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Abstract. We consider canonical shift space representation of discrete-
time Markov chain given by transition kernels. Markov shifts and eigenfunc-
tions of skew products above them are characterized by terms of Frobenius–
Perron operator. The results are applied to the exactness property of Markov
chains. We introduce also the notion of quasi-Markov chain and apply it to
Gauss endomorphisms.
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1. INTRODUCTION

We start with consideration of Markov chains from ergodic theory point of
view. A probabilistic measure space (X,µ) and transition probability P (x, ·) de-
termine the dynamical system on product space. Here the measure is given by µ
and P (x, ·), the transformation is a one-sided shift. If µ is stationary, then the shift
is measure preserving. For details see Section 2. To study our dynamical system
(called, as before, a Markov chain), we use the Frobenius–Perron operator instead
of the Markov one. In Section 2 we construct the Frobenius–Perron (F–P) opera-
tor for Markov chain and characterize the Markov chain by using the F–P oper-
ator. Section 3 is assigned for skew products with Markov chain in the base. As
for discrete Markov chains (see [4]) we get characterization of Markov chains by
densities of absolutely continuous invariant measures (a.c.i.m.). This is also a gen-
eralization of results in [7] where a mutually independent process is considered.
In Section 4 we characterize the exactness property of Markov chains. Theorem
4.3 gives sufficient conditions for exactness of some position-dependent random
maps. At the end of the section we describe exactness of Gauss endomorphisms in
language of F–P operator. In Section 5 we introduce the notion of quasi-Markov
chain. Among others we give the example of exact Gauss endomorphism which is
not a quasi-Markov chain.
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2. PRELIMINARIES

This section consists of basic notions and definitions connected with Markov
chain and the dynamical system determined by this process. In particular, we in-
troduce the Frobenius–Perron operator for Markov chain.

DEFINITION 2.1. Let us assume that (X,B, µ) is a probability space. A func-
tion P : X × B → [0, 1] is called a stochastic transition function if it has the fol-
lowing properties:

(i) for any A ∈ B, P (·, A) : X → [0, 1] is a B-measurable function,
(ii) for any x ∈ X, P (x, ·) : B → [0, 1] is a probability measure.

DEFINITION 2.2. We say that the measure µ is nonsingular if

µ(A) = 0⇒
∫
X

P (x,A)dµ(x) = 0.

The measure µ is invariant if

µ(A) =
∫
X

P (x,A)dµ(x)

for every A ∈ B.
Let Ω = XN , and letD = BN be a product σ-field. Here N = {0, 1, . . .}. For

any sets A0, . . . , An ∈ B, we will put

[A0 . . . An] = {ω ∈ Ω : ω0 ∈ A0, . . . , ωn ∈ An}.

We define the measure P on D by

(2.1) P ([A0 . . . An]) =
∫
A0

dµ(ω0)
∫
A1

P (ω0, dω1) . . .
∫
An

P (ωn−1, dωn)

for every n ­ 1 and A0, . . . , An ∈ B. Let σ be a one-sided shift on Ω, i.e.,

σ(ω)n = ωn+1 for n ∈ N.

Finally, we have obtained the measure theoretical dynamical system (Ω,D, P, σ)
which is called a Markov chain. More details can be found in Chapter I of [8]. For
f ∈ L1(P ) and

ω∞1 = (ω1, ω2, . . .) ∈ XN−{0}

we define the signed measure ν(f,ω∞1 ) on B such that

ν(f,ω∞1 )(A) =
∫
X

dµ(x)
∫
A

f(xω)P (x, dω0),
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where xω = (x, ω0, ω1, . . .). Consequently,

ν(f,ω∞1 ) =
∫
X

dµ(x)
∫
(·)
f(xω)P (x, dω0).

We will assume throughout the rest of the paper that µ is nonsingular. There-
fore, ν(f,ω∞1 ) ≪ µ for every f ∈ L1(P ) and ω∞1 . Now, we are in the position to
define the F–P operator L for (σ, P ), i.e., such that∫

gLfdP =
∫
fg(σ)dP

for any g ∈ L∞(P ) and for any f ∈ L1(P ). Namely,

(2.2) Lf(ω) =
dν(f,ω∞1 )

dµ
(ω0) =

d

dµ

∫
X

dµ(x)
∫
(·)
f(xω)P (x, dω0).

