B,  exp (M) + 1)' 
n>, 4 t 

we obtain from Theorem 2.2 with y = % v = t +pen, (p) -and v, = pen, (p), ob- 
serving that the condition , 

24M (Bo exp (M) + 1)' 
n 2 t (t + 2penn tp)) 
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is fulfied for any p E B,, 

P(T1, > tl 

pe' 'PI )] exP ( - 
tn 

x (-4rco B$ Merp 
(ZM) 4uo Bi Mexp ( 2M)  

Since Iog Wn (s",,) 2 1, and hence 

for any p EP , ,  we obtain s, Cp) 6 %, (9,,,p). Further, 

by the definition of pen,'), and, therefore, for 

96M ( ~ ~ e x p  ( M )  + 
t > t * : =  

n 

we have 

This implies for u 2 to 

4 K o  82 M exp (2M) u 
G u + l 9 n l  

n (-ii,, B; M (2Ml '). 
The right-hand side of this inequality is minimized by 

41c0 B$ Mexp (2M) 
U = uO:= 

n 1% IPnI, 
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and without loss of generality for 

KO. log lPnl 3 24 

it follows that uo 3 to. This choice of u leads to (4.9). 
From the definition of p,* and we obtain 

(4.12) T,,, = 2 [n-' L,(ao)- n-' sup L, (a) + pen, (p:)] 
a ~ F n , ~  

- 

= 2 [n- L, (ao) + inf (- n- sup L, (a) +pen, (p))] 
~69n a ~ F i , ~  

= 2 inf [ inf pa-' (L, (a,) - L, (a)) +penn (p)] . 
~9.1 a~%,n,p 

Therefore, since pen,(p) is deterministic, we get 

(4.13) ET,,, < 2 inf E [ inf n-I (L, (ao)- L, (a)) + pen, (p)] 
PEP" UEF",~ 

< 2 inf [ inf En-' (L, (ao) - L, (a)) + pen, (p)] 
PEPPI U E F ~ , ~  

< 2 inf [ inf IA (a) - A (a,)l +pen, lp)]. 
PEP, a ~ s i , ~  

The relations (4.11) and (4.13) imply (4.6). The estimate (4.7) then follows 
from (1.8). 

5. ADAPTNE SIEVE ESTIMATES 
FOR THE CONDITIONAL LOGHAZARD FUNCTION 

In this section we apply the results of Sections 3 and 4 to several types of 
sieves. In the first part we show that the complexity regularized spline estimate 
is approximatively optimal even with unknown degree of smoothness, i.e. it has 
up to a logarithmic term the same optimal convergence rate as the estimator of 
Kooperberg et al. [I51 in the case with known degree of smoothness. In the 
second part we obtain convergence results for net estimates under the assump- 
tion that the conditional log-hazards have a certain representation property. 
Some applications to Sobolev class models will be considered in a subsequent 
paper. 

5.1. Tensor product splines. In this section we consider tensor product 
splines. For a general background of this class of functions we refer to Kohler 
[ I l l  and the references given therein. 
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Let denote the class of tensor product splines of [-hA4, 1 +hMlk+' 
of degree  MEN^ in each coordinate and of grid width h > 0. Let @(L, K,,) 
(for L > 0) denote the class of truncated functions TLo g, g E h,M, where 

(5.1) if - L d g d L ,  

- L  i f g s  -L.  

We consider for p = r + f l ,  r E N o ,  BE (0, I), the smoothness classes Zip, L) of 
bounded conditional hazard functions a ( t ,  x)  on [0, Ilk+' satisfying for all 
z,, z2 E[O, Ilk+' the Hiilder condition of order p: 

(5.2) Ilallm G L and IDra(zl)-Dr a(z2)l < L llzl -z2Il$. 

For classes with known degree of smoothness we obtain the following 
result. 

THBOREM 5.1 (known smoothness class). Let 1 4 p < Q, L > 0,  EN, 
a 3 p -  1 a d  h, = ( ( l~gn) /n ) ' / (~~+~+ I). Then the spline MLestirrmtor 

(5.3) 

satisfies 

6, = arg max L, (a) 
a~@(L,Vh~,ii#) 

(5.4) sup Ell~n-~oll,2 = O(((logn)/n) 
2pl(za+kf 11 

UEE(P.L) 
) 

and 

(5.5) SUP E lA (in) - A  (a011 = 0 (((log n)/n) 
2 ~ / ( 2 p + k + l )  

aeE(p,L) 
). 

