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Abstract. The properties of value functions of time inhomogeneous
optimal stopping problem and zero-sum game (Dynkin game) are studied
through time dependent Dirichlet form. Under the absolute continuity con-
dition on the transition function of the underlying process and some other
assumptions, the refined solutions without exceptional starting points are
proved to exist, and the value functions of the optimal stopping problem
and zero-sum game, which belong to certain functional spaces, are charac-
terized as the solutions of some variational inequalities, respectively.
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1. INTRODUCTION

Let M = (Xt, P(s,x)) be a right continuous Markov process with left limit on
a locally compact separable metric space X, and assume that M is not necessarily
time homogeneous. For two finely continuous functions g, h on [0,∞)× X and a
constant α > 0, define the return function of a stopping problem:

(1.1) J(s,x)(σ) = E(s,x)

(
e−ασg(s+ σ,Xs+σ)

)
,

and the return function of a zero-sum game:
(1.2)
J(s,x)(τ, σ) = E(s,x)

[
e−α(τ∧σ)

(
g(s+ σ,Xs+σ)Iτ>σ + h(s+ τ,Xs+τ )Iτ¬σ

)]
.

The values of the above stopping problem and zero-sum game are defined as ẽg =
supσ J(s,x)(σ) and ˜̄w = supσ infτ J(s,x)(τ, σ), respectively. This kind of optimal
stopping problems has been continually developed due to its broad applications in
finance, resource control and production management.

In the time homogeneous case, where M, g, h are all time homogeneous, it is
well known that except on an appropriate properly exceptional set N of x, ẽg(x)
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is a quasi-continuous version of the solution of a variational inequality problem
formulated in terms of the Dirichlet form, see Nagai [7]. Furthermore, ẽg(x) =
Ex[e

−ασ̂g(Xσ̂)], x /∈ N , where σ̂ = inf{t > 0 : ẽg(Xt) = g(Xt)}. This result
was successfully extended by Zabczyk [15] to Dynkin game (zero-sum game)
where ˜̄w(x), x /∈ N , was shown to be the quasi-continuous version of the solu-
tion of a certain variational inequality problem, and ˜̄w(x) = Jx(τ̂ , σ̂), x /∈ N ,
where σ̂ = inf{t > 0 : ˜̄w(Xt) = g(Xt)}, τ̂ = inf{t > 0 : ˜̄w(Xt) = h(Xt)}. In
their work, there always exists an exceptional set N of x. In 2006, Fukushima and
Menda [2] showed that if the transition function of M is absolutely continuous
with respect to the underlying measure m, then the above-mentioned results hold
for all initial points x, and ẽg and ˜̄w being finely continuous solve the respect vari-
ational inequality problem. Furthermore, as a characteristic of regularity, ẽg and ˜̄w
were shown belonging to certain functional spaces, respectively.

However, more work is needed to extend these results to the time inhomo-
geneous case, especially the characteristics of the value functions. Using the time
dependent Dirichlet form (generalized Dirichlet form) with M being a diffusion,
Oshima [9] showed that under some conditions, ẽg (also ˜̄w) is finely and cofinely
continuous with quasi-every starting point (s, x) of M, and except on an excep-
tional setN , ẽg (also ˜̄w) is characterized as a version of the solution of a variational
inequality problem, while a similar regularity result was obtained, see, e.g., Theo-
rem 1.2 in [9].

Another approach to study the properties of the value functions of optimal
stopping problem and Dynkin game is the penalty method, see, e.g., [13] and [14].
Recently, Palczewski and Stettner [10], [11] used the penalty method to character-
ize the continuity of the value functions of a time inhomogeneous optimal stopping
problem as well as the Dynkin game, although no further regularity result other
than continuity was investigated. In their works [10], [11], the underlying process
M is assumed to satisfy the weak Feller continuity property. Lamberton [5] de-
rived the continuity property of the value function of a one-dimensional optimal
stopping problem, and the value function was characterized as the unique solution
of a variational inequality in the sense of distributions. However, that result was
difficult to be extended to multidimensional diffusions.

In this paper, through the time dependent Dirichlet form, it is shown that un-
der the absolute continuity condition on the transition probability function pt and
some other assumptions, the value functions of the optimal stopping problem and
the zero-sum game, with any starting point (s, x), are finely continuous and charac-
terized as solutions of certain variational inequality problems, and the value func-
tions do belong to, respectively, the functional spaces W as in (2.1), and J as in
(3.17). Further continuity properties are also discussed. This result is then applied
in Section 4 to the time inhomogeneous optimal stopping problem and zero-sum
game where the underlying process is a multidimensional time inhomogeneous Itô
diffusion.
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2. TIME DEPENDENT DIRICHLET FORM

In this section we define the settings for the time dependent Dirichlet form
that are similar to those in [9], although some results from [12], whose notions
are different, will be used later. Let X be a locally compact separable metric space
and m be a positive Radon measure on X with full support. For each t ­ 0, de-
fine (E(t), F ) as an m-symmetric Dirichlet form on H = L2(X;m) with a sector
constant independent of t, and for any u ∈ F we assume that E(t)(u, u) is a mea-
surable function of t and satisfies

λ−1∥u∥2F ¬ E
(t)
1 (u, u) ¬ λ∥u∥2F

for some constant λ > 0, where E(t)
α (u, v) = E(t)(u, v) + α(u, v)m, α > 0, and

the F -norm is defined as ∥u∥2F = E
(0)
1 (u, u). We also assume that F is regular in

the usual sense [3].
Define F ′ as the dual space of F . Then it can be seen that F ⊂ H = H ′ ⊂ F ′.

For each t, there exists an operator L(t) from F to F ′ such that

−(L(t)u, v) = E(t)(u, v), u, v ∈ F.