REMARK 2.1. If P (x, ·)≪ µ for a.e. x and dP (x, ·)/dµ = ρ(x, ·), then

Lf(ω) =
∫
X

f(xω)ρ(x, ω0)dµ(x).

LEMMA 2.1. The F–P operator L given by (2.2) is the F–P operator for
(σ, P ).

P r o o f. It is enough to show that∫
Ω

L1[A0...An](ω)1[B0...Bn](ω)dP =
∫
Ω

1[A0...An](ω)1[B0...Bn]

(
σ(ω)

)
dP

for cylinder sets [A0 . . . An], [B0 . . . Bn] and n ­ 0. Let us observe that

(2.3) L1[A0...An](ω) =
d

dµ

∫
X

dµ(x)
∫
(·)
1[A0...An](xω)P (x, dω0)

=
d

dµ

∫
X

dµ(x)
∫
(·)
1[A0](x)1[A1...An](ω)P (x, dω0)

= 1[A1...An](ω)
d

dµ

∫
X

dµ(x)1[A0](x)P (x, dω0)

= 1[A1...An](ω)L1[A0](ω0).
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Therefore,∫
Ω

L1[A0...An](ω)1[B0...Bn](ω)dP

=
∫

B0∩A1

L1[A0](ω0)dµ(ω0)
∫

B1∩A2

P (ω0, dω1) . . .
∫

Bn−1∩An

P (ωn−2, dωn−1)

×
∫
Bn

P (ωn−1, dωn)

=
∫
A0

P (x,B0 ∩A1)dµ(x)
∫

B1∩A2

P (ω0, dω1) . . .
∫

Bn−1∩An

P (ωn−2, dωn−1)

×
∫
Bn

P (ωn−1, dωn)

=
∫
A0

dµ(x)
∫

B0∩A1

P (x, dω0) . . .
∫

Bn−1∩An

P (ωn−2, dωn−1)
∫
Bn

P (ωn−1, dωn)

=
∫
Ω

1[A0...An](ω)1[B0...Bn]

(
σ(ω)

)
dP. �

The existence of L implies nonsingularity of (σ, P ), i.e., P (A) = 0 ⇒
P (σ−1A) = 0. If (σ, P ) is nonsingular, then it is easy to see that µ is nonsingular.
Therefore, the following holds:

PROPOSITION 2.1. (σ, P ) is nonsingular if and only if µ is nonsingular.

As the F–P operator, L has the following properties for any f ∈ L1(P ):
(a) f ­ 0 implies Lf ­ 0,

(b)
∫
LfdP =

∫
fdP,

(c)
∫
|Lf |dP ¬

∫
|f |dP,

(d) Lf = f for f ­ 0 if and only if f is the density of absolutely continuous
invariant measure (a.c.i.m.).

Here and throughout all the paper we will assume that relations between sets
and functions hold modulo a set of measure zero. A Markov chain can be char-
acterized by the F–P operator as follows. Let (Ω,D, σ) be a measurable space
defined as previously. Let ν be a probability measure such that ν|B = µ and (σ, ν)
is nonsingular. Denote by Lν the F–P operator with respect to (σ, ν).

DEFINITION 2.3. We say that (σ, ν) is a Markov chain if ν is determined by
(2.1) for some stochastic transition function.

THEOREM 2.1. Let (X,B, µ) be a Lebesgue space. (σ, ν) is a Markov chain
if and only if Lν : L1(µ)→ L1(µ).

P r o o f. We need only to show that if Lν : L1(µ)→ L1(µ), then (σ, ν) is a
Markov chain. By reasoning similar to that in the proof of Proposition 1.8 in [8],
p. 120, we can define P (x, ·) in such a way that

P (x,A) = ν([XA]|B)(x)
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for every A ∈ B and every x from a set of µ-measure one. Using mathematical
induction, we show that ν is determined by µ and P (x, ·). By assumption, ν([A]) =
µ(A). Let us note that

ν([A0A1]) =
∫
[A0]

1[A1]

(
σ(ω)

)
dν =

∫
[A0]

ν([XA1]|B)(ω0)dµ(ω0)

=
∫
A0

P (ω0, A1)dµ(ω0).

