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Abstract. We study the asymptotic behaviour of the probability that
a stochastic process (Zt)t0 does not exceed a constant barrier up to time
T (a so-called persistence probability) when Z is the composition of two
independent processes (Xt)t∈I and (Yt)t0. To be precise, we consider
(Zt)t0 defined by Zt = X ◦ |Yt| if I = [0,∞) and Zt = X ◦ Yt if I = R.

For continuous self-similar processes (Yt)t0, the rate of decay of
persistence probability for Z can be inferred directly from the persistence
probability of X and the index of self-similarity of Y . As a corollary, we
infer that the persistence probability for iterated Brownian motion decays
asymptotically like T−1/2.

If Y is discontinuous, the range of Y possibly contains gaps, which
complicates the estimation of the persistence probability. We determine the
polynomial rate of decay for X being a Lévy process (possibly two-sided
if I = R) or a fractional Brownian motion and Y being a Lévy process or
random walk under suitable moment conditions.
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1. INTRODUCTION

1.1. Statement of the problem. The one-sided exit problem consists of finding
the asymptotic behaviour of

(1.1) P (Zt ¬ 1, ∀t ∈ [0, T ])

as T →∞ for a given stochastic processes Z = (Zt)t0. The probability in (1.1) is
often called persistence or survival probability up to time T . For many processes,
the persistence probability decreases polynomially (modulo terms of lower order),
i.e., for some θ > 0, it follows that

P (Zt ¬ 1,∀t ∈ [0, T ]) = T−θ+o(1), T →∞.

θ is called the persistence or survival exponent.
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Of course, (1.1) is a classical problem that has been studied for some partic-
ular processes such as random walks, Brownian motion with moving boundaries,
integrated processes such as integrated Brownian motion, fractional Brownian mo-
tion, and other Gaussian processes. Research on persistence probabilities has been
motivated by the study of the inviscid Burgers equation [25] and zeros of random
polynomials [12]. We refer to the recent survey [6] for details, applications and
references. Apart from pure theoretical interest, persistence probabilities appear in
many applications. For instance, the one-sided exit problem arises in various phys-
ical models such as reaction diffusion systems and granular media, see the survey
[9] for a comprehensive review.

In this article, we consider the one-sided exit problem for processes Z =
(X ◦ |Yt|)t0, where X = (Xt)t0 and Y = (Yt)t0 are independent stochastic
processes and Z = (X ◦ Yt)t0 if X = (Xt)t∈R (◦ denotes function composition).
Such processes will be referred to as iterated processes. Starting with the work
[10], the study of iterated Brownian motion has attracted a lot of interest. More-
over, there are interesting connections between the exit times of iterated processes
and the solution of certain fourth-order PDEs ([2], [23]). The asymptotic behaviour
of the survival probabilities of subordinated Brownian motion is also relevant for
the study of Green functions (see [18]). However, the one-sided exit problem for
iterated processes has not been studied systematically so far. Here we investigate
how the persistence exponent of X ◦ |Y | and X ◦ Y are related to that of the outer
process X and properties of the inner process Y . The relevant scenario affecting
the survival probability can be identified so that the results are quite intuitive. For
small deviation probabilities (i.e., two-sided exit problems), this problem has been
investigated in [5].

Finally, let us introduce some notation and conventions: If f, g : R → R are
two functions, we write f - g (x→∞) if lim supx→∞ f(x)/g(x)<∞ and f≍g
if f - g and g - f . Moreover, f ∼ g (x→∞) if f(x)/g(x)→ 1 as x→∞. If
(Xt)t0 is a stochastic process, it will often be convenient to write X(t) instead
of Xt. If (Xn)n∈N is a discrete time process, we set Xt = X⌊t⌋, where ⌊t⌋ :=
sup {k ∈ Z : k ¬ t}. Moreover, we say that (Xt)t∈I is self-similar of index H if

(Yct)t0
d
= (cHYt)t0 for all c > 0, where d

= denotes equality in distribution.

1.2. Main results. First, we consider processes (Xt)t0 and (Yt)t0, where Y
is self-similar and continuous. In this setup, the following result can be established
without much difficulty:

THEOREM 1.1. Let (Xt)t0 be a stochastic process with

P (Xt ¬ 1, ∀t ∈ [0, T ]) ≍ T−θ, T →∞,

for some θ > 0. Let (Yt)t0 be an independent stochastic process which is self-
similar of index H, has continuous paths, and for some ρ > θ it follows that

(1.2) P (|Yt| ¬ ϵ, ∀t ∈ [0, 1]) - ϵρ, ϵ ↓ 0.
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Then
P
(
X(|Yt|) ¬ 1, ∀t ∈ [0, T ]

)
≍ T−θH , T →∞.

Moreover, if P (Xt ¬ 1,∀t ∈ [0, T ]) ∼ cT−θ for some c > 0, it follows that

P
(
X(|Yt|) ¬ 1, ∀t ∈ [0, T ]

)
∼ cAT−θH , T →∞,

where A := E
[
(sup {|Yt| : t ∈ [0, 1]})−θ

]
<∞.

We remark that the assumption in (1.2) is very weak since this so-called small
deviation probability usually decays exponentially fast as ϵ ↓ 0. Moreover, the re-
sult can be explained quite intuitively: by self-similarity of Y , typical fluctuations
of |Y | up to time T are of order TH . The rare event that X stays below one until
time TH is then of order T−θH . The assumption (1.2) prevents a contribution of the
event that Y stays close to the origin to the persistence exponent of Z = X ◦ |Y |.
In short, the persistence probability of Z is determined by a rare event for X and a
typical scenario for Y .

The assumption of continuity of the inner process Y allows us to write

P
(
X(|Yt|) ¬ 1, ∀t ∈ [0, T ]

)
= P

(
Xt ¬ 1, ∀t ∈ [0, (−IT ) ∨MT ]

)
,

where I and M denote the infimum and supremum process of Y , respectively.
This will simplify the proof of the upper bound of Theorem 1.1 very much. If Y is
discontinuous, the equality sign has to be replaced by  in the preceding equation.
It is then by far a more challenging task to find the survival exponent of X ◦ |Y |
since the gaps in the range of |Y | have to be taken into account. We prove the
following theorem for X being a Lévy process and Y being a random walk or a
Lévy process (in the sequel, we always exclude trivial processes X ≡ 0).

THEOREM 1.2. Let (Xt)t0 be a centred Lévy process with E[exp (|X1|α)]
finite for some α > 0. Let (Yt)t0 denote an independent random walk or Lévy
process with E[exp(|Y1|β)] <∞ for some β > 0. It follows that

P
(
X(|Yt|) ¬ 1,∀t ∈ [0, T ]

)
= T−θ+o(1), T →∞,

where θ = 1/4 if E [Y1] = 0, and θ = 1/2 if E [Y1] ̸= 0.

Again, the results are intuitive: If E [Y1] = 0, the random walk oscillates and
typical fluctuations up to time N are of magnitude

√
N . Since the persistence ex-

ponent θ of a centred Lévy process with second finite moments is 1/2 (details in
Section 3), it is very plausible that the persistence exponent of X ◦ |Y | is at least
1/4 if the gaps in the range of the random walk are not too large. If E [Y1] > 0,
then E [YN ] /N → E [Y1] by the law of large numbers and one expects the survival
exponent of X ◦ |Y | to be 1/2 by the same reasoning.