Further, the F ′-norm is defined as

∥v∥F ′ = sup
∥u∥F=1

{(v, u)},

where (v, u) denotes the canonical coupling between v ∈ F ′ and u ∈ F .
Define the spaces

H = {φ(t, ·) ∈ H : ∥φ∥H <∞},

where
∥φ∥2H =

∫
R
∥φ(t, ·)∥2Hdt,

and
F = {φ(t, ·) ∈ F : ∥φ∥F <∞},

where
∥φ∥2F =

∫
R
∥φ(t, ·)∥2Fdt.

Clearly, F ⊂ H = H ′ ⊂ F ′ densely and continuously, where H ′,F ′ are the
dual spaces of H ,F , respectively.

For any φ ∈ F , considering φ to be a function of t ∈ R with values in F , the
distribution derivative ∂φ/∂t is considered to be a function of t ∈ R with values
in F ′ such that ∫

R

∂φ

∂t
(t, ·)ξ(t)dt = −

∫
R
φ(t, ·)ξ′(t)dt
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for any ξ ∈ C∞0 (R). Then we can define the space W as

(2.1) W =

{
φ(t, x) ∈ F :

∂φ

∂t
∈ F ′, ∥φ∥W <∞

}
,

where

∥φ∥2W =

∥∥∥∥∂φ∂t
∥∥∥∥2

F ′
+ ∥φ∥2F .

Since F and F ′ are Banach spaces, it is easy to see that W is also a Banach space.
Further, W is dense in F .

We further define the bilinear form E by

(2.2) E(φ,ψ) =


−
⟨
∂φ

∂t
, ψ

⟩
+
∫
R
E(t)

(
φ(t, ·), ψ(t, ·)

)
dt, φ ∈ W , ψ ∈ F ,⟨

∂ψ

∂t
, φ

⟩
+
∫
R
E(t)

(
φ(t, ·), ψ(t, ·)

)
dt, φ ∈ F , ψ ∈ W ,

where ⟨∂φ/∂t, ψ⟩ =
∫
R(∂φ/∂t, ψ)dt. We call (E ,F ) a time dependent Dirichlet

form on H (see [9]).
As in [9] we may introduce the time space process Zt =

(
τ(t), Xt

)
on the

domain Z = R × X with uniform motion τ(t). Then the resolvent Rαf of Zt de-
fined by

(2.3) Rαf(s, x) = E(s,x)

(∞∫
0

e−αtf(s+ t,Xs+t)dt
)
, (s, x) = z, f ∈H ,

satisfies

(2.4)
(
α− ∂

∂t
− L(t)

)
Rαf(t, x) = f(t, x), ∀t ­ 0.

Furthermore, Rαf is considered to be a version of Gαf ∈ W , where Gα is the
resolvent associated with the form Eα(, ) = E(, ) + α(, )ν and it satisfies

(2.5) Eα(Gαf, φ) = (f, φ)ν , ∀φ ∈ F ,

where dν(t, x) = dtdm(x). We may write (·, ·)ν as (·, ·)H to indicate it as the
inner product in H .

We now define A as a bilinear form on F ×F by

A(φ,ψ) =
∫
R
E(t)

(
φ(t, ·), ψ(t, ·)

)
dt;

then (A,F ) is a coercive closed form on H with a sector constant, see, e.g.,
page 27 of [12]. Let Aα(φ,ψ) = A(φ,ψ) + α(φ,ψ)H . Then it can be seen that
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Eα(φ,ψ) = −⟨∂φ/∂t, ψ⟩ + Aα(φ,ψ) if φ ∈ W , ψ ∈ F , and Eα(φ,ψ) =
⟨∂ψ/∂t, φ⟩+Aα(φ,ψ) if φ ∈ F , ψ ∈ W . Also notice that if φ ∈ W , ⟨∂φ/∂t, φ⟩
= 0, which implies Eα(φ,φ) = Aα(φ,φ) in this case, see Corollary 1.1 in [8].

A function φ ∈ F is called an α-potential if Eα(φ,ψ) ­ 0 for any nonneg-
ative function ψ ∈ W . Denote by Pα the family of all α-potential functions.
A function φ ∈ F is called α-excessive if and only if φ ­ 0 and nGn+αφ ¬ φ
a.e. for any n ­ 0. For any α-potential φ ∈ F , define its α-excessive regulariza-
tion as

φ̃ = lim
n→∞

nRn+αφ.

For any function g ∈H , let

Lg = {φ ∈ F : φ ­ g ν a.e.};

then the following result holds (see Proposition 1.6 in [12] with a complete proof):

LEMMA 2.1. For any ϵ > 0 and α > 0, there exists a unique function gαϵ ∈ W
associated with g ∈H such that

(2.6) Eα(gαϵ , ψ) =
1

ϵ

(
(gαϵ − g)−, ψ

)
H
, ∀ψ ∈ F ,

where (gαϵ − g)− = (g − gαϵ ) ∨ 0.

By Theorem 1.2 in [9] (also Proposition 1.7 in [12]), eg = limϵ→0 g
α
ϵ con-

verges increasingly, strongly in H and weakly in F , and furthermore, eg is the
minimal function of Pα ∩Lg satisfying

(2.7) Aα(eg, eg) ¬ Eα(eg, ψ), ∀ψ ∈ Lg ∩W .

Given any open set A ∈ Z, the capacity of A is defined by

Cap(A) = Eα(eIA , ψ), ψ ∈ W , ψ = 1 a.e. on A.

If φ ∈ F is an α-potential, then there exists a positive Radon measure µαφ
on Z (see eq. 1.12 in [9] or Lemma 3.2 in [8]) such that

Eα(φ,ψ) =
∫
Z
ψ(z)dµαφ(z) for any ψ ∈ C0(Z) ∩W .

