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Absh-act. Due to the well-known fact that market returns are not 
normally distributed, we use generalized hyperbolic distributions for 
pricing options in a randomized discrete-time setup. The obtained 
formulas can be used for pricing options on stack indexes, currencies 
and futures contracts. We test them on options written on the Nikkei 
225 index futures and conclude that a proper calibration scheme could 
give us an advantage in the financial market. 
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1. INTRODUCTION 

One of the most important problems in quantitative finance is to know the 
probability distribution of speculative prices returns. In spite of its importance 
for both theoretical and practical applications the problem is still unsolved. 
The first approach is due to Bachelier [2] who modeled price dynamics as 
a random walk. Consequently, the distribution of prices was Gaussian. Gaus- 
sian models are widely used in finance (as well as in d l  branches of natural and 
social sciences) although the normal distribution does not fit financial data 
especially at the tails of the distribution 161, [22]. In other words, the empirical 
distributions of prices are highly leptokurtic whereas the Gaussian one is not. 
Needless to say, the tails of the price distributions are crucial in the analysis of 
financial risk. Therefore, obtaining a reliable distribution has deep conse- 
quences from a practical point of view. 

One of the first attempts to explain the appearance of heavy (fat, long) tails 
in financial data was made by Mandelbrot [17] in 1963, who applied u-stable 
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(or LBvy-stable) laws [15], [19]. The Levy distribution has been tested against 
data in a great variety of situations, however, always with the same result: the 
tails of the distribution are too fat compared with actual data. In a search for 
satisfactory descriptive models of financial data, large numbers of distributions 
have been tried and many further distributions have been proposed recently. 
Eberlein and Keller [9], [lo] and Kiichler et al. 1161 showed that the hyper- 
bolic law fits data from the German stock market much better than the Gaus- 
sian one. Barndorff-Nielsen [4] proposed the normal inverse Gaussian WG) 
L6vy process for modeling stock returns. Such distributions have heavier tails 
than the hyperbolic and lighter than the Evy-stable ones. Tests performed on 
the DJIA, S&P500, Nikkei and DAX indexes showed that from a number of 
alternative distributions the NIG law best captures not only the shape of the 
empirical distribution around the mean but also the typical tail behavior of 
these indexes [18], [22]. 

For these reasons we use generalized hyperboIic distributions - a broad 
class containing hyperbolic and NIG laws - for pricing options in a ran- 
domized discrete-time setup. This paper extends our earlier results [21] to the 
case of European options written on instruments with a constant dividend 
yield. The obtained formulas can be used for pricing options on stock indexes, 
currencies and futures contracts. 

The paper is organized as follows. In Section 2 we introduce the classical 
Cox-Ross-Rubinstein [fl discrete-time setup. Next we show how the results 
obtained for options on non-dividend paying instruments can be extended so 
that they apply to options on instruments paying a known dividend yield 
(Section 3). In Section 4, following the reasoning of Rachev and Riischendorf 
[20], 'we introduce randomization into the discrete-time setup. Section 5 con- 
tains a brief introduction to generalized hyperbolic laws. In Section 6 we pre- 
sent the main results, i.e. we derive the option pricing formulas. Finally, in 
Section 7 we test them on options written on the Nikkei 225 index futures. 

2. THE DISCRETE-TIIWE SETUP 

Let us recall the basic ideas of the Cox-Ross-Rubinstein (CRR) option 
pricing model. Assume that the price S = (Sk) of a non-dividend paying stock 
follows a multiplicative binomial process over discrete periods which divide the 
time interval [0, t ]  into n parts of length h, 

with probability p, 
dSk with probability 1 -p, 

where So > 0 and u > 1 > d are real constants. Define U = log u, D = log d 
and let p ~ ( d ,  U) be one plus the riskless interest rate over one period, i.e. 
Bk+ = pBk, where 3, is the currency (e.g. USD) amount in riskless bonds. 
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Under such assumptions Cox, Ross and Rubinstein [7] determined the fair 
price of a European call option on a non-dividend paying stock with strike 
K and maturity in n steps {or equivalently with time t to maturity): 

where 

and is a sequence of independent random variables with P(E,,~ = 1) = p and 
= 0) = 1 -p. The symbol Lx ] denotes here the integer part of x. 