On the other hand,∫
[A0]

1[A1]

(
σ(ω)

)
dν =

∫
Lν1[A0](ω)1[A1](ω)dν =

∫
A1

Lν1[A0](ω0)dµ(ω0).

Therefore,∫
A0

dµ(ω0)
∫
φ(ω1)P (ω0, dω1) =

∫
φ(ω0)Lν1[A0](ω0)dµ(ω0)

for any φ ∈ L1(µ) and A0 ∈ B. Let us assume that ν([A0 . . . An−1]) satisfies (2.1)
for any A0, . . . , An−1 ∈ B. Then

ν([A0 . . . An])=
∫
[A0]

1[A1...An]

(
σ(ω)

)
dν

=
∫
Lν1[A0](ω)1[A1...An](ω)dν =

∫
[A1...An]

Lν1[A0](ω)dν

=
∫
A1

Lν1[A0](ω0)dµ(ω0)
∫
A2

P (ω0, dω1) . . .
∫
An

P (ωn−2, dωn−1)

=
∫
A0

dµ(ω0)
∫
A1

P (ω0, dω1)
∫
A2

P (ω1, dω2) . . .
∫
An

P (ωn−1, dωn). �

Let us consider Gauss endomorphisms. By Gauss endomorphism we under-
stand the one-sided version of Gauss automorphism. For the definition and basic
properties see Chapter 8 in [3]. For reader’s convenience we note that X = R and
that the joint distribution of any family of random variables Xs1 , . . . , Xsr is an r-
dimensional Gaussian distribution. Here Xn(ω) = ωn, n ∈ N , and (Ω,D, ν, σ)
denotes the Gauss dynamical system. The measure ν is σ-invariant. It is well
known (see Proposition 2.1 in [7]) that

Lν(f)(σ) = E(f |σ−1D).

Hence for the Gauss endomorphism we have

Lν(X0)(σ) = PH1(X0),
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where the operator PH1 projects perpendicularly onto H1, which is the real com-
plete subspace of L2(ν) generated by finite combinations∑

k∈I
akXk for I ⊂ {1, 2, . . .}.

Therefore, we can use the methods of prediction theory.

PROPOSITION 2.2. The Gauss endomorphism (σ, ν) is a Markov chain if and
only if

LνX0 = aX0

for some a such that |a| < 1.

The proposition follows from Example 2 in [11], p. 40, where it is shown that

PH1(X0) = aX1 = aX0(σ)

for Markov chain Gauss endomorphism. The converse implication can be obtained
by covariance argumentation for real Gaussian process.

3. SKEW PRODUCTS WITH MARKOV CHAIN IN THE BASE

We present description of Markov chain (Ω,D, P, σ) by skew products. Let
(Y,A,m) be a probability measure space, and {Tx}x∈X a measurable family
of nonsingular transformations of Y into Y. Measurability means that the map
X × Y ∋ (x, y) → Tx(y) ∈ Y is measurable, and nonsingularity means that
m(A) = 0 implies m

(
T−1x (A)

)
= 0 for every x ∈ X and A ∈ A. Now, we de-

fine a skew product

(3.1) T (ω, y) =
(
σ(ω), Tω(0)(y)

)
,

where T is a nonsingular transformation of (Ω × Y ) into itself with respect to
P ×m. The F–P operator is described as follows:

LT f(ω, y) = L(Lω(0)f)(ω, y),

where Lx denotes the F–P operator for Tx, x ∈ X , and L is the F–P operator for
the Markov chain (σ, P ).

THEOREM 3.1. If LT f = λf, where |λ| = 1 and f ∈ L1(P ×m), then f =
h(ω0, y), where h ∈ L1(µ×m).

The proof will be preceded by an auxiliary lemma.

LEMMA 3.1. If f(ω) = f(ω0, . . . , ωn) and f ∈ L1(P ), then

Ln+1f(ω) = h(ω0),

where h ∈ L1(µ).