By Lemma 1.4 in [9], µαφ does not charge any Borel set of zero capacity. Put eA =
eIA and µαA = µαeA . Then the capacity of the set A can also be defined by

Cap(A) = µαA(Ā).

The notion of the capacity is extended to any Borel set by the usual manner. A set
is called exceptional if it is of zero capacity. If a statement holds everywhere except
on an exceptional set N , we say the statement holds quasi-everywhere (q.e.).
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3. REFINED SOLUTIONS OF TIME INHOMOGENEOUS OPTIMAL STOPPING PROBLEM
AND ZERO-SUM GAME

In this section we will characterize the properties of the value functions ẽg(s, x)
= supσ J(s,x)(σ) and ˜̄w(s, x) = supσ infτ J(s,x)(τ, σ) of the time inhomogeneous
optimal stopping problem and zero-sum game, respectively. We first assume that
the transition probability function pt of the process Xt satisfies the absolute conti-
nuity condition:

(3.1) pt(x, ·)≪m(·), ∀t.

In fact, the strong Feller property implies the absolute continuity condition on pt,
see, e.g., page 165 of [3].

3.1. The time inhomogeneous optimal stopping problem. Consider ẽg(z) =
supσ Jz(σ), z = (s, x), where

(3.2) Jz(σ) = J(s,x)(σ) = E(s,x)

(
e−ασg(s+ σ,Xs+σ)

)
.

Oshima showed (see Theorem 3.1 in [9]) that if g ∈ F is quasi-continuous and
Lg ∩ W ̸= ∅, then ẽg ∈ F while eg solves the variational inequality (2.7), and
ẽg(z) = supσ Jz(σ) for all z ∈ Z/N . In what follows we give conditions under
which ẽg ∈ W and Oshima’s result holds for all initial points z.

It is assumed that g ∈ W is a finely continuous function on Z such that

(3.3) |g(t, x)| ¬ φ(t, x)

for some finite α-excessive function φ ∈ W on Z. We also assume that there exists
a constant K such that

(3.4) sup
ϵ>0

1

ϵ
∥(gαϵ − g)−∥H ¬ K∥g∥H ,

where gαϵ solves (2.6). In the rest of this section, the notion Ki for some index i
denotes a constant.

LEMMA 3.1. Under the assumptions (3.3) and (3.4), eg ∈ W .

P r o o f. It has been proved that eg ∈ Lg ∩ Pα, and eg ∈ F , see Theorem 1.2
of [9] or Proposition 1.7 of [12]. Furthermore,

sup
ϵ
∥gαϵ − φ∥F ¬ K1∥φ∥W ,

and
sup
ϵ
∥gαϵ ∥F ¬ sup

ϵ
∥gαϵ − φ∥F + ∥φ∥F ¬ K1∥φ∥W + ∥φ∥F ,
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where φ ∈ Lg ∩W . Now, since gαϵ satisfies⟨
− ∂gαϵ

∂t
, ψ

⟩
+Aα(gαϵ , ψ) =

1

ϵ

(
(gαϵ − g)−, ψ

)
H
, ∀ψ ∈ F ,

we have ∥∥∥∥∂gαϵ∂t
∥∥∥∥

F ′
= sup
∥ψ∥F=1

⟨
∂gαϵ
∂t

, ψ

⟩
= sup
∥ψ∥F=1

(
Aα(gαϵ , ψ)−

1

ϵ

(
(gαϵ − g)−, ψ

)
H

)
¬ sup
∥ψ∥F=1

Aα(gαϵ , ψ) + sup
∥ψ∥F=1

1

ϵ

(
(gαϵ − g)−, ψ

)
H
.

(3.5)

By the sector condition, there exists a constant K2 such that

|Aα(gαϵ , ψ)| ¬ K2∥gαϵ ∥F∥ψ∥F ,

and hence
sup
∥ψ∥F=1

Aα(gαϵ , ψ) ¬ K2∥gαϵ ∥F .

On the other hand, by the Cauchy–Schwarz inequality, we have

1

ϵ

(
(gαϵ − g)−, ψ

)
H
¬ 1

ϵ
∥(gαϵ − g)−∥H ∥ψ∥H ,

and
∥ψ∥H ¬ K3∥ψ∥F ,

whence
sup
∥ψ∥F=1

1

ϵ

(
(gαϵ − g)−, ψ

)
H
¬ 1

ϵ
K3∥(gαϵ − g)−∥H .

Now, by taking supϵ of (3.5) and by (3.4), we get

sup
ϵ

∥∥∥∥∂gαϵ∂t
∥∥∥∥

F ′
¬ K2K1∥φ∥W +K2∥φ∥F +KK3∥g∥H <∞.

Therefore,

sup
ϵ
∥gαϵ ∥W = sup

ϵ

(∥∥∥∥∂gαϵ∂t
∥∥∥∥

F ′
+ ∥gαϵ ∥F

)
¬ K2K1∥φ∥W +K2∥φ∥F +KK3∥g∥H +K1∥φ∥W + ∥φ∥F ,

(3.6)
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which indicates the uniform boundedness. As a consequence, there is η ∈ W and a
subsequence of gαϵ such that limϵ→0 g

α
ϵ = η weakly in W by the Banach–Alaoglu

theorem. Then, by the Banach–Saks theorem, the Cesàro mean of this subsequence
of gαϵ converges to η in H , and since it has been shown that limϵ→0 g

α
ϵ = eg in

H , we obtain η = eg (see also the proof of Lemma I.2.12 in [6]). �

COROLLARY 3.1. There exist constantsK4,K5 such that ∥eg∥W ¬ K4∥φ∥W
+K5∥g∥H .