Convergence of (1) to the Black-Scholes formula is achieved by setting 
U = - D = c f i  and taking p satisfying limp" (n) = 8. The limiting formula 
is given by 

where 

log (So/K)  + (r f a2/2) t a+ = 4 
3. INSTRUlMENTS WITH A CONSTANT DIVIDEND YIELD 

A simple rule enables results obtained for European options written on 
non-dividend paying stocks to be extended so that they apply to European 
options on instruments paying a known dividend yield [14], [22]. 

Consider the diilerence between a stock that provides a continuous dividend 
yield equal to rc per annum and a similar stock that provides no dividends. The 
payment of a dividend causes a stock price to drop by an amount equal to the 
dividend The payment of a continuous dividend at rate u, therefore, causes the 
growth rate in the stock price to be less than it would be otherwise by an amount K.  

If, with a continuous dividend yield of u, the stock price grows from So at time 
0 to St at time t, then in the absence of di+dends, it would grow from So at time 
0 to S,e* at time t .  Alternatively, in the absence of dividends it would grow 
from Soe-a  at time 0 to St at time t .  This leads to a simple rule: 

PRICING RULE. When valuing a European option lasting for time t on an 
instrument paying a known dividend yield K, we reduce the current instrument 
prke fiorn So to  So e-Kt  arid then value the option as though the instrument pays 
no dividends. 

14 - PAMS 22.2 
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Why are we using the word "instrument" instead of the word "stock"? 
Well, simply because this method can be also used to value options on in- 
struments other than stocks. In fact, it is used in practice to value options on 
stock indexes, currencies, and futures contracts: 

e A stock index can be treated as a security with a constant dividend yield, 
because it represents a portfolio of a large number of stocks paying divi- 
dends at different moments of time. The dividend yield K should be set equal 
to the total annual amount of dividends received by the owner of such a port- 
folio. - 

e A foreign currency has the property that the holder of the currency 
receives a "dividend yield" equal to the risk-free interest rate in that currency, 
i.e. K = r,. This can be explained easily using the argument that the holder can 
invest the currency in a foreign-denominated bond. 

Q The cost of entering into a futures contract is zero, thus the expected 
gain to the holder of a futures contract in a risk-neutral world should be zero. 
This implies that futures contracts can be treated as instruments paying a con- 
stant dividend yield equal to the risk-free interest rate, i.e. K = r. 

The use of this rule gives us the following formula for the fair price of 
a European call option on a dividend paying instrument with strike K and 
maturity in a steps: 

(3) C." = Sop," Y ( a ,  n, pl)-Kp-" Y (a, n, p ) ,  

where pK is one plus the dividend yield over one period, 

Q - d  U p = -  p' = - p ,  a = 1 +  
u-d' L? 

and e = p/pK is one plus the riskless interest rate over one plus the dividend 
yield over one period. Convergence of (3) to a Black-Scholes type formula is 
achieved in the same manner as for options on non-dividend paying stocks; i.e. 
by setting U = - D = a f i, taking p satisfying limpn(n) = ert, and taking pK 
such that limp: (n) = e*. The limiting formula is given by 

where 

log (S&) + (r - K f a 2 / 2 )  t 
h* = 

a d  
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4. RANI3OMIZATION IN DISCI1ETbTIME SETUP 

Now, define the cumulative return process as 

(5) log (Sk/So) = (E,,,~ U + ( 1  - E,,,~) D) = Xn,i,  k = 1, . . . , n. 
i =  1 i = l  

The limiting behavior of the sums zf=l Xnc was studied by Rachev and 
Riischendorf 1201. They gave necessary and sufficient conditions for the con- 
vergence of these sums to the Gaussian law. Basing on their result, in what 
follows we assume that for some and u2 

- 

Moreover, we assume that we obtain Gaussian limits with parameters 8, a2 
and $, d 2  for probability measures for which the random walk log(S,/So) 
exhibits upward movements with probabilities p and p', respectively. 