Proof. From the definition of the truncation operator TL it follows that 

and, therefore, from the approximation result in Kohler ([ll], Lemma 1.5) for 
the approximation of Holder-continuous functions by tensor product splines 
(which is in sup-norm) we obtain 

with C = C (p, L) independent of a,. 
To estimate the stochastic error in Theorem 3.1 note that Kn,a is 

a vector space of dimension less than or equal to ( r  l /h, l  +w+' (see 
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Kohler [Ill, p. 79), and therefore (cf. van der Vaart and Wellner [22], Lem- 
ma 2.6.18) 

Therefore, from Theorem 3.1 we obtain 

log n n 

Consequently, with M := L, 9 := 8(L,  h,,,~) and Bo = Bo (L.) we get (5.4). 
For the proof of (5.5) we next establish the approximation rate 

(5-9) inf In(@)-A(ao)l<Ch,ZP 
~+IL,vh.,a) 

for the A-distance. 
From the representation (1.4) and by some elementary properties of the 

function G we obtain 

inf I A (a) - A (a,,)[ = inf j 'Fclx G (or - a,) dP'TpX) 
a~@(L,vh,,&H amL,Vh,ra) x z  

inf I Fclx ~( l l a -a~ l l , )dP(~ .~)  < inf G(lla-aollm) 
OIE@(L,V~,,IB) J X % a~B(L,Vh,.l(b) 

< G (  inf Ila-aollm). 
d(L.vh,,*) 

For the last inequality we observe that inf,,, G (x) = G(inf A) for A c R+ . 
Since for x,J 0, G(x,) = 0 (xi), we obtain 

inf IA(a)-A(ao)l = O((  inf I l ~ - ~ ~ l l ~ ~ ) ~ )  
d ( L . v h n , I a )  aE@(L,vh.,n%) 

= 0( (  in€ ll~,,-a11,)~)=0(h,2~) 
a~vh., S 

as in (5.6). rn 

Re mark 5.2 The convergence rate in (5.4) for the MISE is up to a logarith- 
mic factor optimal in the minimax sense (see Kooperberg et al. [15], Remark to 
Corollary 1; however, note that the convergence in MISE is stronger), i.e. 

(5.10) liminfn2P1(2pfk+11inf sup ~lloi,-a~llg>O 
n+ m P. aceZ(p.L) 

for any p 2 1 and L > 0. 
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If we do not know the smoothness parameter, i.e. assume that 

(5.1 1) OIEC:= (J E(P,L), 
l S p < m ; L < m  

then we will infer that our penalized spline ML-estimator dehed in (4.5) adapts 
up to a logarithmic factor to the unknown smoothness and is up to (logn)' 
minimax-adapted in the sense of Barron et al. [4]. An adaptiue estimation 
method (WARE') had been introduced in Kooperberg et al. 1151 and empirically 
investigated there, however no adaptation result was proved. We show that the 
complexity regularized estimator from (4.5) is approximatively adaptive. 

THEOREM 5.3 (unknown smoothness degree, adaptation). For n E N, 
qmax (n), K m a x  (~1)  EN let 

8,:= ((K, ~ ) E N x N I K  < Kmufn), q G 4 m a x ( n I )  

and for (K, q) E 9, and 8, : = $log log n define the models 

De$ne the complexity regularized estimate ct: as in (4.5) with penalization term 

For Km,,(n) : = n a d  q = q,,,(n) + co such that q,,, (n)/n + 0 we obtain for 
p a 1  and L>O 

(5.12) sup E Jlol,* - aollg = 0 (log n ((log n)/n)2p1(2p+kf 
rros8(p.L) 

) 

and 

(5.1 3) sup E IA (a:) -A (ao)] = 0 (log n ((log n)/n)2p1(2pf + . 
aod(p,L) 

) 
Proof.  For the proof of (5.12) and (5.13) we establish first the following 

more general estimates : 
For p > 1, L > 0 there exists No = No (L) E N such that for any n 2 N o :  

(5.14) sup E /la.* -aol12 
ao€(p.L) 

4 log log n (log n)8/5 
[(K +q- +2] 

167co Bi (log log n)2 (log n)'I5 +- 
25 n (1 + log (K- (n) qmax (n))) 
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and 