The methods to prove Theorem 1.2 can be extended to the case when the outer
process is a fractional Brownian motion.
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THEOREM 1.3. Let (Xt)t0 denote a fractional Brownian motion with Hurst
parameter H ∈ (0, 1). Let (Yt)t0 denote a Lévy process or a random walk such
that E[exp(|Y1|β)] <∞ for some β > 0. It follows that

P
(
X(|Yt|) ¬ 1, ∀t ∈ [0, T ]

)
= T−θ+o(1), T →∞,

where θ = (1−H)/2 if E [Y1] = 0, and θ = 1−H if E [Y1] ̸= 0.

Note that the outer processes in Theorems 1.2 and 1.3 share the property of
stationary increments. We provide an example showing that an analogous result
can fail without this property.

Up to now, the outer process X = (Xt)t0 had the index set [0,∞), so it
was only possible to evaluate X over the range of the absolute value of the inner
process Y . In order to consider the one-sided exit problem for X ◦ Y , we consider
two-sided processes X = (Xt)t∈R, where

(1.3) Xt :=

{
X+

t , t  0,

X−−t, t < 0,

and (X+)t0 and (X−t )t0 are stochastic processes. We refer to X+ and X− as to
the branches of X . We prove that the previous results can be extended in a natural
way for two-sided processes.

THEOREM 1.4. Let (Xt)t∈R be a two-sided process with

P (Xt ¬ 1,∀t ∈ [−T, T ]) ≍ T−θ

for some θ > 0. Let (Yt)t∈R denote an independent self-similar process of in-
dex H and continuous paths such that E[|I|−θ] + E[M−θ] < ∞, where I =
inf {Yt : t ∈ [−1, 1]} and M = sup {Yt : t ∈ [−1, 1]}. Then

P
(
X(Yt) ¬ 1, ∀t ∈ [−T, T ]

)
≍ T−Hθ, T →∞.

If we know the precise asymptotics of P (Xt ¬ 1, ∀t ∈ [−T1, T2]) for T1, T2

→∞, we can get a more precise result, see Theorem 4.1. As a corollary, we com-
pute the exact asymptotics of the persistence probability of n-times iterated two-
sided Brownian motions (Corollary 4.2).

The result corresponding to Theorem 1.2 in the two-sided setup is the fol-
lowing:

THEOREM 1.5. Let (Xt)t∈R denote a two-sided Lévy process with branches
X+, X− such that E[X±1 ] = 0 and E[exp(|X±1 |α)] < ∞ for some α > 0. Let
(Yt)t0 denote another Lévy process or random walk independent of X such that
E[exp(|Y1|β)] <∞ for some β > 0. Then

P
(
X(Yt) ¬ 1, ∀t ∈ [0, T ]

)
= T−1/2+o(1), T →∞.
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Theorem 1.5 shows that the persistence exponent is equal to 1/2 no matter if
E [Y1] = 0 or not; see Remark 4.1 for an explanation.

The remainder of the article is organised as follows. In Section 2, we assume
that the inner process Y is a continuous self-similar process. We compute the sur-
vival exponent of X ◦ |Y | (Theorem 1.1) and provide an example. Next, we turn
to discontinuous processes Y . The persistence exponent of X ◦ |Y | is found for X
being a Lévy process or fractional Brownian motion and Y being a random walk or
Lévy process (Theorems 1.2 and 1.3) in Section 3. Finally, we extend the previous
results to two-sided processes (Theorems 1.4 and 1.5) in Section 4.

Acknowledgments. The author thanks the anonymous referee for helpful com-
ments.

2. TAKING THE SUPREMUM OVER THE RANGE
OF A CONTINUOUS SELF-SIMILAR PROCESS

If Y = (Yt)t0 is a stochastic process, denote byFY
t := σ(Ys : 0 ¬ s ¬ t) the

filtration generated by Y up to time t. Let us now prove Theorem 1.1 announced
in the Introduction.

P r o o f o f T h e o r e m 1.1. Let us write Y ∗t := sups∈[0,t] |Ys|. Note that
our assumption (1.2) implies that (Y ∗1 )

−θ is integrable, see Lemma 2.1 below.
U p p e r b o u n d. By assumption, there are constants C, T0 > 0 such that for

any T > T0 we have P (supt∈[0,T ]Xt ¬ 1) ¬ CT−θ. Clearly, we can choose C
so large that the inequality holds for all T > 0. By continuity of Y , the fact that
Y0 = 0 (by self-similarity), and independence of X and Y , and self-similarity of
Y , we have

P
(
X(|Yt|) ¬ 1, ∀t ∈ [0, T ]

)
= E

[
P (Xt ¬ 1, ∀t ∈ [0, Y ∗T ]|FY

T )
]

¬ CE[(Y ∗T )
−θ] = CE[(Y ∗1 )

−θ]T−θH .

L o w e r b o u n d. Let C > 0. Note that

P
(
X(|Yt|) ¬ 1, ∀t ∈ [0, T ]

)
 P (Y ∗T ¬ CTH , {Xt ¬ 1, ∀t ∈ [0, Y ∗T ]})
 P (Y ∗T ¬ CTH)P (Xt ¬ 1, ∀t ∈ [0, CTH ])

= P (Y ∗1 ¬ C)P (Xt ¬ 1, ∀t ∈ [0, CTH ]).

Continuity of Y and the fact that Y0 = 0 imply that P (Y ∗1 ¬ C) > 0 for C large
enough. This proves the lower bound.

If P (supt∈[0,T ]Xt ¬ 1) ∼ cT−θ, we can find for all ϵ > 0 small enough a
constant T0(ϵ) such that (c− ϵ)T−θ ¬ P (supt∈[0,T ]Xt ¬ 1) ¬ (c+ ϵ)T−θ for all
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T  T0(ϵ). Hence,

T θH P
(
X(|Yt|) ¬ 1, ∀t ∈ [0, T ]

)
 T θH E

[
1{Y ∗TT0(ϵ)} P (Xt ¬ 1, ∀t ∈ [0, Y ∗T ]|FY

T )
]

 (c− ϵ)T θH E[1{Y ∗TT0(ϵ)}(Y
∗
T )
−θ] = (c− ϵ)E[1{Y ∗1 T0(ϵ)T−H}(Y

∗
1 )
−θ].

As T →∞, monotone convergence implies for all ϵ > 0 small enough that

lim inf
T→∞

T θHP
(
X(|Yt|) ¬ 1, ∀t ∈ [0, T ]

)
 (c− ϵ)E[(Y ∗1 )

−θ],

i.e., lim infT→∞ T θHP
(
X(|Yt|) ¬ 1, ∀t ∈ [0, T ]

)
 cE[(Y ∗1 )

−θ].
For the proof of the upper bound, note that

P (Xt ¬ 1, ∀t ∈ [0, Y ∗T ])

¬ P (Y ∗T ¬ T0) + E
[
1{Y ∗TT0} P (Xt ¬ 1, ∀t ∈ [0, Y ∗T ]|FY

T )
]

¬ P (Y ∗1 ¬ T0T
−H) + (c+ ϵ)E[1{Y ∗TT0}(Y

∗
T )
−θ].

The assumption on the small deviation probability of Y implies that

T θHP
(
Y ∗1 ¬ T0(ϵ)T

−H)
- TH(θ−ρ)T0(ϵ)

ρ → 0, T →∞.