Frobenius–Perron operator description of Markov chains 331

P r o o f. By (2.3) we see that

Ln+11[A0...An](ω) = φn+1(ω0)

for any cylinder set [A0 . . . An]. By property (c) of L and by using the approxima-
tion argumentation we obtain the desired assertion. �

P r o o f o f T h e o r e m 3.1. Let ϵ > 0. There exist n, l ∈ N such that∥∥f − l∑
k=1

fkgk
∥∥ < ϵ,

where ∥·∥means the L1-norm, fk(ω) = fk(ω0, . . . , ωn) ∈ L1(P ) and gk ∈ L1(m).
Since LnT = LTn , we have

Ln+1
T (fkgk)(ω, y) = Ln+1

(
fk(ω)Lϖn+1gk(y)

)
,

where
Lϖn+1g(y) = Lω0 ◦ . . . ◦ Lωng(y).

Therefore, by Lemma 3.1,

Ln+1
T (fkgk) = φk(ω0, y).

Finally,

ϵ >
∥∥f − l∑

k=1

fkgk
∥∥ ­ ∥∥Ln+1

T f −
l∑

k=1

Ln+1
T (fkgk)

∥∥
=

∥∥λn+1f −
l∑

k=1

φk(ω0, y)
∥∥ =

∥∥f − l∑
k=1

λ̄n+1φk(ω0, y)
∥∥,

which completes the proof. �

COROLLARY 3.1. If ν is a T -a.c.i.m., then

dν

dP ×m
= h(ω0, y),

where h ∈ L1(µ×m).

COROLLARY 3.2. If Lf = λf, where |λ| = 1 and f ∈ L1(P ), then f(ω) =
f(ω0).

By Corollary 3.2 we see that a σ-a.c.i.m. is given by some ν ≪ µ and the same
transition probability as P. Let us return to the skew product T. Let h(ω0, y) be a
density of a.c.i.m., i.e., LTh = h. Therefore,

h(ω0, y) =
d

dµ

∫
Lx

(
h(x, y)

)
P (x, dω0)dµ(x).

The above equality implies
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COROLLARY 3.3. If P (x, ·) = µ for a.e. x, then h(ω0, y) = h(y).

COROLLARY 3.4. If P (·, A) is B0-measurable for every A ∈ B, where B0 ⊂
B, then h(ω0, y) is (B0 ×A)-measurable.

It is interesting if the converse of Theorem 3.1 holds. Let (Ω,D, σ) be the mea-
surable shift space defined in Section 2. Let ν be a probability invariant measure
such that ν|B = µ, and let Lν be the F–P operator with respect to (σ, ν).

THEOREM 3.2. Let (X,B, µ) be a Lebesgue space. (σ, ν) is a Markov chain
if and only if for any skew product T given by formula (3.1) densities of T -a.c.i.m.
are (B ×A)-measurable.

The proof will be preceded by an auxiliary lemma. We start with construction
of special skew product. Namely, let α = {Ai}si=1 be a measurable partition of Ω,
Zs = {1, . . . , s}, and m be the measure on Zs such that m(j) = 1

s for j ∈ Zs. Let
{Ti}si=1 be the family of maps such that Ti(j) = i for j ∈ Zs. Define the skew
product

T (ω, j) =
(
σ(ω), Tα(ω)(j)

)
,

where α(ω) = i if and only if ω ∈ Ai.

LEMMA 3.2. T has a.c.i.m. with the density

g(ω, i) = sLν(1Ai)(ω).

P r o o f. We need only to check thatLT g(ω, i) = g(ω, i). Therefore, we firstly
determine LT . Let G ∈ L1(ν ×m) and H ∈ L∞(ν ×m). Then

∫
Ω×Zs

G(ω, j)H
(
T (ω, j)

)
dν×m =

∫
Zs

dm
s∑

i=1

∫
Ω

1Ai(ω)G(ω, j)H
(
σ(ω), i

)
dν

=
∫
Zs

dm
s∑

i=1

∫
Ω

Lν
(
1Ai(ω)G(ω, j)

)
H(ω, i)dν

=
∫
Ω

s∑
i=1

H(ω, i)

(
1

s

s∑
k=1

Lν
(
1Ai(ω)G(ω, k)

))
dν

=
∫

Ω×Zs

( s∑
k=1

Lν
(
1Ai(ω)G(ω, k)

))
H(ω, i)dν ×m.