(5.15) sup ElA(u,*)-A(ao)l 
ao~Z(p,L) 

(log n)8j5 
< 2  id ( [(K+q-lr"+21+ i d  IA(@3-A(a.)l 

(K3qkpm ""%,[K,Q) 

16uo Bi log log n (log n)2/5 +- 
5 n (1 +log ( ~ m  (4 qmax 

where ICO and 3, are as in Theorem 3.1. 
The statements (5.14) and (5.15) follow from Theorem 4.1 with 

M : = /I, > Mo : = L, a 3 no and the estimate 

For the proof of (5.16) we use the fact that for a K-dimensional vector space 
V of functions and j? > 0 the following estimate holds for any probability 
measure p on F xX and E > 0: 

with some universal constant K. This implies that 

since Vl,K,,-, has dimension less than or equal to (K + q - l)k+'. Therefore 

l ~ g % ~ ( F ~ , ( ~ , ~ ) )  < I O ~ I C ~  +210g((~+q- l)k+1+2) 

+ [(K + q - l)k+ l +  21 Dog (nBn) + 21og 16eI 

< logrc2+[(~+q-lY+'+2] Ilog(njln)+210g 16e+2] 

G 2 [ ( K + q -  +2] log(nBn) 

for n 2 No, where No is independent of K, q ,  L, p. Consequently, 

4 ~ 0  Bt B n  exp (28,) n- ' log q n  (Fn,(~,g)) 4x0 Bi B n  exP (2Pn) 21og (n16J < 
pen, ((K 3 ql) (log n)*i5 

< 4x0 Bi Bn ~ X P  (2Pn) 4 
(log n)3/5 

< 1 

for n 2 N O ( ~ o ,  Bo(L)), and so the result follows. 
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For the proof of (5.12) let K,, : = r(n/log n)1/(2pck+1)l . Then by the ap- 
proximation result in (5.2) for K, d K,,, (n), and for q,,, (n) 2 p we obtain 

log log n (log n)'t5 2~ 

< C1 
7t 

( k + i M Z ~ + k + l )  ( ( l0yn)2~/ (2p+k+ I)) 

(&) +O (log nI2l5 - 
n 

This yields an estimate for the first term in (5.14). For the second term we use 
the assumptions on K,(n) and q-(n) to obtain the estimate 

16u0 Bi (log log n)' (log nl2I5 
25 n (1 + 1% ( ~ m a x  In1 4- (n))) 

which implies (5.12). We can prove (5.13) similarly observing that, as in the 
proof of the approximation error in (5.9), 

(5.19) inf / A  (a)- A (a,)[ = 0 ((1/K,)2p). 
~E*~.(K, ,P)  

The truncation constants fin = *log log n are not meant as proposals for 
practical examples. Note that the same estimates in the second part of the 
theorem hold for fl, of the form el,, where c is some bigger constant and 
En grows slower than loglogn. 

5.2. Net sieves. In this section we apply our results to obtain convergence 
rates for the conditional Iog-hazard function for net sieves under the assump- 
tion that the underlying conditional log-hazard function a. has an integral 
representation of the form 

where as, 9 E O c R", x EX c Rk is a set of sieve de-g functions, Y o  a, is the 
continuous net and v is a signed measure of bounded variation on O. This kind 
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of representation is typically related to some smoothness classes (see Yukich et 
al. 1273. Some approximation results by finite nets with rates of approximation 
are given in Dohler and Riischendorf [9] and applied in the following. Let 
3,+, (Fo) denote the class of all functions satisfying (5.20). 

Define the basis of the net Fo = ( Y O  as; 8 E @) and, for f i  > 0, K E N ,  the 
finite approximation net 

The following conditions were introduced in Dohler and Riischendorf [9] to 
prove approximation rates by finite nets. Let p be a probability measure on 
~ d + l  

(Al) There exists a D > 1 such that 

(A2) Define b, (9) = a, (z), z E F x X. Then the class ( 'P o b,, z E Rk + l) is 
a P-Donsker class for any probability measure P on 63. 