Hence, as in the proof of the lower bound, we obtain

lim sup
T→∞

T θHP
(
X(|Yt|) ¬ 1, ∀t ∈ [0, T ]

)
¬ (c+ ϵ)E[(Y ∗1 )

−θ],

which completes the proof upon letting ϵ ↓ 0. �

REMARK 2.1. The proof reveals that the lower bounds of Theorem 1.1 are
also valid without continuity of paths of Y and the assumption (1.2) on the small
deviations of Y . Moreover, we remark that the proof can be easily adapted to cover
the case of P (supt∈[0,T ]Xt ¬ 1) = T−θ+o(1).

As already mentioned in the proof, the small deviation probability in (1.2) is
linked to integrability of sup {|Yt| : t ∈ [0, 1]}. For convenience and later refer-
ence, let us state this fact without proof in the following lemma.

LEMMA 2.1. Let Z be a random variable such that Z > 0 a.s. and P (Z ¬ ϵ)
- ϵρ as ϵ ↓ 0 for some ρ > 0. Then for η ∈ (0, ρ) it follows that E [Z−η] < ∞.
Conversely, if E [Z−η] <∞ for some η > 0, then P (Z ¬ ϵ) - ϵη as ϵ ↓ 0.

Let us also mention that the assumption (1.2) can fail: If Z is a random vari-
able, set Yt := tH · Z for some H > 0. The process Y is self-similar, continu-
ous and P (|Yt| ¬ ϵ, ∀t ∈ [0, 1]) = P (|Z| ¬ ϵ). If P (Z = 0) > 0, (1.2) obviously
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does not hold. If we consider another continuous self-similar process (Ŷt)t0 in-
dependent of Z, then (1.2) also fails for the product (YtŶt)t0 (again self-similar).
This way, one obtains a large class of processes that does not satisfy condition (1.2).

To conclude this section, let us give a simple application of Theorem 1.1.

EXAMPLE 2.1. If X and Y are independent Brownian motions, it follows
that H = 1/2 and it is well known by the reflection principle that

P (Xt ¬ 1, ∀t ∈ [0, T ]) = P (|BT | ¬ 1) ∼
√

2/π T−1/2, T →∞.

Since
P (|Yt| ¬ ϵ, ∀t ∈ [0, 1]) ¬ C exp

(
−(π2/8) ϵ−2

)
, ϵ > 0,

(supt∈[0,1] |Yt|)−η is integrable for every η > 0 by Lemma 2.1. Hence, Theo-
rem 1.1 implies that the persistence exponent X ◦ |Y | is 1/4.

More generally, if W and B(1), . . . , B(n) are independent Brownian motions,
it follows for any n  1 that

P
(
W (|B(1)| ◦ . . . ◦ |B(n)

t |) ¬ 1, ∀t ∈ [0, T ]
)
∼ cnT

−2−(n+1)
, T →∞,

with cn =
√

2/π
∏n

k=1E[(W ∗1 )
−2−k

] for n  1 and W ∗1 = supt∈[0,1] |Wt|.

3. TAKING THE SUPREMUM OVER THE RANGE OF DISCONTINUOUS PROCESSES

The goal of this section is to find the asymptotics of

P
(
X(|Sn|) ¬ 1, ∀n = 1, . . . , N

)
and P

(
X(|Yt|) ¬ 1, ∀t ∈ [0, T ]

)
,

respectively. Here X = (Xt)t0 is a centred Lévy process or a fractional Brownian
motion, S is a random walk, and Y is a Lévy process. First, we recall known results
on survival probabilities of Lévy processes and prove a slight generalisation. If X
is a centred Lévy process with E

[
X2

1

]
<∞, it follows that

P (Xt ¬ 1, ∀t ∈ [0, T ]) ∼ c T−1/2 l(T ), T →∞,

where l is slowly varying at infinity and c > 0; see, e.g., [7] or [13], Section 4.4.
Our goal is to show that the function l may be chosen asymptotically constant,
which is suggested by the analogous result for random walks: If (Sn)n1 is a cen-
tred random walk with finite variance, then P (supn=1,...,N Sn ¬ 0) ∼ cN−1/2 by
[17], Theorem XII.7.1a. However, to the author’s knowledge, an analogous result
for Lévy processes has not been stated in the literature so far.

Clearly, P (supt∈[0,T ]Xt ¬ 1) ¬ P (supn=1,...,⌊T ⌋Xn ¬ 1) ≍ T−1/2 since
the process (Xn)n1 is a centred random walk with finite variance. Moreover,
if E[X2+ϵ

1 ] < ∞ for some ϵ > 0, then also P (supn=1,...,⌊T ⌋Xn ¬ 1) % T−1/2
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by [4], Proposition 2.1. The next theorem states the precise asymptotic decay of
the probability P (supt∈[0,T ]Xt ¬ 1) as T → ∞ under the assumption of finite
variance. The idea to approximate the integral over P (Xt > 0) by the sum over
P (Xn > 0) in the proof below is due to Ron Doney.

THEOREM 3.1. Let (Xt)t0 be a centred Lévy process with E[X2
1 ] <∞. For

any x > 0, there is a constant c(x) > 0 such that

P (Xt ¬ x,∀t ∈ [0, T ]) ∼ c(x)T−1/2, T →∞.

P r o o f. Let τx be the first hitting time of the set (x,∞), x > 0. According to
eq. 4.4.7 in [13], it follows that

(3.1) 1−E[e−qτx ] ∼ U(x)κ(q), q ↓ 0,

where U is a renewal function (see [13], eq. 4.4.6) and

κ(u) = exp

(∞∫
0

e−t − e−ut

t
P (Xt > 0) dt

)
, u  0.

Since
∫∞
0

t−1(e−t − e−ut) dt = log u for u > 0 (a Frullani integral), we have

(3.2) κ(u) =
√
u exp

(∞∫
0

e−t − e−ut

t

(
P (Xt > 0)− 1/2

)
dt

)
.

Let h(t) := P (Xt > 0)− 1/2. We will show that

lim
λ↓0

∞∫
0

e−λt − e−t

t
h(t) dt =

∞∫
0

1− e−t

t
h(t) dt =: A,

where A ∈ R. This implies that κ(λ) ∼
√
λe−A as λ ↓ 0. By a Tauberian theorem

(see [17], Theorem XIII.5.4), we conclude from (3.1) that

P (τx > T ) ∼ U(x)e−A

Γ(1/2)
T−1/2 =

U(x)e−A√
π

T−1/2, T →∞,

so the theorem follows.
To prove that A is finite, we approximate the term P (Xt > 0) by P (Xn > 0)

for t ∈ (n, n+ 1], which allows us to use classical results from fluctuation theory
of random walks to show that the integral in (3.2) converges as u→ 0. To this end,
note that, for u ∈ (0, 1),

0 ¬
∞∫
0

e−ut − e−t

t
|h(t)| dt ¬

1∫
0

1− e−t

t
|h(t)| dt

+
∞∑
n=1

n+1∫
n

e−ut − e−t

t

(
|P (Xt > 0)− P (Xn > 0)|+ |h(n)|

)
dt

¬ c+
∞∑
n=1

n−1 sup
t∈[n,n+1]

|P (Xt > 0)− P (Xn > 0)|+
∞∑
n=1

n−1 |h(n)|.
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By Theorem 3 in [24], the series
∑∞

n=1 n
−1(P (Xn>0)− 1/2

)
=
∑∞

n=1 n
−1h(n)

converges absolutely if E [X1] = 0 and E[X2
1 ] ∈ (0,∞). Next, using results on the

speed of convergence in the CLT, we show that the first series also converges. To
this end, let t ∈ (n, n+ 1]. By the independence and stationarity of increments of
X , we have