In the same paper [20] the authors proposed a model with a random 
number of components (RR). Introducing N,, a positive integer valued random 
variable independent of the sequence ( E , , ~ ) ,  they defined the stock price process 
that exhibits a random number of jumps in the interval LO, t] as 

where X,,, is defined in (5). Note that (X& sksn are sequences of i.i.d. random 
variables (in each series). If z;=, X,, Nu, c?) and Nn/n ZY,  then 
Nn 

C k = l  
X,,, 5 2, where the characteristic function of Z is 

m 

(6)  qz(u)  = EeiYZ = j exp {i/3zu -* za2 u2)  dFy  (z), 
0 

see Gnedenko [12]. This formula shows that normal variance-mean mixtures 
can be obtained as limiting distributions of sums of independent binomial 
random variables with a random number of components. We will use this 
property in option pricing. 

5. GENERALIZED HYPERBOLIC DISTRIBUTIONS 

A random variable Y has the generalized inverse Gaussian distribution 
GIG(A, X ,  $) if its Laplace transform has the form 

where K,(-) is a modified Bessel function of the third kind with index A. 
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The generalized hyperbolic distribution is defined as a normal variance-mean 
mixture where GIG is the mixing distribution. More precisely, a random variable 
Z has the generalized hyperbolic distribution if (Z I Y )  - N ( p  +PY, Y), where 
Y - GIG@, x ,  $). This means that Z - GHyp(l, x ,  $, 8, p) can be repre- 
sented in the form Z = p+ BY + JY N (0, 1) with the characteristic function 

m 

(8) qz (u) = exp (iup) l) exp (iflzu-$zu2) dFy  (2). 
0 

For 1 = 1 we obtain the hyperbolic distribution itself, see Bgndorff-Nielsen 
[3] for details. Kiichler et al. [I61 and Eberlein and Keller [9] found that the 
hyperbolic distribution provides an excellent fit to the distributions of daily 
returns, measured on the log scale, of stocks from a number of leading German 
enterprises. However, one desirable feature that the class of hyperbolic distribu- 
tions lacks is that of being closed under convolution. For 1 = -4 we obtain the 
mmaI inverse Gaussian distribution (NIG) introduced by Barndorff-Nielsen [4]. 
This law is represented as a normal variance-mean mixture where the mixing 
distribution is the classical inverse Gaussian law, hence its name. In contrast to 
the hyperbolic distribution the NIG is closed under convolution. 

6. OPTION PRICING 
IN THE RANDOMIZED DISCRETE-TLIWE SETWP 

Denote by C; the fair price of a call option written on a dividend paying 
underlying asset with k movements Xn,i until maturity and by Ckn the 
"rational" price of a call option on a similar underlying asset with a random 
number of jumps. We define Ckn as the mean value of the option prices C;: 

CXNn = C C;P(Nn = k). 
k =  1 

We refer to this value as the RR price. See also Rejman, Weron and Weron 
[21], where a similar approach was used to obtain "rational" prices for Euro- 
pean options written on non-dividend paying stocks under the generalized 
hyperbolic model. 

From the above equation we obtain the following counterpart of (3): 

where p = p(n) and p' = pf(n) were defined in (3), 
k 

u(n)]  and ~ ( a k ; k , p ) = p ( z & n , i ~ a k ) -  a k = . l +  logp L Sod (nIk log;ii;;j i =  1 

The expectation E is taken with respect to N,. 
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Formula (9) is complicated from the computational point of view. For this 
reason we will look for its limiting case. We will also limit ourselves to the case 
where the log price of a stock is. driven by the generalized hyperbolic dis- 
tribution. 