P r o o f. This can be seen by (3.6) in the proof of Lemma 3.1 and the fact that
∥φ∥F ¬ ∥φ∥W . �

It has been shown that eg = limϵ→0 g
α
ϵ converges increasingly, strongly in H

and weakly in F , and eg is an α-potential dominating g that satisfies

Aα(eg, eg) 6 Eα(eg, ψ), ∀ψ ∈ Lg ∩W ,

see Theorem 1.2 in [9]. Furthermore, Theorem 3.1 in [9] says

ẽg(z) = sup
σ
Jz(σ) = Ez

(
e−ασBg(Zs+σB )

)
q.e.,

where the supremum is taken over all stopping times σ and B = {z : ẽg(z) =
g(z)}.

We can revise Theorem 1.2 of [9] and get the following result:

COROLLARY 3.2. Under the assumptions (3.3) and (3.4), eg = limϵ→0 g
α
ϵ

converges increasingly, strongly in H , and weakly in both F and W . Furthermore,
eg is the minimal function of Pα ∩Lg ∩W satisfying

(3.7) Eα(eg, eg) ¬ Eα(eg, ψ), ∀ψ ∈ Lg ∩W .

P r o o f. Now, since eg∈W , we have ⟨∂eg/∂t, eg⟩=0 (see Lemma 1.1 of [8]).
Hence Aα(eg, eg) = Eα(eg, eg). The rest of the proof is the same as in [9]. �

Now we may revise Theorem 3.1 of [9] and combine with Theorem 1 of [2]
to get the following result (refined solutions):

THEOREM 3.1. Let g(z) = g(t, x) be a finely continuous function satisfying
(3.3). Assume (3.4) and the absolute continuity condition (3.1). Let eg ∈ Lg ∩W
be the solution of (3.7), and ẽg be its α-excessive regularization. Then

(3.8) ẽg(z) = sup
σ
Jz(σ), ∀z = (s, x) ∈ Z,

where Jz(σ) = J(s,x)(σ) = E(s,x)

(
e−ασg(s+ σ,Xs+σ)

)
. Furthermore, let the set

B = {z ∈ Z : ẽg(z) = g(z)} and let σB be the first hitting time of B defined by
σB = inf{t > 0 : ẽg(Zs+t) = g(Zs+t)}. Then

(3.9) ẽg(z) = Ez[e
−ασBg(Zs+σB )], ∀z = (s, x) ∈ Z.
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P r o o f. Notice thatφ∧ ẽg is an α-potential dominating g, and ẽg is the small-
est α-potential dominating g. We get ẽg ¬ φ ∧ ẽg ¬ φ ν-a.e. and this implies the
finiteness of ẽg.

Now, because eg­g ν a.e., we have nRn+αeg(z)­nRn+αg(z) for all z∈Z,
n > 0, and the fact ẽg being α-excessive implies

ẽg(z) ­ lim
n→∞

nRn+αg(z), ∀z ∈ Z.

By the absolute continuity condition and finiteness of g, we get

lim
n→∞

nRn+αg(z) = g(z), ∀z ∈ Z,

and therefore ẽg(z) ­ g(z) for all z ∈ Z. Then we have

(3.10) ẽg(z) ­ Ez
(
e−ασ ẽg(Zs+σ)

)
­ Ez

(
e−ασg(Zs+σ)

)
for any stopping time σ, which implies ẽg(z) ­ Jz(σ) for all z ∈ Z. Hence ẽg(z) ­
supσ Jz(σ) for all z ∈ Z.

Since eg ∈ W is an α-potential, by Theorem 4.2 in [8], there exists a positive
Radon measure µα of finite energy such that

(3.11) Eα(eg, w) =
∫
Z
w(z)µα(dz), ∀w ∈ C0(Z) ∩W ,

and ẽg(z) = Rαµ
α(z) which is defined by Rαµα(z) =

∫
Z rα(z, y)µ

α(dy), where
rα(z, y) is a suitable resolvent density. (The definition of finite energy integrals can
also be found in Section 2.2 of [3].)

By the finiteness of eg, ∥Rαµα∥∞ <∞. Considering Zt the underlying pro-
cess which satisfies the absolute continuity condition, we apply Theorem 3.1 in [1]
in concluding that there exists a positive continuous additive functional At in the
strict sense such that

ẽg(z) = Ez
(∞∫

0

e−αtdAt
)
, ∀z ∈ Z.

Set B = {z ∈ Z : ẽg(z) = g(z)}. Then∫
Bc

(
ẽg(z)− g(z)

)
µα(dz) =

∫
Z

(
ẽg(z)− g(z)

)
µα(dz) = Eα(eg, eg − g).

Since eg is an α-potential, and eg − g is nonnegative, Eα(eg, eg − g) ­ 0, which
implies Eα(eg, eg) − Eα(eg, g) ­ 0. On the other hand, eg satisfies (3.7), which
implies Eα(eg, eg) − Eα(eg, g) ¬ 0. Now, it can be concluded that Eα(eg, eg) −
Eα(eg, g) = 0, and consequently µα(Bc) = 0. Further, we get

Ez
(∞∫

0

e−αtIBc(Zs+t)dAt
)
= Rα(IBcµ)(z) = 0, ∀z ∈ Z.
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By the strong Markov property, we have for any stopping time σ ¬ σB

(3.12) ẽg(z) = Ez
[ σ∫

0

e−αtdAt
]
+ Ez[e

−ασ ẽg(Zs+σ)],

and because

0 ¬ Ez
[ σ∫

0

e−αtdAt
]
¬ Ez

(∞∫
0

e−αtIBc(Zs+t)dAt
)
= 0,

we have ẽg(z) = Ez[e
−ασ ẽg(Zs+σ)], σ ¬ σB . Replacing σ by σB and replacing

ẽg(Zs+σ) by g(Zs+σB ), we get ẽg(z) = Ez[e
−ασBg(Zs+σB )], which also implies

the fine continuity of ẽg, and this together with (3.10) completes the proof. �

COROLLARY 3.3. If M is a diffusion process, then under the conditions in
Theorem 3.1, ẽg(z) for all z ∈ Z is continuous along the sample paths.