P (Xt ¬ 0)− P (Xn ¬ 0) =
∞∫
−∞

(
P (Xn ¬ −y)− P (Xn ¬ 0)

)
P (Xt−n ∈ dy)

(3.3)

=
∞∫
−∞

(
Fn

(
− y/
√
n
)
− Fn(0)

)
P (Xt−n ∈ dy),

where Fn(x) := P
(
Xn/
√
n ¬ x

)
. Let Φ denote the cdf of a standard Gaussian

variable. With ∆n := sup {|Fn(x)− Φ(x)| : x ∈ R}, we infer for y ∈ R that

∣∣Fn

(
y/
√
n
)
− Fn(0)

∣∣
¬

∣∣Fn

(
y/
√
n
)
− Φ

(
y/
√
n
)∣∣+ ∣∣Φ(y/√n)− Φ(0)

∣∣+ |Φ(0)− Fn(0)|

¬ 2∆n +
∣∣Φ(y/√n)− Φ(0)

∣∣ ¬ 2∆n +
√

2/π |y| /
√
n.

In view of (3.3), we obtain

|P (Xt ¬ 0)− P (Xn ¬ 0)| ¬ 2∆n +
√

2/πE [|Xt−n|] /
√
n

¬ 2∆n +
√

2/πE [|X1|] /
√
n,

where we have used the fact that 0 ¬ t− n ¬ 1 and that (|Xt|)t0 is a submartin-
gale in the last inequality. Since E[X2

1 ] <∞,
∑∞

n=1∆n/n is finite by Theorem 1
in [14]. Hence, the first series above is also finite, so by dominated convergence,
we get

A = lim
u↓0

∞∫
0

e−ut − e−t

t

(
P (Xt > 0)− 1/2

)
dt ∈ R. �

Having determined the asymptotic behaviour of the survival probability for X ,
let us continue to give some heuristics concerning the survival exponent of X ◦ |S|.
If E[S1] = 0 and E[S2

1 ] = 1, it follows from the invariance principle that

lim
N→∞

P
(
|Sn| ¬

√
N x, ∀n = 1, . . . , N

)
= P (|Bt| ¬ x,∀t ∈ [0, 1]) , x > 0,

where B denotes a standard Brownian motion. Intuitively, one would therefore
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expect that

P
(
X(|Sn|) ¬ 1, ∀n = 1, . . . , N

)
≍ P

(
Xt ¬ 1, ∀t ∈ [0,

√
N ]

)
≍ N−1/4,

at least if the points |S1| , . . . , |SN | are sufficiently “dense” in
[
0,
√
N
]
. Under a

subexponential moment condition on the random walk, we show that the persis-
tence exponent is indeed 1/4. For simplicity of notation, we denote by X (γ) the
class of non-degenerate random variables X with E[e|X|

γ
] <∞, where γ > 0.

Before proving the upper bound of Theorem 1.2, we need the following aux-
iliary result which follows directly from Lemma 5 in [15]:

LEMMA 3.1. Let (Sn)n1 denote a centred random walk with E[S2
1 ]∈(0,∞)

and let Mn := max {S1, . . . , Sn}. There is a constant C such that

P (MN ¬ x) ¬ 1 ∧ C(x+ 1)N−1/2, x  0, N  1.

Let (Xt)t0 denote a centred Lévy process such that E[X2
1 ] < ∞. Since

(Xn)n1 is a random walk, it follows for all T  1, x  0 that

(3.4) P (Xt ¬ x,∀t ∈ [0, T ]) ¬ 1 ∧ C (x+ 1)⌊T ⌋−1/2.

We are now ready to establish the upper bounds of Theorem 1.2. In the proof of
the upper bound, we need stretched exponential moments in order to ensure that
the probability of a gap of size (C logN)γ in the set {|S1| , . . . , |SN |} is asymp-
totically irrelevant, i.e., of lower order than N−1/2. This allows us (at the cost of
a lower order term) to consider the supremum of the process X over the whole
interval from zero to the maximum of the absolute value of the random walk up to
time N instead of the set {0, |S1| , . . . , |SN |}.

P r o o f o f T h e o r e m 1.2 ( u p p e r b o u n d ). Let us first observe that
it suffices to prove the upper bound for the case when the inner process Y is a
random walk. Indeed, if Y is a Lévy process, (Yn)n1 is a random walk and we
infer for all T > 0 that

(3.5) P
(
X(|Yt|) ¬ 1, ∀t ∈ [0, T ]

)
¬ P

(
X(|Yn|) ¬ 1, ∀n = 1, . . . , ⌊T ⌋

)
.

Therefore, we consider the persistence probability of X ◦ |S|, where Sn = ξ1 +
. . . + ξn, and ξ1, ξ2, . . . are i.i.d. Let us begin to develop a method to deal with
the gaps in the range of the random walk. The idea is to fill the gaps in the range,
which will only result in a term of lower order if the gaps are not too large. Let
t(1) ¬ t(2) ¬ . . . , N  2, k  0, x, y > 0 (below, we set t(k) := Sk). Using the
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equality (XT−t −XT )t∈[0,T ]
d
= (−Xt)t∈[0,T ], observe that

P
( N∩
n=1

{ sup
t∈[t(n)−k,t(n)+k]

Xt ¬ x+ ky}
)

¬ P
( N∩
n=1

{ sup
t∈[t(n)−(k+1),t(n)+k+1]

Xt ¬ x+ (k + 1)y}
)

+
N−1∑
n=1

P ( sup
t∈[0,1]

Xt(n)−k−t −Xt(n)−k  y)

+
N−1∑
n=1

P ( sup
t∈[0,1]

Xt(n)+k+t −Xt(n)+k  y)

¬ P
( N∩
n=1

{ sup
t∈[t(n)−(k+1),t(n)+k+1]

Xt ¬ x+ (k + 1)y}
)

+ 2NP ( sup
t∈[0,1]

|Xt|  y).

(Here and below, the interval [t(n) − k, t(n) + k] stands for [0, t(n) + k] when-
ever t(n) − k < 0.) Let pN := P

(
supn=1,...,N X(|Sn|) ¬ 1

)
. Conditioning on

S1, . . . , SN and using the previous inequality with x = 1 and y = (2 logN)1/α

iteratively for k = 0, . . . , L, we obtain

pN ¬ P
( N∩
n=0

{Xt ¬ 1 + (2 logN)1/α, ∀t ∈ [|Sn| − 1, |Sn|+ 1]}
)

(3.6)

+ 2(N + 1)P
(
sup
t∈[0,1]

|Xt|  (2 logN)1/α
)

¬ . . . ¬ P
( N∩
n=0

{Xt ¬ 1 + L(2 logN)1/α, ∀t ∈ [|Sn| − L, |Sn|+ L]}
)

+ L · 2(N + 1)P
(
sup
t∈[0,1]

|Xt|  (2 logN)1/α
)
.

Since X1 ∈ X (α), we infer by Doob’s inequality for submartingales that C1 :=
E
[
sup{e|Xt|α : t ∈ [0, 1]}

]
<∞, and therefore

(3.7) P
(
sup
t∈[0,1]

|Xt|  (2 logN)1/α
)
¬ C1e

−2 logN = C1N
−2.

