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Abstrucr. It is shown that the tail probabilities of a strictly 
( r ,  a)-semistable (0 < r < 1,0 < n < 2, a # 1) Banach space valued ran- 
dom vector X and its symmetrized counterpart are "uniformly" com- 
parable in the sense that the constants appearing in the inequalities 
depend only on r and a (and not on X or the Banach space). Using this 
and some other known facts, several corollaries related to the moment 
inequalities of the random vector X and its symmetrized counterpart 
are obtained. The corresponding results for strictly a-stable Banach 
space valued random vectors, a # 1, are also derived and discussed. 
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1. INTRODUCTION 

Let (B, ( 1 -  11) be a separable Banach space, and X be a B-valued random 
vector and R its symmetrization. It is well known and is easy to prove 
that P (HBII > t )  Q 2P(2 11Xll > t )  for all t > 0, The reverse inequality, e.g., 
aP(b llX\l > t )  < P(IIXII > t )  for all t  > 0, for some universal constants a > 0, 
b > 0, may not hold even when B is the Euclidean space, and the class of 
random vectors belongs to an infmite countable set. One of the two main results 
(Theorem 3.1) of this paper shows that this reverse inequality indeed holds for 
all strictly (r, a)-semistable (0 < r < 1, 0 < ol < 2, a # 1) B-valued random vec- 
tors. More precisely, let X be such a random vector and 1 its symmetrization; 
then we show that, for any 0 < z < 1, zP (rc IIX11 > t )  < P (IIRII > t)  for all t > 0, 
where u is a universal constant depending on z, r and a (and not on B or on X).  
Combining this and the above-noted known inequality we have 

(1.1) zP(~jlXll > t )  d P(11811 > t )  < 2P(2llXll > t )  for all t > 0. 
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Using (1.1) and known inequalities for the moments and an F-norm of X, we 
obtain several inequalities comparing the moments and an F-norm of X; these 
include: IIXllg (= (E (IX11q)'/') < c llXllp for 0 < p < q < a, where c depends only 
on r, a,  p and q (and not on B or on X). These constitute the other main result 
(Theorem 3.2). Using Theorems 3.1 and 3.2, we also derive and discuss corre- 
sponding results for strictly a-stable, cr + 1, 18-valued random vectors. One 
interesting feature of our results is that all the constants appearing in the 
inequalities are explicitly computed. 

There are two inequalities that are central for our proof of the left-hand 
side inequality in (1.1): One of which provides a uniform bound of the symmet- 
ric (r ,  a)-semistable probability measures of small balls in B, and the other gives 
a uniform bound of E11X114 by E IIR/Iq for some 0 < q < a. This second in- 
equality for 1 < a is standard, but the case a < 1 requires proof which is 
contained in Corollary 3.1. 

The organization of the rest of the paper is as follows: Section 2 contains 
some notation and preliminary facts; Section 3 contains the proofs of Theo- 
rems 3.1 and 3.2, and the noted corresponding results for a-stable random 
vectors (Corollaries 3.2 and 3.3). 

2. NOTATION ANI) PRELIMINARIES 

Throughout B will denote a separable Banach space, and I I - l I  the norm of 
B; further, if - denotes a metric space, then 93 ( .  ) will denote its Borel a-algebra. 
For a given B-valued random vector X,  the symbols and R shall denote an 
independent copy of X and the symmetrization R (= X-I?) of X, respectively. 
The symbols r and a will denote a number in the interval (0, 1) and in (0,2), 
respectively; and the symbol A (= A(r, a)) will denote the annulus 
( x E B :  rlta < Ilxfl < 1). Following the standard convention, we shall use the 
notation r-SS(a) and S(a) for r-semistable index a and stable index a, respec- 
tively. For information about r-SS (a) and S (a) random vectors and probability 
measures, we refer the reader to Linde [6], Samorodnitsky and Taqqu 1121, 
Araujo and Gink [I], Chung et al. [2], Rajput and Rarna-Murthy [8], Rajput 
and Rosiriski [lo], and Krakowiak [4]. One fact which is important in Section 3 
is that every symmetric r-SS (a), 0 < a < 2, and every strictly r-SS (a) probabil- 
ity measure p on B ( B )  with a # 1 is determined by a unique finite measure y on 
9 (A) via its characteristic function, y is called the spectral measure of p (see 181, 
p. 142). 