P r o o f. Oshima has shown that if M is a diffusion process, ẽg(z) is finely
and cofinely continuous for q.e. z, which further implies that ẽg(z) is continuous
along the sample paths, see page 573 of [9]. While under the conditions in Theo-
rem 3.1, we showed that there does not exist the exceptional set of z, and (3.9)
implies the continuity of ẽg along the sample paths for all z ∈ Z. �

REMARK 3.1. IfXt is a non-degenerate Itô diffusion, ẽg(z) becomes a contin-
uous function. This gives an alternate proof of the continuity of the value function,
while Palczewski and Stettner [10] used a penalty method with weak Feller as-
sumption to prove it. Although the continuity of the value function ẽg(z) is not a
surprising result, little is known about the regularity of ẽg(z) beyond continuity.
In this paper some conditions are found to show that ẽg(z) ∈ W . That does not
necessarily mean that ẽg(z) are differentiable, and in many cases they are not, but
we do provide a path for the search of further smoothness result.

In Palczewski and Stettner’s works [10], [11], the optimal policy is to stop
the game at the stopping time σ̇B = inf{t ­ 0 : ẽg(Zs+t) ¬ g(Zs+t)} or, equiv-
alently, σ̇B = inf{t ­ 0 : ẽg(Zs+t) = g(Zs+t)}. Oshima showed that (see page
571 in [9])

Ez[e
−ασ̇B ẽg(Zs+σ̇B )] = Ez[e

−ασB ẽg(Zs+σB )] q.e.,

and concluded that the set of irregular points of the set B is exceptional.
Notice that σ̇B ¬ σB . By Theorem 3.1 we can see that

ẽg(z) ­ Ez[e−ασ̇B ẽg(Zs+σ̇B )] ­ Ez[e
−ασB ẽg(Zs+σB )]

­ Ez[e−ασBg(Zs+σB )] = ẽg(z), ∀z,
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which implies

Ez[e
−ασ̇B ẽg(Zs+σ̇B )] = Ez[e

−ασB ẽg(Zs+σB )], ∀z,

and, as a byproduct, we get the following result:

COROLLARY 3.4. Under the conditions in Theorem 3.1, there does not exist
the exceptional set of irregular boundary points of B.

Therefore, it is feasible to replace σB by σ̇B in the results in the rest of this
paper.

REMARK 3.2. In condition (3.4) which is used to characterize the regular-
ities of the value function of optimal stopping, gαϵ solves a PDE which involves
the generator of the stochastic process, and the part (gαϵ − g)− involves the re-
ward function g. Therefore, it links both the underlying process M and the reward
function g. The regularity of the value function ẽg(z) certainly depends on both
M and g, and it is natural to expect conditions on further smoothness result to be
connected to both M and g in some way.

3.2. The time inhomogeneous zero-sum game. In this section we will refine
the solution of the two-obstacle problem (zero-sum game) in [9].

Let g(t, x), h(t, x) ∈ W be finely continuous functions satisfying
(3.13)
g(t, x) ¬ h(t, x), |g(t, x)| ¬ φ(t, x), |h(t, x)| ¬ ψ(t, x), ∀(t, x) ∈ Z,

where φ,ψ ∈ W are two bounded α-excessive functions. We also assume that
g, h satisfy the condition (3.4). Suppose there exist bounded α-excessive functions
v1(t, x), v2(t, x) ∈ W such that

(3.14) g(t, x) ¬ v1(t, x)− v2(t, x) ¬ h(t, x), ∀(t, x) ∈ Z,

in which case we say g and h satisfy the separability condition [2].
Define the sequences of α-excessive functions {φn} and {ψn} inductively by

φ0 = ψ0 = 0, ψn = eφn−1−h, φn = eψn+g, n ­ 1.

Then the following holds:

LEMMA 3.2. Assume that (3.14) is satisfied. Then φn, ψn are well defined
and limn→∞ φn = φ̄, limn→∞ ψn = ψ̄ converge increasingly, strongly in H and
weakly in both F and W .

P r o o f. We only need to show the convergence in W and the rest of this
lemma is just Lemma 2.1 in [9]. Firstly, φ0 = 0 ¬ v1 and φ0 ∈ W . Suppose
φn−1∈W is well defined and satisfies φn−1¬ v1. Then φn−1−h¬ v1−h¬ v2.
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Hence ψn = eφn−1−h ∈ W is well defined by Lemma 3.1, and we also have
ψn ¬ v2 since eφn−1−h is the smallest α-potential dominating φn−1 − h. Now,
since ψn + g ¬ v2 + g ¬ v1, it follows that φn = eψn+g ∈ W is well defined and
is dominated by v1.

Notice that φ0 ¬ φ1. Suppose φn−1 ¬ φn. Then ψn = eφn−1−h ¬ eφn−h =
ψn+1, and consequently φn = eψn+g ¬ eψn+1+g = φn+1. Also by Lemma 3.1
we get

∥φn∥W = ∥eψn+g∥W ¬ K4∥v1∥W +K5∥ψn + g∥H .

Notice that g ¬ ψn+ g ¬ v1, which implies that ∥ψn+ g∥H is uniformly bounded
in n, and as a consequence, ∥φn∥W is uniformly bounded in n. In a similar manner
we can show that ∥ψn∥W is uniformly bounded. The convergence of φn, ψn in W
follows as in the proof of Lemma 3.1. �

COROLLARY 3.5. Under the separability condition, φ̄ = eψ̄+g, ψ̄ = eφ̄−h,
and they satisfy

(3.15)
Eα(φ̄, φ̄) ¬ Eα(φ̄, w), ∀w ∈ Lψ̄+g ∩W ,

Eα(ψ̄, ψ̄) ¬ Eα(ψ̄, w), ∀w ∈ Lφ̄−h ∩W .