Let S∗N := max {|S1| , . . . , |SN |}. Setting

L = LN = C(logN)γ and uN := 21/αC(logN)γ+1/α,
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we see from (3.6) and (3.7) that

pN ¬ P
( N∩
n=0

{ sup
t∈[|Sn|−L,|Sn|+L]

Xt ¬ 1 + uN}
)
+ 2CC1(logN)γN−1(3.8)

¬ P (Xt ¬ 2uN , ∀ t ∈ [0, S∗N ]) + P (AN ) + C2(logN)γN−1,

where AN is the event that the set {0, |S1| , . . . , |SN |} contains a gap larger than
L = C(logN)γ . In particular, the event AN implies that the random walk must
have a jump larger than L up to time N . If S1 = ξ1 ∈ X (β), take γ = 1/β and
note that

P (AN ) ¬ P
(

max
n=1,...,N

|ξn|  C(logN)1/β
)
¬ NP

(
|ξ1|  C(logN)1/β

)(3.9)

¬ Ne−C
β logN E[e|ξ1|

β

] = o(N−1/2),

where the last equality holds for C large enough. Now combining (3.8) and (3.9),
we arrive at

(3.10) pN ¬ P
(
Xt ¬ 21+1/αC(logN)1/β+1/α, ∀ t ∈ [0, S∗N ]

)
+ o(N−1/2).

We need to distinguish the cases E [S1] = 0 and E [S1] ̸= 0.

C a s e E [S1] = 0. Let gN := 21+1/αC(logN)1/β+1/α. First, note that

P (Xt ¬ gN , ∀ t ∈ [0, S∗N ]) ¬ P
(

sup
n=1,...,N

|Sn| ¬
√

N/ logN
)

(3.11)

+ P
(
Xt ¬ gN , ∀ t ¬

√
N/ logN

)
.

By Corollary 4.6 in [1] (or Theorem 4 in [21]), we have

(3.12) lim
N→∞

a−2N logP
(
S∗N ¬

√
N/aN

)
= −π2/8

whenever 0 < aN →∞ and a2N/N → 0. This shows that

(3.13) P
(

max
n=1,...,N

|Sn| ¬
√

N/ logN
)
= N−π

2/8+o(1) = o(N−1/4).

Finally, (3.10), (3.11), (3.13), and (3.4) imply that

P
(

sup
n=1,...,N

X(|Sn|) ¬ 1
)
¬ P

(
Xt ¬ gN ,∀t ¬

√
N/ logN

)
+ o(N−1/4)

- (logN)1/α+1/β+1/4N−1/4.
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C a s e E [S1] ̸= 0. Similarly, with gN as above, note that

P (Xt ¬ gN , ∀ t ∈ [0, S∗N ]) ¬ P (Xt ¬ gN , ∀ t ¬ |SN |)
¬ P (Xt ¬ gN , ∀ t ¬ N |E [S1]| /2) + P (|SN | ¬ N |E [S1]| /2).

Write S̃n := Sn − nE [S1] and note that

P (|SN | ¬ N |E [S1]| /2) ¬ P (N |E [S1]| − |S̃N | ¬ N |E [S1]|/2)

¬ P (|S̃N |  |E [S1]|N/2) ¬ 4
E[S̃2

N ]

E [S1]
2N2

= C1N
−1.

As above, in combination with (3.10) and (3.4), we conclude that

pN ¬ P
(
Xt ¬ C2(logN)1/β+1/α, ∀ t ¬ N |E [S1]| /2

)
+ o(N−1/2)

- (logN)1/α+1/βN−1/2. �

Let us now prove the lower bound of Theorem 1.2. We only prove the lower
bound if the inner process Y is a Lévy process. If Y is a random walk, the proof is
almost identical.

P r o o f o f T h e o r e m 1.2 ( l o w e r b o u n d ).

C a s e E [Y1] = 0. By independence of X and Y , we have

P
(

sup
t∈[0,T ]

X(|Yt|) ¬ 1
)
 P ( sup

t∈[0,c
√
T ]

Xt ¬ 1)P
(

sup
t∈[0,T ]

|Yt| ¬ c
√
T
)
.

Note that, by Doob’s inequality applied to the submartingale (|Yt|)t0, we obtain

P
(

sup
t∈[0,T ]

|Yt| ¬ c
√
T
)
= 1− P

(
sup

t∈[0,T ]
|Yt| > c

√
T
)
 1−

EY 2
T

c2T
= 1/2

for c :=
√

2E[Y 2
1 ]. We have used the equality E[Y 2

t ] = t ·EY 2
1 for a square inte-

grable Lévy martingale. This proves the lower bound if E [Y1] = 0.

C a s e E [Y1] ̸= 0. As before, for any c > |E [Y1]|, we have

P
(

sup
t∈[0,T ]

X(|Yt|) ¬ 1
)
 P ( sup

t∈[0,cT ]
Xt ¬ 1)P ( sup

t∈[0,T ]
|Yt| ¬ cT ).

Next, since |Yt| ¬ |Yt −E [Yt]| + |E [Yt]| and E [Yt] = E [Y1] · t for a Lévy pro-
cess, it follows that

P ( sup
t∈[0,T ]

|Yt| ¬ cT )  P
(

sup
t∈[0,T ]

|Yt − E [Yt]| ¬ (c− |E [Y1]|)T
)

 1−
E
[
|YT − E [YT ]|2

]
(c− |E [Y1]|)2 T 2

= 1−
E
[
|Y1 − E [Y1]|2

]
(c− |E [Y1]|)2 T

→ 1
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as T → ∞. We have again used Doob’s inequality, and the last equality follows
from the fact that E

[
|YT − E [YT ]|2

]
= E

[
|Y1 − E [Y1]|2

]
· T . This completes

the proof of the lower bound. �

REMARK 3.1. The proof reveals that under the assumptions of Theorem 1.2,
if E [Y1] = 0, it follows that

N−1/4 - P
(

sup
n=1,...,N

X(|Sn|) ¬ 1
)
- N−1/4 (logN)1/α+1/β+1/4.

Note that the lower bounds of Theorem 1.2 hold if E[X2
1 ] + E[Y 2

1 ] <∞.
The upper bound of Theorem 1.2 can be improved if X is a symmetric Lévy

process and Y is a subordinator. Assume without loss of generality that Y1  0
a.s. Then Z := X ◦ Y is a symmetric Lévy process. In particular,

P ( sup
t∈[0,T ]

Zt ¬ 1) - P ( sup
n∈[0,⌊T ⌋]

Zn ¬ 1) ≍ T−1/2

without any additional assumption of moments (see, e.g., [11], Proposition 1.4).
This observation suggests that Theorem 1.2 remains true under much weaker inte-
grability conditions.