THEOREM 6.1. Let 8, a, /3' and d be the parameters of the Gaussian laws 
obtained as limiting distributions of log(SJSo) for the probability measures p and 
p' (respectitrely) considered in Section 2. Let the interest rate and the dividend 
yield satisfy 

p"+eH a n d ,  p:+eMt, - 

respectitrely. Let N, be a positive integer vaIued random variable independent of 
the sequence log (S, /So)  such that Nn/n I: where Y has a ganmalized inverse 
Gaussian distribution. Then the limiting RR price of a Buropean call option on an 
instrument with a constant dioidend yield K ,  exhibiting a random number of jumps 
until maturity, is given by 

where f (-1 denotes the density of the generalized hyperbolic distribution with the 
given parameters. 

Proof.  To prove the Theorem we have to find the limits of the expec- 
tations in (9). From the definition of y(aNn,  N,,, p') and XnSk we have 

m p i k P ( N ,  = k)  
= Ep; Nn c P (3 (k)  2 0) 

k= 1 Ep; N n  

where X (k)  = c:=, X.,, - ak (U- D) - kD and NL has the distribution 
P (N, = k) = p; P (N, = k)/Ep; Nn. Since limp: = eK', we have 

Ep;"n+Ee-*Y with Y - - G I G ( I , x , $ ) .  

Now, observe that the characteristic function of 3 ( N n )  has the form 

E exp [ i d  (N'~) ]  = P (NL = k) exp [ - iu (a, (U- D) + k ~ ) ]  E exp [iu C Xn,i] 
k =  1 i =  1 



414 R. Weron 

m 

= j exp [ - iu (u, (U - D) + xD)] (rpx,, , (u)jX dPNh (x) 
0 

m 

= exP [ - iu (a,, (U - D) + znD)] (qk,, (u))' d P h l n  (z), 
0 

where (pxn,, is the characteristic function of the random variable X,,,. 
To identlfy Law(Yt), the limiting distribution of NJn, we first have to 

compute the Laplace transform of NJn by Lemma 5.1 of Rachev and 
Riischendorf [20] : - 

for 6, + 0. When n tends to infinity we obtain the Laplace transform of Y': 

Notice that the above limit is a quotient of two Laplace transforms of the 
generalized inverse Gaussian distribution at the points 8+ t~ and EK. From (7) 
we have 

Hence Y' has the generalized inverse Gaussian distribution GIG ( I ,  X ,  $ + 2 t ~ ) .  
From the definition of X,,i and the assumptions of the Theorem we 

have qk,. , (u) -) (P~y ' ,~ '2 )  (26).  Moreover, U (n)  - D (n) + 0 and, consequently, 
a,, (U - D) + znD -, log (K/So) .  Finally, using the fact that N;/n 5 Y', we obtain 
the following form of the limiting characteristic function: 

m 

E exp [ iuS  (N,)] + exp [- iu log (K/So)] j ( ( ~ ~ ( ~ * , ~ * 2 )  (u))' dpY' (z) . 
0 

Now, using Corollary 1 of Rejman, Weron and Weron [21] (or equivalently 
comparing the above integral with formulas (6) and (8)) it is clear that 

3 (N:) 5 2: - log (K/So) ,  
where 

This lets us write 
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Identical arguments hold for the second expectation in (9). Thus 

Collecting the results (9), (121, and (13) we complete the proof. 

7. EMPWICAL ANALYSIS 

In our empirical analysis we use a high-frequency data sef comprising 
tick-by-tick prices of Nikkei 225 futures and Nikkei 225 futures call options as 
traded on the Singapore International Monetary Exchange (SHMEX) since Jan- 
uary 16th, 1997 until September 2nd, 1997. The data set is part of the SIMEX 
1997 Trade Data CD-ROM kindly supplied by Garlinski Finanzhandels 
GmbH. Note that since we are dealing with options written on futures con- 
tracts, we have to adapt the obtained earlier formulas. 

Let log(SJSo) be a random walk on the interval [ O ,  t ]  defined in Sec- 
tion 2 with 

such that log (SJS,) 5 N ((r - K - a2/2) t ,  a2 t). This implies that p' has the fol- 
lowing explicit form: 

Moreover, these values of U, D and p make the %on-randomized" option price 
(3) converge to the Black-Scholes type formula (4) with a given volatility D. 