P r o o f. Since φ̄ is an α-potential dominating ψ̄ + g, we get eψ̄+g ¬ φ̄. On
the other hand, φ̄ = limn→∞ φn = limn→∞ eψn+g ¬ eψ̄+g, and hence φ̄ = eψ̄+g.
Similarly, ψ̄ = eφ̄−h. The proof of (3.15) is immediate by Corollary 3.2. �

COROLLARY 3.6. If a pair of α-excessive functions (V1, V2) satisfy g ¬
V1 − V2 ¬ h, then φ̄ ¬ V1, ψ̄ ¬ V2, and w̄ := φ̄ − ψ̄ is the unique function in
J satisfying

(3.16) Eα(w̄, w̄) ¬ Eα(w̄, w), ∀w ∈J , g ¬ w ¬ h,

where

(3.17) J = {w = φ1 − φ2 + v : φ1, φ2 ∈ W are α-potentials, v ∈ W }.

P r o o f. Clearly, φn−1 − h ¬ ψn and ψn + g ¬ φ̄n; hence g ¬ φ̄ − ψ̄ ¬ h.
If g, h satisfy the separability condition with respect to V1, V2, then we would have
φn ¬ V1 and ψn ¬ V2, and as a consequence φ̄ ¬ V1, ψ̄ ¬ V2.

Now (3.16) is equivalent to

Eα(φ̄, φ̄) + Eα(ψ̄, ψ̄) ¬ Eα(φ̄, w + ψ̄) + Eα(ψ̄, φ̄− w), g ¬ w ¬ h,

which holds by (3.15). Suppose there are two solutions w̄1, w̄2 ∈ J satisfying
(3.16). Notice that w̄1 − w̄2 ∈ W and

⟨∂(w̄1−w̄2)
∂t , w̄1 − w̄2

⟩
= 0, which implies⟨

∂w̄1

∂t
, w̄2

⟩
+

⟨
∂w̄2

∂t
, w̄1

⟩
= 0,
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and consequently

Aα(w̄1, w̄2) +Aα(w̄2, w̄1) = Eα(w̄1, w̄2) + Eα(w̄2, w̄1).

Therefore,

Aα(w̄1 − w̄2, w̄1 − w̄2)

= Aα(w̄1, w̄1) +Aα(w̄2, w̄2)−Aα(w̄1, w̄2)−Aα(w̄2, w̄1)

= Aα(w̄1, w̄1) +Aα(w̄2, w̄2)− Eα(w̄1, w̄2)− Eα(w̄2, w̄1) ¬ 0,

which implies that w̄1 = w̄2 a.e. �

Let ˜̄φ, ˜̄ψ, ˜̄w be the α-excessive modifications of φ̄, ψ̄, w̄, respectively. We fur-
ther define for arbitrary pair of stopping times τ, σ the payoff function Jz(τ, σ) as
follows:

(3.18) Jz(τ, σ) = Ez
[
e−α(τ∧σ)

(
g(Zs+σ)Iτ>σ + h(Zs+τ )Iτ¬σ

)]
, z ∈ Z.

Then we have the following result:

THEOREM 3.2. Assume that the separability condition on g, h and condi-
tions (3.1) and (3.4) hold true. Then there exists a finite finely continuous function
˜̄w(z) ∈J satisfying (3.16) and the identity

(3.19) ˜̄w(z) = sup
σ

inf
τ
Jz(τ, σ) = inf

τ
sup
σ
Jz(τ, σ), ∀z = (s, x) ∈ Z,

where σ, τ range over all stopping times. Moreover, the pair τ̂ , σ̂ defined by

τ̂ = inf{t > 0 : w̄(Zs+t) = h(Zs+t)}, σ̂ = inf{t > 0 : w̄(Zs+t) = g(Zs+t)}

is the saddle point of the game in the sense that

Jz(τ̂ , σ) ¬ Jz(τ̂ , σ̂) ¬ Jz(τ, σ̂), z ∈ Z,

for all stopping times τ, σ.

P r o o f. We only need to prove (3.19). By Theorem 3.1, for any z ∈ Z we
have

(3.20)
˜̄φ(z) = sup

σ
Ez[e

−ασ( ˜̄ψ + g)(Zs+σ)] = Ez[e
−ασ̂( ˜̄ψ + g)(Zs+σ̂)],

˜̄ψ(z) = sup
τ
Ez[e

−ατ ( ˜̄φ−H)(Zs+τ )] = Ez[e
−ατ̂ ( ˜̄φ− h)(Zs+τ̂ )],

and for any stopping times σ ¬ σ̂, τ ¬ σ̂,

˜̄φ(z) = Ez[e
−ασ ˜̄φ(Zs+σ)],

˜̄ψ(z) = Ez[e
−ατ ˜̄ψ(Zs+τ )], ∀z = (s, x) ∈ Z.
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By (3.12), we could take {e−αtφ̄(Zs+t)} and {e−αtv̄(Zs+t)} as nonnegative Pz-
supermartingales. Therefore, for any z ∈ Z and any stopping times τ, σ, we have

˜̄φ(z) ­ Ez[e−ασ ˜̄φ(Zs+σ)], ˜̄ψ(z) ­ Ez[e−ατ ˜̄ψ(Zs+τ )].