Let 0 < q < a < 2, and set 
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where 

Next, let (u j )  denote a sequence of iid exponential random variables with 
parameter 1, and set r j  = uu, + u, +. . . + ~ l j .  NOW put 

where r denotes the gamma function; and, assuming that 0 O( a < 1, set 

l - r  

Note that C1 < m as 0 < a < 1 and as ~ ( s u p ~ ( j / z ~ ) ~ ~ " )  < m; see [3], p. 55.  
Next, set 

C =  C(r, a, q)= C0(r3u'q)(21/a) for ~ < a <  1; 
Clb-5 a5 q) 

finally, for any 0 c z < 1, set 

In closing we mention that all random vectors considered in the following 
are assumed to be non-degenerate. 

3. STATEMENT AND PROOF OF RESULTS 

As noted, one of the main results of this paper is the following theorem. 
The proof of this requires in part Lemma 3.1, via Corollary 3.1, which we shall 
prove first. We note however that part (i) of the lemma, for 1 < u < 2, is not 
needed for the proof of this theorem (or that of Theorem 3.2). Nevertheless, it is 
a useful observation. 

THEOREM 3.1. Let X be a B-valued strictly r-SS(u) random vector, u # 1. 
F i x O < z < l , l e t q s a t i s f y O < q < u i f a < 1 , a n d 1 ~ q < a i f 1 < a , a n d I e t  
rc = rc (z, r ,  a ,  q) be as in (2.1). Then we have 

(3.1) ~ P ( ~ I I X ~ I > ~ ) < P ( I I X - ~ I I > ~ ) < ~ P ( ~ ~ ~ X ~ ~ > ~ )  for all t > 0 .  

LEMMA 3.1. Let X be a B-valued r-SS(a) random uector with spectral mea- 
sure y. Let 0 < q < a. Then we have: 

(i) If X is symmetric, then 
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(ii) If 0 < 61 < 1 and X is strictly r-SS(u), then 

COROLLARY 3.1. Let 0 < a < 1 and 0 < q < a. Let X be a 5-ualued strictly 
r-SS(ol) random vector. Then 

The following proofs of the inequalities in Lemma 3.1 are similar to those 
of Gin& et al. [3], pp. 54-55, where analogs of these inequalities for symmetric 
S (a) random vectors are proved. The proofs in [3] are based on series represen- 
tations of S(a) random vectors; our proofs are similarly based on series rep- 
resentations of r-SS(a)  random vectors which are due to Rosidski [Il l .  

P r o  of  of Lemma 3.1. (i) Let i t j )  be an iid sequence of A-valued ran- 
dom vectors with L(tj) (dx) = 171-' y (dx), and let (ej) be an iid sequence with 
P ( c j  = 1) = P = - 11 = 1/2. The three sequences ( C j ) ,  ( E ~ )  and {z,} are in- 
dependent (TJS  are defined in Section 2). Then from [ll] we have 

where the series converges a.s. and in LB and [ulr = f if f < u < r k - I ,  

k = 0, f 1, &2, ... Write 

x = El [(l/r-1) 171- I  z ~ ] ; ~ ~ ~ < ~ +  C ~ ~ [ ( l / r -  1) I ~ I - ~ Z ~ J ; ~ / = { ~ ;  
j&2 

then it follows, from the Fubini theorem and the LCvy inequality ([I], p. 102) 
and recalling rl ia $ lltlll and [u], < u, that 

Hence, observing that E ( T ; ~ ~ " )  = r (1 -q/ol), we have 

which completes the proof recalling the definition of CO(r, a, q). 

(ii) Using the notation of the above proof, we infer again from [ll] that 

where the series converges a.s. and in E. Rosinski [11] did not explicitly 
mention this representation, but it is contained in his paper implicitly: the 
representation follows from Corollary 4.4 (ii) of [Ill, p, 420, the fact that 
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[Illxll s 1) llxll dF < m from [8], p. 144 (F is the Lkvy measure of X, the constant 
a in the noted Corollary of [1 l] is Srllxll llxll dF) and using the computation 
of the function R (u) as on page 424 of [I 11. 