In (3.9), we have seen that the probability of a gap of size C(logN)1/β up
to time N can be made of arbitrarily small polynomial order by increasing the
constant C under the assumption that S1 ∈ X (β). However, if we only assume that
E [|S1|p] is finite for some p  2, it does not seem easy to get a polynomial upper
bound on this probability. Moreover, it is easy to see that a gap of size (logN)γ

is much more likely in that case. For simplicity, assume that E[S2
1 ] <∞ and that

P (S1 > x) ≍ x−p as x→∞ with p > 2. The event that the random walk jumps
above L and stays above the level S1 after that up to time N clearly implies that
the set {0, |S1| , . . . , |SN |} has a gap of size L. Hence, the probability of a gap of
size L is bounded from below by

P (S1  L, sup
n=2,...,N

Sn − S1  0) = P (S1  L)P ( sup
n=1,...,N−1

Sn  0),

and if L = C(logN)γ , the product is of order (logN)−pγN−1/2 = N−1/2+o(1).
Moreover, let us mention that even for a deterministic increasing sequence

(sn)n1 such that sN →∞ as N →∞ and a Brownian motion (Bt)t0, it is not
obvious to find conditions on (sn)n1 such that

P
(

sup
n=1,...,N

B(sn) ¬ 1
)
≍ P ( sup

t∈[0,sN ]
Bt ¬ 1) ≍ s

−1/2
N .

We refer to [3] for related results.
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Let us now prove Theorem 1.3. Recall that fractional Brownian motion with
Hurst parameter H ∈ (0, 1) (abbreviated as fBm(H) hereafter) is a centred Gaus-
sian process (Xt)t∈R with covariance

E [XtXs] =
1

2
(|t|2H + |s|2H − |t− s|2H), s, t ∈ R.

X has stationary increments and is self-similar: (Xct)t∈R
d
= (cHXt)t∈R.

P r o o f o f T h e o r e m 1.3. Let X be an fBm(H). First, recall from [22]
that P (Xt ¬ 1, ∀t ∈ [0, T ]) = T−(1−H)+o(1).

U p p e r b o u n d. We can almost repeat the proof of Theorem 1.2. Let c =
E [M1], where M1 := sup {Xt : t ∈ [0, 1]}, and recall that

P
(
sup
t∈[0,1]

|Xt| > (4 logN)1/2
)
¬ 2P

(
M1 > (4 logN)1/2

)
¬ C1 exp

(
−
(
(4 logN)1/2 − c

)2
/2

)
= N−2+o(1),

by the Gaussian concentration inequality (see, e.g., [19]), which is the equivalent
of (3.7). Moreover, since (Xt+T −XT )t∈[0,T ] and (XT−t −XT )t∈[0,T ] are equal
in law to (Xt)t∈[0,T ], we can proceed as in the proof of Theorem 1.2 (cf. (3.10)) to
obtain

P
(

sup
n=1,...,N

X(|Sn|) ¬ 1
)
¬P

(
Xt ¬ C(logN)1/β+1/2, ∀t ∈ [0, S∗N ]

)
+ o(N−1).

Set gN := C(logN)1/β+1/2. If E [S1] = 0, in view of (3.12) and the self-similarity
of X , we get

P (Xt ¬ gN , ∀t ∈ [0, S∗N ]) ¬ P
(
Xt ¬ gN , ∀t ∈ [0,

√
N/ logN ]

)
+ o(N−1)

= P
(
Xt ¬ 1, ∀t ∈

[
0, g
−1/H
N

√
N/ logN

])
+ o(N−1)

=
(
g
−1/H
N

√
N/ logN

)−(1−H)+o(1)
+ o(N−1) = N−(1−H)/2+o(1).

If E [S1] ̸= 0, a similar argument yields the upper bound. The proof of the lower
bound poses no difficulty and is omitted. �

REMARK 3.2. In Theorems 1.2 and 1.3, the outer process X had stationary
increments in both cases. One might wonder if this assumption can be relaxed. In
view of Theorem 1.1, one might guess that if X has a persistence exponent θ > 0
and E [S1] = 0, it would follow that

P
(

sup
n=1,...,N

X(|Sn|) ¬ 1
)
= N−θ/2+o(1), N →∞,
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under suitable moment conditions. However, this turns out to be false in gen-
eral. As an example, consider a sequence X̃1, X̃2, . . . of independent random
variables with P (X̃n = 2) = 1 − P (X̃n = 0) = 1/(n + 1) for n  1 and define
X = (Xt)t0 by

Xt =

{
X̃n if t = (2n− 1)/2 for some n ∈ N,
0 elsewhere.

Obviously, X does not have stationary increments. Moreover, it is not hard to
check that

P ( sup
t∈[0,T ]

Xt ¬ 1) ≍ P (X̃1 = 0, . . . , X̃⌊T ⌋ = 0) =
⌊T ⌋∏
n=1

(
1− 1/(n+ 1)

)
≍ T−1.

If (Sn)n1 is a symmetric simple random walk, by construction it follows that
X(|Sn|) = 0 for all n, i.e., P

(
X(|Sn|) ¬ 1, ∀n  1

)
= 1.

4. TWO-SIDED PROCESSES

In Sections 2 and 3, the outer process X = (Xt)t0 had the index set [0,∞),
so it was only possible to evaluate X over the range of the absolute value of the
inner process Y . In this section, we work with two-sided processes X = (Xt)t∈R
allowing us to consider the one-sided exit problem for the process X ◦ Y .

In Section 4.1, we assume that X is a two-sided process defined in (1.3) and
that the inner process Y is a self-similar continuous process before turning to the
case of random walks and Lévy processes in Section 4.2.

4.1. Continuous self-similar processes. Let us first prove Theorem 1.4. As a
corollary, we obtain the persistence exponent of iterated Brownian motions and
iterated fractional Brownian motions.

P r o o f o f T h e o r e m 1.4. The lower bound can be proved as in Theo-
rem 1.1, so we give only the proof of the upper bound. Denote by I and M the infi-
mum and maximum process of Y , i.e., It = infu∈[−t,t] Yu and Mt = supu∈[−t,t] Yu.
By assumption, we can choose a constant C such that for all T > 0

P (Xt ¬ 1, ∀t ∈ [−T, T ]) ¬ C T−θ.

Since Y is independent of X and has continuous paths, we have

P
(
X(Yt) ¬ 1,∀t ∈ [0, T ]

)
= P (Xt ¬ 1, ∀t ∈ [IT ,MT ])

¬ P
(
Xt ¬ 1, t ∈ [−(|IT | ∧MT ), |IT | ∧MT ]

)
¬ C E[(|IT | ∧MT )

−θ].
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In view of the self-similarity, we have

E[(|IT | ∧MT )
−θ] ¬ T−θH ·

(
E[(−I1)−θ] + E[M−θ1 ]

)
,

and the last expectation is finite by assumption. This completes the proof. �

Let us apply Theorem 1.4 to iterated fractional Brownian motions.

COROLLARY 4.1. Let
(
Yn(t)

)
t∈R be an fBm(Hn) for every n  1, all inde-

pendent. For t ∈ R, set X1(t) := Y1(t) and Xn(t) := Xn−1 ◦ Yn(t). Let θ1 = 1
and θn = H2 · . . . ·Hn. It follows that

P
(
Xn(t) ¬ 1, ∀t ∈ [−T, T ]

)
= T−θn+o(1), T →∞, n  1.

P r o o f. By Theorem 3 in [22], if BH is an fBm(H), we have

P
(
BH(t) ¬ 1, ∀t ∈ [−T, T ]

)
= T−1+o(1), T →∞.