Hence

LTG(ω, i) =
s∑

k=1

Lν
(
1Ai(ω)G(ω, k)

)
.



Frobenius–Perron operator description of Markov chains 333

Finally,

LT g(ω, i) = s
s∑

k=1

Lν
(
1Ai(ω)

)
Lν

(
1Ak

(ω)
)

= sLν
(
1Ai(ω)

)
Lν

( s∑
k=1

1Ak
(ω)

)
= sLν

(
1Ai(ω)

)
= g(ω, i).

Here, we use the equality Lν1 = 1. �

P r o o f o f T h e o r e m 3.2. If (σ, ν) satisfies the assumptions of Theo-
rem 3.2, then Lν : L1(µ)→ L1(µ) by Lemma 3.2. Therefore, (σ, ν) is a Markov
chain by Theorem 2.1. �

4. EXACTNESS OF MARKOV CHAINS

Let L be the F–P operator for the Markov chain (σ, P ). Let us denote by L̂
the restriction of L to L1(µ),

L̂f(x) = d

dµ

∫
f(y)P (y, ·)dµ(y).

LEMMA 4.1. L̂ is dual to the Markov operator

Ph(x) =
∫
h(y)P (x, dy).

P r o o f. Let h ∈ L∞(µ). Then∫
L̂(f)hdµ =

∫
hdνf =

∫
dµ(y)

∫
h(x)f(y)P (y, dx)

=
∫
f(y)dµ(y)

∫
h(x)P (y, dx) =

∫
fP(h)dµ. �

DEFINITION 4.1. (σ, P ) is exact if

∞∩
n=0

σ−nD = {∅,Ω},

i.e., the zero-one law holds.

THEOREM 4.1. Let µ be invariant. For the system (σ, P ) the following holds:
(i) (σ, P ) is ergodic⇔ L̂ is ergodic⇔ P is ergodic.

(ii) (σ, P ) is weakly mixing⇔ L̂ is weakly mixing⇔ P is weakly mixing.

(iii) (σ, P ) is mixing⇔ L̂ is mixing⇔ P is mixing.
(iv) (σ, P ) is exact⇔ limn→∞ L̂nf =

∫
fdµ in L1 for every f ∈ L1(µ).



334 Z. S. Kowalski

P r o o f. It is well known that ergodicity, weak mixing, mixing and exactness
property of (σ, P ) is equivalent to suitable convergence of Ln. For example, let us
consider (iii). We have

(σ, P ) is mixing ⇔ lim
n→∞

∫
(Lnf)gdP =

∫
fdP

∫
gdP

for f ∈ L1(P ) and g ∈ L∞(P ). As L is contractive, it is enough to consider func-
tions f(ω) = f(ω0, . . . , ωk), k ∈ N. Thus, by Lemma 3.1,

lim
n→∞

∫
(Lnf)gdP = lim

n→∞

∫ (
L̂n(Lk+1f)

)
gdP

= lim
n→∞

∫ (
L̂n(Lk+1f)

)
E(g|B)dµ = lim

n→∞

∫
(Lk+1f)Pn

(
E(g|B)

)
dµ,

where E(g|B) denotes the conditional expectation. �

Let us fix our attention on the exactness property. Let (σ, P ) satisfy the as-
sumptions of Theorem 4.1. The assertion (iv) allows us to apply the theory of
asymptotic stability of operators considered in [6]. Let us assume that µ is nonsin-
gular instead of being invariant.

DEFINITION 4.2. L̂ is said to be asymptotically stable if there exists a unique
density f∗, i.e., f∗ ­ 0,

∫
f∗dµ = 1, such that

lim
n→∞

∥∥L̂n(f)− ( ∫
fdµ

)
f∗

∥∥ = 0

for every f ∈ L1(µ).

The following theorem can be easily seen.