Consequently, for any z ∈ Z,

˜̄w(z) = ˜̄φ(z)− ˜̄ψ(z) ¬ Ez[e−α(σ̂∧τ) ˜̄φ(Zs+σ̂∧τ )]− Ez[e−α(σ̂∧τ) ˜̄ψ(Zs+σ̂∧τ )]

= Ez[e
−α(σ̂∧τ) ˜̄w(Zs+σ̂∧τ )]¬Ez

[
e−α(τ∧σ̂)

(
g(Zs+σ)Iτ>σ̂ + h(Zs+τ )Iτ¬σ̂

)]
= Jz(τ, σ̂),

where the last inequality is due to the fact that g(z) ¬ ˜̄w(z) ¬ h(z) for all z ∈ Z
and due to (3.20). In a similar manner, we can prove that ˜̄w ­ Jz(τ̂ , σ), and this
completes the proof. �

If further M is a diffusion process, then it can be concluded that ˜̄w(z) is con-
tinuous along the sample paths.

3.3. Time inhomogeneous optimal stopping problem and zero-sum game with
holding cost. Usually the optimal stopping problem and zero-sum game involve a
holding cost function f ∈H (see, e.g., [4]) and the return functions become

(3.21) Jf(s,x)(σ) = E(s,x)

( σ∫
0

e−αtf(s+ t,Xs+t)dt+ e−ασg(s+ σ,Xs+σ)
)
,

and

(3.22) Jf(s,x)(σ, τ) = E(s,x)

( σ∧τ∫
0

e−αtf(s+ t,Xs+t)dt
)

+E(s,x)

(
e−α(σ∧τ)

(
g(s+ σ,Xs+σ)Iσ<τ + h(s+ τ,Xs+τ )Iτ¬σ

))
,

but this model can be essentially reduced to the classical cases by taking ĝ = g −
Rαf and ĥ = h−Rαf instead of g and h respectively, where Rα is the resolvent
and Rαf is considered as a version of Gαf ∈ W . We assume that conditions (3.3)
and (3.4) also apply to ĝ for the optimal stopping problem (and similarly conditions
(3.13) and (3.14) apply to ĝ, ĥ for the zero-sum game).

THEOREM 3.3. Let g be a finely continuous function satisfying (3.3). Assume
(3.4) on g and the absolute continuity condition (3.1) on pt. Let efg ∈ W be the
solution of

(3.23) Eα(efg , ψ − efg ) ­ (f, ψ − efg )H , ∀ψ ∈ Lg ∩W ,
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and let ẽfg be its α-excessive regularization. Then

(3.24) ẽfg (z) = sup
σ
Jfz (σ), ∀z = (s, x) ∈ Z,

where Jfz (σ) is defined as in (3.21), and ẽfg (z) is finely continuous. Furthermore,
let the set B = {z ∈ Z : ẽfg (z) = g(z)} and let σB be the first hitting time of B
defined by σB = inf{t > 0 : ẽfg (Zs+t) = g(Zs+t)}. Then

(3.25) ẽfg (z) = Ez[e
−ασBg(Zs+σB )].

P r o o f. Define the function

Jf0z (σ) = Ez
(
e−ασ ĝ(s+ σ,Xs+σ)

)
,

where ĝ = g −Rαf , and let ẽfĝ = supσ J
f0
z (σ). Then, by Theorem 3.1, efĝ solves

(3.26) Eα(efĝ , ψ̂ − e
f
ĝ ) ­ 0, ∀ψ̂ ∈ Lĝ ∩W ,

and the optimal stopping time is defined by σB=inf{t > 0 : ẽfĝ (Zs+t)= ĝ(Zs+t)}.
By Dynkin’s formula,

E(s,x)

( σ∫
0

e−αtf(s+ t,Xs+t)dt
)
=Rαf(s, x)−E(s,x)

(
e−ασRαf(s+ σ,Xs+σ)

)
,

which leads to
Jfz (σ) = Jf0z (σ) +Rαf(z),

and consequently efg (z) = efĝ (z) +Rαf(z).

Now, let efĝ (z) = efg (z)−Rαf(z), ψ̂ = ψ −Rαf in (3.26). Then we get

(3.27) Eα(efg −Gαf, ψ − efg ) ­ 0.

Since Eα(Gαf, ψ − efĝ ) = (f, ψ − efĝ )H , this proves (3.23). Also notice that the

optimal stopping time can be written as σB = inf{t > 0 : ẽfg (Zs+t) = g(Zs+t)},
and this completes the proof. �

Similarly, we can modify Theorem 3.2 and get the following result:

THEOREM 3.4. Let g, h be finely continuous functions satisfying (3.13) and
(3.14). Assume (3.4) on g, h and the absolute continuity condition (3.1) on pt. Then
there exists a finite finely continuous function ˜̄wf ∈ J , g(z) ¬ ˜̄wf (z) ¬ h(z),
such that

(3.28) Eα(w̄f , w − w̄f ) ­ (f, w − w̄f )H , ∀w ∈J , g ¬ w ¬ h,
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and

(3.29) ˜̄wf (z) = sup
σ

inf
τ
Jfz (τ, σ) = inf

τ
sup
σ
Jfz (τ, σ), ∀z = (s, x) ∈ Z,

where Jfz (τ, σ) was given by (3.22) and σ, τ range over all stopping times. More-
over, the pair τ̂ , σ̂ defined by

τ̂ = inf{t > 0 : w̄f (Zs+t) = h(Zs+t)}, σ̂ = inf{t > 0 : w̄f (Zs+t) = g(Zs+t)}

is the saddle point of the game in the sense that

Jfz (τ̂ , σ) ¬ Jfz (τ̂ , σ̂) ¬ Jfz (τ, σ̂), z ∈ Z,

for all stopping times τ, σ.

As an extension of Corollary 3.6, we have the following:

COROLLARY 3.7. The variational inequality (3.28) has a unique solution.