Now recalling that [u], > ru and that ll[jH < 1, we infer from (3.2) that 
91 

IlxlC = E(II CIl/r-l) lyl-' zjl;lh4j1(") 
j=  1 

Therefore, 
m 

IIXII, c (1 - r )  - 'la (E sup ( j / r , )q~~)~ '~  ( C l/j'la) )lyI 'la; 
J j= 1 

and the proof is complete recalling the definition of C ,  (I-, oc, q). rn 

Proof of C o r  o 11 ar  y 3.1. The spectral measure of the symmetrized ver- 
sion of the strictly r-SS(a) random vector X is y +y, where y is the spectral 
measure of X and y"(. ) = y ( - - ); then Lemma 3.1 and the definition of C im- 
mediately yield the proof of the corollary. In fact, from Lemma 3.1 (i) we obtain 

and by Lemma 3.1 (ii) we get lyllia 2 IIX[lq/Cl (r, a, q). Therefore, 

Proof of Theorem 3.1. As noted before, we need only prove the left- 
hand side inequality. It is shown in [7] that P(IIRII < t )  < K P ~ ~ ,  t > 0, provided 
118]1q = 1 for any 0 < q < a, where as before S = X-2,  and K K(r, a, q) is 
given in Section 2. For the time being, let us assume llX1lq = 1. Let to = 
((1 -z)/~)~I";'then P(llXll 6 to) 6 1 -z, and hence P (IIBII > to) 2 r. Therefore, 
P(IIRII > 9 2 z if 0 < t < to. Hence, we have P(llXll > t) d 1 = (l/z)z 6 
(l/r) P(11811 > t) if 0 < t < to, i.e., 

If u > 1, then 1 d q, so from [I], p. 103, we have 118114 2 IIXlln; on the 
other hand, if 0 < q < u < 1, then, by Corollary 3.1, llRl14 2 C(r, a ,  q)llX1lq. 
These along with Chebyshev's inequality yield, for any a > 0, 
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where co = 1 if 1 < q < ol, and co = l/Cq if 0 4 < oc < 1 and, as before, 
C = C(r, a, q). Taking 

1 /a 
a*=(&") 5 

we infer from (3.4) that P (((X(( > a,) < 1 -z; therefore P (((XI( 6 a,) >, z. This 
and the inequalities 

clearly yield 

Let a,  = a, (z, r ,  a, q) = 1 +ao/t,. Clearly, ta, 2 t + a,, if t 2 to. Hence (3.5) 
yields zP(]IXII > tal) < P(IIBII > t) provided t 2 to. This along with the fact that 
al > 1, (3.3) and the observation from Section 2 that IC = IC (7, r, a, q) = a; ' 
imply ZP (lc: llXll > t) d P (IIXII > t) for a11 t > 0. 

Now to relax the condition that JJXIJ, = 1 write Y = X/JJXJJ,, = XIIIXII,, 
and P = Y- Then Y is a strictly r-SS(oc) B-valued random vector with 
11 Ylla = 1. Hence, from above, 

zP(uIIYII > S) G P(IIPII > s) S 2P(2tlYII > S) for s > 0. 

For an arbitrary t > 0, substitute s = t/llXlfq in this inequality to get (3.1). This 
completes the proof. 

Remark  3.1. Note that, for fixed z, r, and M, the left-hand side inequality 
in(3.1) holdsfor any k(q) = K(T, r, a, q),aslongasO<q < a i fO<  a <  1,and 
1 < q < a if 1 < a. This inequality improves as k(q) becomes larger, of course, 
k(q) is always less than 1. In general, because of the complicated nature of the 
function k, it is not clear whether an optimal value of k exists, but, perhaps, this 
flexibility in choosing IC and numerical methods may be useful for concrete 
values of r ,  ol and T. From now on, to be concrete we shall take q = (a+ 1)/2 if 
1 < a <  2, and q = a/2 if 0 < a  < 1, in the definition of K; so now K depends 
only on r ,  a and z. 