In view of the self-similarity, this equals P
(
supt∈[−1,1]B

H(t) ¬ ϵ
)
= ϵ1/H+o(1)

as ϵ ↓ 0. Hence, by symmetry,

E
[
(− inf{BH

t : t ∈ [−1, 1]})−η
]
+ E

[
(sup{BH

t : t ∈ [−1, 1]})−η
]
<∞

for any η < 1/H by Lemma 2.1. Since θn ¬ 1 for all n, the assertion follows now
easily by induction in view of Theorem 1.4. �

If we know the precise behaviour of P (Xt ¬ 1, ∀t ∈ [−T1, T2]) as T1, T2

→ ∞, we can get a stronger result than Theorem 1.4. In particular, if X has in-
dependent branches such as in the case of two-sided Brownian motion, the next
theorem allows us to determine the exact asymptotics of the persistence probabil-
ity (see Corollary 4.2).

THEOREM 4.1. Let (Xt)t0 be a stochastic process such that

P (Xt ¬ 1, ∀t ∈ [−T1, T2]) ∼ c T−θ
−

1 T−θ
+

2 , T1, T2 →∞.

Let (Yt)t∈R denote an independent self-similar process of index H with Y0 = 0
and continuous paths such that for some ρ > θ+ + θ− it follows that

P (Yt  −ϵ, ∀t ∈ [−1, 1]) + P (Yt ¬ ϵ,∀t ∈ [−1, 1]) = O(ϵρ), ϵ ↓ 0.

Then A := E
[
|inf {Yt, t ∈ [−1, 1]}|−θ

−
(sup {Yt : t ∈ [−1, 1]})−θ+

]
<∞ and

P
(
X(Yt) ¬ 1, ∀t ∈ [−T, T ]

)
∼ AcT−H(θ++θ−), T →∞.
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P r o o f. Let IT :=inf {Yt : t ∈ [−T, T ]}, MT :=sup {Yt : t ∈ [−T, T ]}. We
know from Lemma 2.1 that E[|I1|−η] + E[M−η1 ] <∞ for η ∈ (0, ρ). The finite-
ness of A then follows from Lemma 4.1 below. The rest of the proof is analogous
to the one of Theorem 1.1. We only sketch the proof of the upper bound. For ϵ > 0,
we can find T0 such that for all T1, T2  T0 we have

P (Xt ¬ 1,∀t ∈ [−T1, T2]) ¬ (c+ ϵ)T−θ
−

1 T−θ
+

2 .

Using the independence of X and Y , we see that

P
(
X(Yt) ¬ 1, ∀t ∈ [−T, T ]

)
= E

[
P (Xt ¬ 1, t ∈ [IT ,MT ]|FY

T )
]

¬ P (IT  −T0) + P (MT ¬ T0) + (c+ ϵ)E[|IT |−θ
−
M−θ

+

T ].

Next, note that lim supT→∞ TH(θ++θ−)
(
P (IT  −T0) + P (MT ¬ T0)

)
= 0.

Indeed, by self-similarity, this follows from the fact ρ > θ+ + θ− and

P (I1  −T0T
−H) + P (M1 ¬ T0T

−H) ¬ CT ρ
0 T
−ρH .

Hence, writing θ := θ+ + θ− and using the self-similarity of Y , we conclude that

lim sup
T→∞

THθ P
(
X(Yt) ¬ 1, ∀t ∈ [−T, T ]

)
¬ (c+ ϵ)E[|I1|−θ

−
M−θ

+

1 ].

Letting ϵ ↓ 0 establishes the desired upper bound. �

The following lemma is stated separately for better readability and is needed
in the preceding proof.

LEMMA 4.1. Let X1, X2 be nonnegative random variables such that, for
some α1, α2 > 0, E [Xαi

i ]<∞ (i = 1, 2). Then for βi ∈ (0, αi) it follows that
E[Xβ1

1 Xβ2
2 ] <∞.

P r o o f. We have

E[Xβ1
1 Xβ2

2 ] ¬ E[Xβ1
1 ] + E[Xβ2

2 ] + E[Xβ1
1 Xβ2

2 1{X1>1,X2>1}].

It suffices to show that the last expectation is finite. If 1/p + 1/q + 1/r = 1, we
deduce from a generalised version of Hölder’s theorem that

E[Xβ1
1 Xβ2

2 1{X1>1,X2>1}] ¬ E[Xβ1p
1 ]1/pE[Xβ2q

2 ]1/qE[1{X1>1,X2>1}]
1/r.

With p = α1/β1 > 1, q = α2/β2 > 1 and appropriate r, the claim follows. �

Theorem 4.1 allows us to state the precise behaviour of the persistence proba-
bility for n-times iterated Brownian motion.
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COROLLARY 4.2. Let (Bn)n1 denote a sequence of independent two-sided
Brownian motions. Set W (1)

t := B1(t) and W
(n)
t := Bn

(
W (n−1)(t)

)
. For every

n  1, let θn := 2−(n−1). It follows that

P (W
(n)
t ¬ 1, ∀t ∈ [−T, T ]) ∼ cn T

−θn , T →∞, n  1,

where c1 = 2/π and, for n  2,

cn =
2

π
E
[
| inf{W (n−1)

t : t ∈ [−1, 1]}|−1/2(sup{W (n−1)
t : t ∈ [−1, 1]})−1/2

]
.

P r o o f. If B is a two-sided Brownian motion, by the independence of the
branches, we have

P (Bt ¬ 1, ∀t ∈ [−T1, T2]) = P (Bt ¬ 1, ∀t ∈ [0, T1])P (Bt ¬ 1, ∀t ∈ [0, T2])

∼ 2

π
T
−1/2
1 T

−1/2
2

whenever T1, T2 →∞. The assertion is therefore clear for n = 1. By induction, if
the assertion holds for some n  1, we can apply Theorem 4.1 with X = Bn+1 and
Y = W (n). Indeed, W (n) is 2−n-self-similar. Moreover, since W (n) is symmetric
and by the induction hypothesis, we have

P (W
(n)
t  −ϵ, ∀t ∈ [−1, 1]) + P (W

(n)
t ¬ ϵ,∀t ∈ [−1, 1])

= 2P (W
(n)
t ¬ ϵ, ∀t ∈ [−1, 1])

= 2P (W
(n)
t ¬ 1,∀t ∈ [−ϵ−2n , ϵ−2n ]) ∼ 2cnϵ

2nθn = 2cnϵ
2, ϵ ↓ 0.

Hence, we infer from Theorem 4.1 (c = 2/π, θ+ = θ− = 1/2, ρ = 2,H = 2−n)
that

An := E
[
| inf{W (n)

t : t ∈ [−1, 1]}|−1/2(sup{W (n)
t : t ∈ [−1, 1]})−1/2

]
<∞

and

P (W
(n+1)
t ¬ 1, t ∈ [−T, T ]) ∼ (2/π)AnT

−2−n
, T →∞. �

4.2. Two-sided Lévy processes at random walk or Lévy times. Let us now
consider the one-sided exit problem for the process

(
X(Sn)

)
n0, where S is again

a random walk and X is a two-sided Lévy process, i.e., the branches of X are inde-
pendent Lévy processes. Theorem 1.5 shows that the persistence exponent is 1/2
under suitable integrability conditions regardless of the sign of E [S1], in contrast
to Theorem 1.2. We now give a proof of Theorem 1.5 for the case when the inner
process Y is a random walk. As before, the upper bound for the case when Y is a
Lévy process follows immediately, whereas the proof of the lower bound is similar
and is omitted.
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P r o o f o f T h e o r e m 1.5. The lower bound can be established as in the
proof of Theorem 1.2 if E [Y1] = 0. If E [Y1]>0 (say), due to the fact that infn1Sn

is a finite random variable a.s., the result follows along similar lines.
The proof of the upper bound is also similar to that of Theorem 1.2. Let pN :=

P
(
supn=1,...,N X(Sn) ¬ 1

)
. Repeating the steps given before (3.6), we obtain

pN ¬ P
( N∩
n=0

{ sup
t∈[Sn−L,Sn+L]

Xt ¬ 1 + L(2 logN)1/α}
)

+ 2L(N + 1)P
(
sup
t∈[0,1]

∣∣X+
t

∣∣  (2 logN)1/α
)

+ 2L(N + 1)P
(
sup
t∈[0,1]

∣∣X−t ∣∣  (2 logN)1/α
)
.