THEOREM 5.4. Assme the conditions ( A l )  and (A2) are satisfied. Let 

and consider the net ML-estimator 

din : = arg max L, (ol). 
meF(Bn.Kn) 

Then for any a* E 2Tk+ (lp, 2, F x %) the following holds: 

and 

Proof. We apply Theorem 4.1. The approximation error was estimated 
in DohIer and Riischendorf 191. Let v, be the signed measure representing a,. 
Then for n with fin 2 2 1v.,l we have 
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Next we prove that for > 0, K E N  the following inequality holds 

(5.26) gn (F (jl, K)) < C (bK)2K(2D- n2K(2D-11.  

Define 

Then P @, K) c F ( 4 ,  K) ,  and for any probability measure v on Y x S and 
6 > 0 using some well-known rules for covering numbers (cf. van der Vaart and 
Wellner [22]) we obtain 

independent of v as in (5.26), 
From Theorem 4.1 with M = 8, we infer that 

I f 1  4 - 1  1 
= 0 (log n [(l/n)2+ 1% - 1 )  +(l/n)' - H 1 n ~ -  1 )  log n])  

1 
= o ((log n)' ( l /n ) ' -2+1 / (~ -1 )  ) = o ((log n)' (l/n)'j2 +&) , 

and the result follows. 
The proof of (5.24) is analogous by using the approximation estimate 

(5.27) inf IA ( M ) -  A (uo)l = 0 ( ( l /Kn) l  + l I tD- l )  
a~s(Bn.Kn) ). 

For the proof note that for n with fin 2 L : = max (2 Iv,,], Ilctollm) it follows by 
(1.8) that 

inf IA ( M )  - A (aD)I G inf IA (a) - A (uo)~  
b E g ( B n , K n )  UES(L,K, , )  

< k ' ( L )  inf Ilcl-aO1l$=O((l/~,)l+li(DD-l) 
QES(L.K~) 

the last estimate is from Dohler and Riischendorf [9]. ra 
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As in Section 5.1, alternative choices of the truncation constants pH are 
possible. 

We consider special classes of neural nets, radial basis-function nets, and 
wavelet nets. In the following examples we use some approximation results 
from DBhler and Riischendorf [9]. 

Neural nets. Here 

95 = (fO: Y x 9 "  + [0, 11, ZI+!F(~JZ+~) I y ~ W k + l ,  S E R ) ,  

where !I?: R + [O, 11 is of bounded variation. Then the conditions (Al) and 
(A2) are fulfilled with D = k + 4  and Theorem 5.4 implies 

The same rate holds if the representation property of a, is replaced by 
Barron's [2] finiteness condition on the Fourier transform 

(5.29) cf = j l w l ~  17(w)ldw < a, 
where 3 is the Fourier transform of f. 

If PlT.s  has a density with bounded support, the convergence rate can be 
improved to 

Similar rates with 1/2 instead of 1/2+ 1/(4k+ 6) in the exponent were 
obtained previously for regression estimation in Barron [3], and for density 
estimation in Modha and Masry [19]. 

Radial basis-function nets. Here 

90 = {fo: y x 9 " +  CO? 11, ~ ~ e ( l l r ( z - s ) l l )  I r ~ R ~ + l ,  ~ E R ) ,  

where g: R+ 4 [0, 11 is monotonically non-increasing. Then the conditions 
(Al) and (A2) are fulfilled with D = k+ 5 and from Theorem 5.4 we obtain 

Wavelet nets. Here 

9 0  = {fo: T x X + [ O ,  I], z++!J'(~(z-6)) ( y € R k + ' ,  8 € R ) ,  

where !J': Rd+l  + [0, 11 is Lipschit2 with bounded support. Then by Theo- 
rem 5.4 with D = 3 k + 4  we obtain 

Note that in all the three cases a corresponding convergence result also 
holds in terms of the A-distance. 

12 - PAMS 22.2 
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In conclusion, this paper gives quite general results on the convergence 
rates for sieved minimum contrast estimators and also for the related adaptive 
versions of these estimators. The results are formulated in detail for the exam- 
ple of estimating the log-hazard function in censoring models. In comparison to 
the related general approach in Birge and Massart [5] and Barron et al. [4] we 
use some simpler conditions concerning the covering numbers. The results in this 
paper are illustrated with examples of sieves such as neural acts, wavelet nets, 
radial basis-function nets and tensor product splines. Some further applications 
of the method in this paper to more general type of censorings as well as to 
a more detailed study of neural net estimators are given in the forthcoming 
papers by Dohler and Riischendorf [g], [lo]. 
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