As noted before, Theorem 3.1 has several corollaries (Theorem 3.2) relat- 
ing to the moments and an F-norm of an r-SS(ol) random vector. To discuss 
these, we need to introduce a few notations: For a non-negative random varia- 
ble 5 and p > 0, we write 5 (l) for sup,,, tP (5  > t) l iP. Now we recall from 171 
that if Y is a symmetric r-SS(a) B-valued random vector, 0 < c l <  2, then the 
F-norm I/,(II YII) and 11 YIIq satisfy 



Tail probabilities oj  strictly semistable/stobIe random vectors 373 

For the proof of Theorem 3.2 in addition to Theorem 3.1, we shall need (3.6), 
Lemma 3.1 for the case 0 < a c 1 and the following observations: Let ( and 
q be non-negative random variables and a ,  b and p be positive numbers. If 
uP(bq > t) d P (t > t) (respectively, P (t > t) 6 aP (bq > t)) for all t > 0, then 

(3-7) a b ( ) (respectively, &(() 6 allP b& (q)), 
and 

(3.8) aliPb Ihllp < 1151Ip (respectively, f151Ip 6 a'lPb HvII,). 

The proof of (3.7) follows from the definition of V'(.), and that of (3.8) from the 
fact that E (5') = jr pfP-' P(4  > t)dt. 

T H E o ~ M  3.2. Let X be n strictly r-SS(a) B-valued random vector, or # 1. 
Let 0 < r < 1 and 0 < q < a. Then we have: 

6) 2 " ' ~  IIXl[q < l[xllq < 2'+lh IIXlla; 

(ii) ~""~K(l lx l l )  G K(11~11) 6 21'1'aK111xll); 

(iii) I I 

(v) $0 < a < 1 and X is symmetric, then Co lyIlia d IIXHg < Cl lyll/"; an4 in 
the general strictly r-SS(a) case, 

P r o  of. The proof of (i) (respectively of (ii)) follows from (3.1) and (3.8) 
(respectively from (3.1) and (3.7)). The proof of (iii) follows from (i), (ii) and (3.6). 
For instance, to get the left-hand side inequality we observe that 

The proof of (iv) follows from (iii). In fact, by (iii) we obtain 

11 - PAMS 24.2 
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where the last inequality is obtained by (iii) again with q replaced by p, and the 
last expression is equal to 

The first part of (v), of course, is immediate from Lemma 3.1 (used only for 
the case 0 < a < 1). The second part follows by the first part and (i). For 
instance, to get the right-hand side inequality we observe, from (i), that 
llXlle 6 11811q/~11q K and, by the first part of fv), 11811q < C1 (2 Iyl)liQ (the factor 
2 shows up here because 171 = 2 Iyl, where 7 is the spectral measure of 1). H 

Remark  3.2. For fixed r, a! and q, the left-hand side inequality in (3.1) 
improves as z and (as noted) u are large. Unfortunately, as follows from (2.1), 
if r t ,  then K J ,  and if KT, then zl; therefore there appears no optimal choice of 
K and z for this inequality, This fact notwithstanding there is an optimal choice 
of z and I(: in inequalities (iHv) of Theorem 3.2 where these constants occur. 
This is because of the fact that these constants occur as the product of some 
positive powers of .c and K.  For example, in (i) they occur as rl/q m Now observe 
that the function f (7) = 2'14 K is of the form za (1 + b/(l -T)')- l ,  a ,  b ,  c > 0, and 
f ( r )  -, 0 as z + 0 or as 2 + 1. Thus, defining f (0) = f (I) = 0, and observing 
that f is continuous on 10, 11, we see that f has a maximum, say at 0 < 2, < 1. 
Then T # ~  u, is the optimal constant in (i), where K, is the value of rc at TO. 
A similar situation prevails relative to inequalities (iiHv). The existence of this 
optimal value of z, is one thing, its location, in general, however appears 
impossible. Nevertheless, for concrete values of r, ol and q, it can be approxi- 
mated numerically. 

Since every S(a!) random vector is an r-SS(a) random vector for any 
0 < r < 1, all the inequalities proved here apply to the stable case. But this 
requires some additional clarification; for example, how to replace lyl by the 
total mass la1 of the spectral measure a of a stable random vector X (note that 
a and y are defined quite differently in terms of their Lkvy measures). This and 
other related points are explained in the following; and the analogs of all the 
inequalities in the stable case as noted before are contained in Corollaries 3.2 
and 3.3. 