Let us take L = C(logN)1/β , and let ÃN mean the event that the random set
{0, S1, . . . , SN} contains a gap larger than L. Let gN := 21+1/αC(logN)1/α+1/β .
Since X+

1 , X−1 ∈ X (α), we see in view of (3.7) and (3.8) that

pN ¬ P
(
Xt ¬ gN , ∀ t ∈ [IN ∧ (−L),MN ]

)
+ P (ÃN ) + C2(logN)1/βN−1

¬ P
(
Xt ¬ gN , ∀ t ∈ [IN ∧ (−L),MN ]

)
+ o(N−1/2).

The last inequality follows from an estimate on P (ÃN ) as in (3.9).
Let us again consider two cases:

C a s e E [Y1] ̸= 0. Assume first that E [Y1] > 0. If E [Y1] < 0, the proof is
almost identical. Note that

P
(
Xt ¬ gN , ∀ t ∈ [IN ∧ (−L),MN ]

)
¬ P (Xt ¬ gN , ∀ t ∈ [0,MN ])

¬ P (MN ¬ δN) + P
(
Xt ¬ gN , ∀ t ∈ [(2 logN1/α), δN ]

)
¬ C2N

−1 + C3gNN−1/2 - N−1/2(logN)1/α+1/β,

where we have used the fact that P (MN ¬ δN) ¬ P (SN ¬ δN) = o(N−1) for
δ small enough and (3.4) in the second inequality.

C a s e E [Y1] = 0. With gN as above, it suffices to show that

hN := P (Xt ¬ gN ,∀ t ∈ [IN ,MN ]) - N−1/2+o(1).

Let fN :=
√

N/ logN , N  1. Note that

hN ¬ P (|Sn| ¬ fN , ∀n = 1, . . . , N)

+ P (MN ¬ fN ,−IN > fN , Xt ¬ gN , ∀t ∈ [IN ,MN ])

+ P (MN > fN ,−IN ¬ fN , Xt ¬ gN , ∀t ∈ [IN ,MN ])

+ P (MN > fN ,−IN > fN , Xt ¬ gN , ∀t ∈ [IN ,MN ])

=: J1(N) + J2(N) + J3(N) + J4(N).
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First, recall that J1(N) = o(N−1/2) (cf. (3.12)). It remains to estimate the terms
J2 and J4. The term J3 can be dealt with analogously to J2.

S t e p 1. Note that

J2(N) ¬ P (MN ¬ N1/4,−IN > fN , sup
t∈[IN ,MN ]

Xt ¬ gN )

+ P (N1/4 ¬MN ¬ fN ,−IN > fN , sup
t∈[IN ,MN ]

Xt ¬ gN )

=: K2,1(N) +K2,2(N).

Let us now find upper bounds for K2,j for j = 1, 2. First, note that

K2,1(N) ¬ P (MN ¬ N1/4)P ( sup
t∈[−fN ,0]

Xt ¬ gN ).

Applying Lemma 3.1, we conclude that

(4.1) K2,1(N) - N−1/4 gNf
−1/2
N ≍ N−1/2 (logN)1/α+1/β+1/4.

Let us now find an upper bound on K2,2. Set a(k) :=
∑k

l=1 2
−(l+1) = (1− 2−k)/2,

k  1. Since a(N)→ 1/2, we can find γ(N) such that

Na(γ(N))  fN =
√

N/ logN.

Indeed, this just amounts to

a
(
γ(N)

)
=

1− 2−γ(N)

2
 log fN

logN
=

1

2
− log logN

2 logN
,(4.2)

i.e.,

γ(N)  1

log 2
log

(
logN

log logN

)
.

Hence, it suffices to set γ(N) := ⌈(log logN)/ log 2⌉.
Next, note that {N1/4 ¬MN ¬ fN} ⊆ {Na(1) ¬MN ¬ Na(γ(N))}. Hence,

we get

K2,2(N) ¬
γ(N)−1∑
k=1

P (Na(k) ¬MN ¬ Na(k+1),−IN > fN , sup
t∈[IN ,MN ]

Xt ¬ gN )

¬
γ(N)−1∑
k=1

P (Na(k) ¬MN ¬ Na(k+1))P ( sup
t∈[−fN ,Na(k)]

Xt ¬ gN )

¬ P (X−t ¬ gN , ∀t ∈ [0, fN ])

×
γ(N)−1∑
k=1

P (MN ¬ Na(k+1))P (X+
t ¬ gN , ∀t ∈ [0, Na(k)]).
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In view of Lemma 3.1, we can find constants C1 and N0 such that for N  N0

P (MN ¬ Na(k+1)) ¬ C1N
a(k+1)−1/2, k = 1, 2, . . .

Similarly, for all N large enough,

P ( sup
t∈[0,Na(k)]

X+
t ¬ gN ) ¬ C2 gNN−a(k)/2, k = 1, 2, . . .

Hence, for N large enough, we obtain

K2,2(N) ¬ (C3gN/
√

fN )
γ(N)−1∑
k=1

Na(k+1)−1/2 gNN−a(k)/2

= C3g
2
N (logN)1/4N−1/4

γ(N)−1∑
k=1

Na(k+1)−a(k)/2−1/2

= C4(logN)2/α+2/β+1/4
(
γ(N)− 1

)
N−1/2,

since a(k + 1) − a(k)/2 = 1/4. By definition of γ(N), we arrive at K2,2(N) -
(log logN) (logN)2/α+2/β+1/4N−1/2. Combining this with (4.1), we have

(4.3) J2(N) - (log logN) (logN)2/α+2/β+1/4N−1/2, N →∞.

S t e p 2. Finally, with gN as above, note that

J4(N) ¬ P (Xt ¬ gN , ∀t ∈ [−fN , fN ])

= P (X−t ¬ gN , ∀t ∈ [0, fN ])P (X+
t ¬ gN , ∀t ∈ [0, fN ])

-
(
gN/

√
fN

)2 ≍ (logN)2/α+2/β+1/2N−1/2. �

REMARK 4.1. The proof reveals that the persistence exponent is equal to 1/2
no matter if E [Y1] = 0 or not for quite different reasons. If E [Y1] > 0, SN/N →
E [Y1] by the law of large numbers, so the random walk diverges to +∞ with speed
N and the persistence probability is determined by the right branch X+ of X .

If E [Y1] = 0, the random walks oscillate and typical fluctuations are of order
±
√
N . The persistence probability up to time N is therefore approximately equal

to the probability that both X+ and X− stay below one until time
√
N . By in-

dependence of X+ and X−, this probability is equal to the product of these two
probabilities which are each of order N−1/4.
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