Now, letting NJn + Y GIG ( I ,  X ,  $) we obtain 

log (SNJSo) GHyp 0) , 

and the "rational" price of an option on an instrument with a dividend yield 
u is given by 

Recall that, when valuing options on futures contracts, we have to make the 
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dividend yield equal to the risk-free interest rate. Thus, substituting ~c = r we 
get the RR-NIG price 

where Ee-'" is given by formula (7). Now we are in position to compare the 
classical Black-Scholes type model (to be more precise: the Blacli model [SJ for 
options on futures) and the above result. 

For the analysis we chose Nikkei 225 htures and Nikkei 225 futures op- 
tions contracts with expiry on September 12th, 1997. To test the models we 
decided to pick four trading days with relatively high volume (above 1600 trans- 
actions for the futures and above 10 for the options). Our selection was: June 
llth, 1997 (93 days to maturity), July llth, 1997 (63 days to maturity), August 
6th, 1997 (37 days to maturity), and September 2nd, 1997 (10 days to maturity). 

To estimate model parameters we used 100 preceding daily logarithmic 
returns for each of the four selected dates. Both, for the Gaussian and the NIG 
distribution we used maximum likelihood estimates. The obtained parameters 
are presented in Table 1. Surprisingly, both distributions passed the Kolmogo- 
rov and Anderson-Darling goodness-of-fit test statistics [I] at the ol = 0.05 
sigdicance level with the NIG law giving just a slightly better fit, for more 
details see [18]. 

Table 1. Parameter estimates for the SIMEX data 

To conclude which option pricing model is better we must compare model 
and real trading prices. As the test statistics we use the mean absolute error 

where the sum is over N strike prices K. The results presented in Table 2 show 
a slightIy better performance of the NIG model. As recent studies [I81 suggest, 
caIibrating the RR-NIG model to option prices instead of the underlying fu- 
tures prices can improve the model performance considerably. 

Parameters for: 11.06.97 

0.0013 
0.0152 

0.00 13 
25945 
5.7163 

1.0305. 

Gaussian 
law 

NIG 
law 

P 
u 

X 
$ 
f i  
P 

11.07.97 

6.9799. 
0.0127 

8.7742. 
34137 
4.3537 

1.0304. 

06.08.97 

9.4562. 
0.0 126 

5.4590- 
21827 
5.9794 

1.0303. 

02.09.97 

1.9957- 
0.0128 

5.1772- 
19610 
1.2283 

-4.8937. 
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Table 2. Mean absolute errors for SIMEX data 

RR-NIG Black 

11.06.97 190.31 201.82 
11.07.97 82.79 82.23 
06.08.97 23.54 
02.09.97 19.03 19.79 

8. CONCLUSIONS 
- 

Recall that in a complete financial market any contingent claim is at- 
tainable and can be valued on the basis of the unique equivalent martingale 
measure [13]. Thus the main objective of contingent claim valuation is to find 
an equivalent martingale measure, Unfortunately, by considering heavy-tailed 
distributions, we entered the realm of incomplete models. Instead of a unique 
equivalent martingale measure typically there is a large class of such measures 
181. Luckily, recent results of Geman et al. [11] justify the use of normal 
mean-variance mixture models. And the generalized hyperbolic law is a normal 
mean-variance mixture. 

On the more practical side, the results presented in the previous section 
suggest that the RR-NIG model performs only slightly better than the classical 
Black-Scholes type model. This would make the model useless in the real 
world, since its slightly smaller errors are offset by much more complicated 
numerical procedures. However, recent studies [18] suggest, that calibrating 
the RR-NIG model to option prices instead of $he underlying futures prices can 
improve the model performance considerably. Thus a procedure consisting of 
calibrating the RR-NIG model to previous day's option prices and then using 
it to price today's options would justify our approach and give us an advantage 
in the financial market. 
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