THEOREM 4.2. If L̂ is asymptotically stable and f∗ is the unique L̂-invariant
density, then the Markov chain (σ, P ), where P is determined by

µ∗(A) =
∫
A

f∗(x)dµ(x) for A ∈ B,

is exact.

P r o o f. Let L̂µ∗ be the restriction of the F–P operator for (σ, P ) to L1(µ
∗).

Then
L̂nµ∗(f) =

1

f∗
L̂n(ff∗) for n = 1, 2, . . .

and f ∈ L1(µ
∗). Hence, by Theorem 4.1, we obtain exactness of (σ, P ). �

For application let us consider position-dependent random maps. Let X =
[0, 1], Λ be the Lebesgue measure, and B the σ-algebra of Borel sets. Let us con-
sider nonsingular transformations τi : X → X, i = 0, 1, and a probabilistic vector
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p(x), q(x)

)
. Here p(x) + q(x) = 1 and p(x) ­ 0, q(x) ­ 0 for x ∈ X. The tran-

sition probability is defined as follows:

P (x,A) = p(x)1A
(
τ0(x)

)
+ q(x)1A

(
τ1(x)

)
.

Λ and P determine Markov chain (Ω,D, PΛ, σ). The F–P operator for (σ, PΛ) is
given by

Lf(ω) = L0
(
p(·)f(·ω)

)
(ω0) + L1

(
q(·)f(·ω)

)
(ω0),

where Li is the F–P operator for τi, i = 0, 1. Therefore,

L̂f(x) = L0
(
p(x)f(x)

)
+ L1

(
q(x)f(x)

)
for x ∈ X.

The operator as above was considered in [2] and used for the model of asset prices.
Now, for the reader’s convenience let us assume that τj , j = 0, 1, are piecewise
monotonic mappings and satisfy the following conditions:

(1) There is a partition 0 = aj0 < aj1 < . . . < ajrj = 1 of [0, 1] such that the
restriction of τj to the interval (aji−1, a

j
i ), i = 1, . . . , rj , is a C2-function.

(2) τj
(
(aji−1, a

j
i )
)
= (0, 1).

(3) There is a λj > 1 such that |τ ′j(x)| ­ λj for x ̸= aji , i = 0, . . . , rj .
(4) There exists a finite constant cj such that

|τ ′′j (x)|
[τ ′j(x)]

2
¬ cj

for x ̸= aji , i = 0, . . . , rj .

THEOREM 4.3. Let us assume that τj , j = 0, 1, satisfy the conditions (1)–(4).
If p ∈ C1 and there exists a constant A such that |p′(x)| ¬ Ap(x) and |q′(x)| ¬
Aq(x) for every x ∈ (0, 1), then L̂ is asymptotically stable.

P r o o f. We apply the reasoning from the proof of Theorem 6.2.2 in [6]. Let
D0 be the set of all bounded continuously differentiable densities such that

|f ′(x)| ¬ kff(x) for 0 < x < 1,

where the constant kf depends on f. For f ∈ D0 and for x ∈ (0, 1) we have∣∣(p(x)f(x))′∣∣ ¬ (A+ kf )p(x)f(x) and
∣∣(q(x)f(x))′∣∣ ¬ (A+ kf )q(x)f(x).

Therefore, by the proof of Theorem 6.2.2 in [6] we have

∣∣(Lj(pf))′∣∣ ¬ [
cj +

A+ kf
λ

]
Lj(pf) for j = 0, 1.
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Hence ∣∣(L̂(f))′∣∣ ¬ [
c+

A+ kf
λ

]
L̂(f),

where c = max {cj : j = 0, 1} and λ = min{λj : j = 0, 1}. By using an induction
argument we have ∣∣(L̂n(f))′∣∣ ¬ [

cλ+A

λ− 1
+

kf
λn

]
L̂n(f),

and thus Proposition 5.8.2 in [6] completes our proof. �

The problem of exactness for Gauss endomorphism (Ω,D, ν, σ) has been
completely solved in the language of the spectral measure of ν. Let us put

bn =
∫
X0Xndν for n = 0, 1, 2, . . .