Let X be an arbitrary 3-valued S (a) (not necessarily strictly S (a)) random 
vector with spectral measure a. Denote by P the LCvy measure of X and y, the 
spectral measure of X when it is viewed as an r-SS(cl) random vector. Let 

1" m 

cU = - S t-'sintdt (= J t-l-"(I-cos t)dt), 
a 0  0 

and recall ([l2], p. 17, and [5] )  
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(we caution that there is a misprint in both [6] ,  p. 97, and Ell],  p. 423, in the 
expression used to evaluate the integral j," t-'-" ( 1  -cost) dt). Put u, = ue,; 
and 

> 

Then we have 

03 

= u, r" + F ( A  (r ,  a)) ( [ % I ,  p. 143) 
n = O  

I 

I = % - lrrl (as I ~ r l  = F ( A  ( r ,  a))); (1 

therefore 

If X is symmetric S(a), then (3.6) holds for all 0 < r  < 1 ;  hence we obtain the 
known inequalities ( [ 3 ] ,  p. 61, and [6 ] ,  p. 135): 

To state better versions of the inequalities in the stable case, we need the 
analogs of the constants defined in Section 2. These are: 

f = r t ( z , a , q ) =  sup r c ( z , r , a , q ) ,  O < z < l ,  q < o l # l ,  
O < r < l  

where rc is as in Section 2. It turns out that f ( z ,  a ,  q) = K ( Z ,  T O ,  a ,  q), where 
r,  = bu/(l + ba), and b = 2/u+ q/a2 if a > 1 ,  and b = 4/u+ q/a2 if a c 1 .  This 
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can be seen as follows: For fixed z, a and q, the function k(r)  = K(Z, r ,  a ,  q) has 
the form 

where a is a function of u, q, z. Therefore, using calculus, 

where ro = ba/(l+ ba). Now we are ready to state (and indicate proofs of) the 
noted versions of the inequalities in the stable case. 

COROLLARY 3.2. Let X be a B-valued strictly S (a) random vector with spec- 
tral measure B. Let 0 < q < a and 0 < r < 1. Then we have: 

(i) If a # 1, then the inequalities in (3.1) hold with K replaced by k. 
(ii) ((X(1, 3 eo(a, q)1~(~~" prouided X is symmetric. 
(iii) llXlls s el (a, 4) lcll/a and lfB11,, 2 C(a, 4) llXlly provided 0 < a < 1. 

Proof .  Since X is S(a), it is r-SS(a) for all 0 < r < 1 ;  in particular, it is 
ro-SS(u) (ro as above). So (i) follows from (3.1) and the definition of rZ. To see the 
proof of inequality (ii), we replace ly 1 by the value of ly,J from (3.9) in inequality 
(i) of Lemma 3.1 (viewing X as an r-SS(u) random vector) and note 

= (2) - r1/a ( r ( I - -  :))Iiq (Ill/a for all 0 < r < 1. 

Therefore IIXllq 2 e o ( a ,  q) loflia. Similarly, from inequality in (ii) of Lemma 3.1 
we get 

implying llXllq 2 el (a, q) lollia. This proves the first inequality in (iii), the proof 
of the second inequality in (iii) follows from the first and the inequality in (i) 
and following the argument of the proof of Corollary 3.1. B 

As for Theorem 3.2, for the following corollary we will take q = (a + 1)/2 if 
1 < a < 2, and q = a/2 if 0 < a < 1, in the definition of 2. 

COROLLARY 3.3. Let X ,  D, q, and z be as in Corollary 3.2, and k t  a # 1. 
Then all the inequalities of Theorem 3.2 hold with r, y ,  K, Co, and C1 replaced by 
1, a ,  2, eo, and el, respectively. 
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Proof .  The proofs are the same as that of Theorem 3.2; here one uses 
(3.10) and Corollary 3.2 instead of (3.6), Theorem 3.1, Lemma 3.1, and Corol- 
lary 3.1. Qne point which is worth pointing out here is that the reason the term 
l/rl/" appears in the constants on the right-hand side of inequalities (iii) and (iv) 
of Theorem 3.2 is because of its presence on the right-hand side inequality (3.6) 
which is used for deriving (iii) ((iii) in turn is used to derive (iv)). The inequality 
used to derive the analog of (iii) in Corollary 3.3 that corresponds to (3.6) is 
(3.10) which has the constant 1 in place of l / r l i a  in (3.6); it is for this reason that 
we are able to replace l/rl/' by 1 in the analogs of inequalities (iii) and (iv) for 
the stable case. 