P r o o f. The case where f = 0 was proved in Corollary 3.6. For a general
f ∈H , notice again that (f, w − w̄f )H = Eα(Gαf, w − w̄f ). Then we get

Eα
(
w̄f −Gαf, (w −Gαf)− (w̄f −Gαf)

)
­ 0, ∀w ∈J , g ¬ w ¬ h.

Let ˆ̄wf = w̄f − Gαf , ŵ = w − Gαf , ĝ = g − Gαf , ĥ = h − Gαf . Then we
obtain

Eα( ˆ̄wf , ŵ − ˆ̄wf ) ­ 0, ∀ŵ ∈J , ĝ ¬ ŵ ¬ ĥ,

which has a unique solution in view of Corollary 3.6. �

4. TIME INHOMOGENEOUS OPTIMAL STOPPING PROBLEM
AND ZERO-SUM GAME OF ITÔ DIFFUSION

In this section we are concerned with a multidimensional time inhomogeneous
Itô diffusion:

(4.1) dXt = b(t,Xt)dt+ a(t,Xt)dBt, Xs = x,

where, for m ­ n,

Xt=

 X1t
...

Xnt

, b=

 b1
...
bn

, a=

 a11 · · · a1m
...

...
an1 · · · anm

, Bt=

 B1t
...

Bmt

,
and ai,j , bi, i = 1, 2, . . . , n, j = 1, 2, . . . ,m, are continuous functions of t and Xt.
Define the square matrix [Ai,j ] = A = 1

2aa
T . We assume A is uniformly non-

degenerate, and a, b satisfy the usual Lipschitz conditions so that (4.1) has a unique
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strong solution. Bt in (4.1) is assumed to be the standard multidimensional Brow-
nian motion. Thus we are given a system (Ω,F ,Ft, X, θt, Px), where (Ω,F) is
a measurable space, X = X(ω) is a mapping of Ω into C(Rn), Ft is the sigma
algebra generated by Xs (s ¬ t), and θt is a shift operator in Ω such that Xs(θtω)
= Xs+t(ω). Here Px (x ∈ R) is a family of measures under which {Xt, t ­ 0} is
a diffusion with initial state x.

At each time t, define the infinitesimal generator L(t) as

(4.2) L(t)u(x) =
n∑
i=1

bi(t, x)
∂u

∂xi
+

∑
i,j

Ai,j(t, x)
∂2u

∂xi∂xj
.

Let the positive Radon measure m(dx) = ρ(t)(x)dx, where ρ(t) satisfies

(4.3) A∇ρ(t) = ρ(t)µ, ∀t,

and µi = bi −
∑n

j=1 ∂Aji/∂xj , i = 1, 2, . . . , n. Notice that when a and b in (4.1)
are constants, ρ(t) reduces to

ρ(t)(x) = e(A
−1b)·x.

Thus the associated Dirichlet form (E(t), F ) densely embedded inH = L2(Rn;m)
is then given by

(4.4) E(t)(u, v) =
∫
Rn

∇u(x) ·A∇v(x)m(dx), u, v ∈ F,

where

F = {u ∈ H : u is continuous, ∥u∥2F = E
(0)
1 (u, u) <∞}.

Now we can define the sets F ,H ,W in the same way as in Section 2, and define
the time inhomogeneous Dirichlet form E , Eα as well. Furthermore, (E ,F ) has the
local property, see Theorem 5.3 in [8].

Since Xt is a non-degenerate Itô diffusion, the absolute continuity condition
on its transition function automatically holds, and for the same reason, the fine and
cofine continuity notion can be changed to the usual continuity.

Let f ∈ H , g ∈ W be continuous functions satisfying the conditions as in
Section 3.3, and define the return function Jfz (σ) as in (3.21). Then we have the
following result:

THEOREM 4.1. Assume (3.3) and (3.4) on g and the absolute continuity con-
dition (3.1) on pt. Let efg ∈ W be the solution of

(4.5) Eα(efg , ψ − efg ) ­ (f, ψ − efg )H , ∀ψ ∈ Lg ∩W ,
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and let ẽfg be its α-excessive regularization. Then

(4.6) ẽfg (z) = sup
σ
Jfz (σ), ∀z = (s, x) ∈ Rn+1,

where Jfz (σ) is defined as in (3.21), and ẽfg (z) is continuous. Furthermore, let the
set B = {z ∈ Z : ẽfg (z) = g(z)} and let σB be the first hitting time of B defined
by σB = inf{t > 0 : ẽfg (Zs+t) = g(Zs+t)}. Then

(4.7) ẽfg (z) = Ez[e
−ασBg(Zs+σB )].

For the zero-sum game of Itô diffusion with the return function Jfz (σ, τ) as
defined in (3.22), we have the following result:

THEOREM 4.2. Let g, h be continuous functions satisfying (3.13) and (3.14).
Assume (3.4) on g, h and the absolute continuity condition (3.1) on pt. Then there
exists a finite and continuous function ˜̄wf ∈J , g(z) ¬ ˜̄wf (z) ¬ h(z), such that

(4.8) Eα(w̄f , w − w̄f ) ­ (f, w − w̄f )H , ∀w ∈J , g ¬ w ¬ h,

and

(4.9) ˜̄wf (z) = sup
σ

inf
τ
Jfz (τ, σ) = inf

τ
sup
σ
Jfz (τ, σ), ∀z = (s, x) ∈ Z,

where σ, τ range over all stopping times and Jfz (σ, τ) is defined in (3.22). More-
over, the pair τ̂ , σ̂ defined by

τ̂ = inf{t > 0 : w̄f (Zs+t) = h(Zs+t)}, σ̂ = inf{t > 0 : w̄f (Zs+t) = g(Zs+t)}

is the saddle point of the game in the sense that

Jfz (τ̂ , σ) ¬ Jfz (τ̂ , σ̂) ¬ Jfz (τ, σ̂), z ∈ Z,

for all stopping times τ, σ.
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