Remark  3.3. There is another constant 2, (z, a, q)  which can be used in 
place of I?{T,  a, q) in Corollaries 3.2 and 3.3. To define R, we recall the small 
ball estimate of the law of a symmetric S (a) B-valued random vector X due to 
Lewandowski et al. [5], p. 489. This states 

P(llXll<t)<K,,t for all t > O  if IIXII,=l, 

where KO depends only on q and a. The analogous result to this in the semi- 
stable case [7] used in the proof of Theorem 3.1 has ta12 in place of t on the 
right-hand side of the above inequality. Using this better estimate from [5] we 
can prove the analog of the left-hand inequality in (3.1) for the stable case 
directly {rather than as we obtained it in Corollary 3.2 using Theorem 3.1) 
following the method of proof of Theorem 3.1. It  can be seen easily that by 
doing so we find that 

replaces rc in (3.1). This alternate constant is clearly simpler and more concrete 
(because KO is so, particularly when 0 < u < 1 see [5]), and possibly provides 
better inequalities (iHv) in Corollary 3.3. 

Remark  3.4. Corollary 3.2 (ii), and Corollaries 3.2 (iii) and 3.3 (iiiHv) in 
the symmetric stable case are standard and well known (sometimes appear with 
different constants). We summarize these in the following: As noted, for Corol- 
lary 3.3 (iii) (the same as (3.10)) see (Linde [6], pp. 135 and 137, and Gin6 et al. 
[3], p. 60), the interesting constant (e.g., the one on the right-hand side) ob- 
tained here is identical to the one in [3]; in [6] only the existence of the 
constant is proved. The left-hand side constant is trivial to obtain and is the 
same here and in [6]. For Corollary 3.2 (ii) (see [6] ,  p. 137, and [3], p. 54), the 
constant appearing here and in [3] is the same. For the right-hand side in- 
equality in Corollary 3.3 (v) (the same as the first inequality in Corollary 3.2 
(iii)) see [3], p. 54, the constant in 131 is 2'+'/4 times the one that appears here. 
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Perhaps the most concrete constant for this inequality appears in [5] ,  p. 493. 
The inequality in Corollary 3.3 (iv), as pointed out in proofs, is a direct con- 
sequence of (3,101 (see [6], p. 137). An analog of the left-hand side inequality in 
(3.1) for real-valued strictIy r-SS(a), 1 < a < 2, random variables'is proved in 
[9]. The proof uses a certain property of characteristic functions and does not 
extend even to Zdimensional real random vectors; moreover, it holds for small 
z whose upper bound is not explicitly expressible in terms of r and a. Except for 
this, the right-hand side inequality in (3.1) and the inequalities noted above for 
B-valued symmetric S(a) random vectors, all the inequalities obtained seem 
interesting and appear new even in the stable case. 

Remark 3.5. Other results (than Theorem 3.2) that can be obtained 
using Theorem 3.1 include uniform tail probability comparison of multilinear 
forms in real strictly r-SS(a), a # 1, random variables (with B-valued coeffi- 
cients) and multilinear forms in their symmetrized counterparts, and uniform 
tail probability comparison of stochastic integrals of deterministic B-valued 
functions relative to strictly r-SS(a), or # 1, random measures and the stochastic 
integrals relative to the corresponding symmetrized random measures. These 
and related results will be discussed in a separate paper. 

Remark 3.6. One may ask whether the analog of Theorem 3.1 can be 
proved for strictly r-SS(1) random vectors. The answer to this is negative: Take 
X a symmetric r-SS(1) real random variable; then n+X, n = 1,2, . . ., are all 
strictly r-SS(1) random variables. The left-hand side inequality in (3.1) cannot 
hold for the family {n+X: n = 1, 2, .. .) for any z and u; for if so, then 
I(n+X((, < 0 < q < 1, for all n, with c independent of n; which, of 
course, is false. 
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