We assume that
∫
X0dν = 0. It is well known that the sequence (bn) is determined

by the symmetric measure γ on the unit circle. Namely,

bn =
1

2π

π∫
−π

e−itndγ(t) for n = 0, 1, . . .

If γ ≪ Λ, where Λ is the Lebesgue measure, then we put

p(t) =
dγ(t)

dt
.

THEOREM 4.4. The Gauss system (Ω,D, ν, σ) with the spectral measure γ is
exact if and only if

γ ≪ Λ and
π∫
−π

log
(
p(t)

)
dt > −∞.

The result as above belongs to folklore theorems in ergodic theory.

THEOREM 4.5. The Gauss system (Ω,D, ν, σ) is exact if and only if

lim
n→∞
Lnν (X0) = 0 in L2(ν) convergence.

P r o o f. Assume that (Xn)n∈N is a sequence given by Gauss endomorphism
(Ω,D, ν, σ). By Theorem 7.4 in [11] we see that the sequence (Xn)n∈N is com-
pletely undetermined, i.e.,

lim
n→∞

Pn
H1

(X0) = 0 in L2(ν)

if and only if it satisfies the assumptions of Theorem 4.4. Since

Lnν (X0)(σ
n) = Pn

H1
(X0),

we get the assertion. �

In particular, every Gaussian Markov chain is exact (see Proposition 2.2).
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5. QUASI-MARKOV CHAIN

Let ν be an invariant probability measure on (Ω,D, σ) such that ν|B = µ, and
Lν the F–P operator with respect to (σ, ν). Similarly to quasi-Markovian processes
(see [4]) we define quasi-Markov chain.

DEFINITION 5.1. We say that (σ, ν) is a quasi-Markov chain if for every skew
product T given by (3.1) the following condition holds: if LT f = f, where f ­ 0
and

∫
fdν ×m = 1, then

{(ω, y) : f(ω, y) > 0} ∈ B ×A,

where LT is the F–P operator for T.

The difference between quasi-Markovian process and quasi-Markov chain lies
in that in the latter case we do not assume positive nonsingularity of {Tx}x∈X ,
i.e., m(A) = 0 ⇒ m

(
Tx(A)

)
= 0 for every x ∈ X and A ∈ A. Moreover, the

cardinality of X may be greater than ℵ0. By a similar argument to that in the proof
of Theorem 2 in [4] we get:

THEOREM 5.1. If (σ, ν) is a quasi-Markov chain, then for every skew product
T and for every T -eigenfunction H from L1(η)

1DηH = h(ω0, y),

where η is T -a.c.i.m. and Dη denotes the support of η.

DEFINITION 5.2. A function f ∈L1(ν) will be called a σ-quasi-eigenfunction
with quasi-eigenvalue h if h is measurable, |h| = 1 and f ◦ σ = hf.

COROLLARY 5.1. If (σ, ν) is a quasi-Markov chain then every σ-quasi-eigen-
function f ∈ L1(ν) with quasi-eigenvalue h(ω) = h(ω0) has the form f(ω) =
f(ω0).

P r o o f. We use similar argumentation to that in the proof Lemma 3 in [4]. �

PROPOSITION 5.1. If (σ, ν) is a quasi-Markov chain, then the support of Lνf
belongs to B for every f ∈ L1(µ) and f ­ 0.

P r o o f. Let us denote by {f > 0} the set {ω∈Ω : f(ω)>0}. By Lemma 3.2,
{Lν1A > 0} ∈ B for every A ∈ B. Hence for every simple function f ­ 0

{Lνf > 0} ∈ B.

For f ∈ L1(µ), f ­ 0, there exists a nondecreasing sequence 0 ¬ fn ¬ f of sim-
ple functions such that

lim
n→∞
Lνfn = Lνf a.e.
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Since Lνfn ¬ Lνf , we have

{Lνf > 0} ⊃ {Lνfn > 0} = An ∈ B.

Due to the nondecreasing of Lνfn and a.e. convergence we obtain

{Lνf > 0} =
∞∪
n=1

An ∈ B. �

REMARK 5.1. The converse implication is not true in general.

We can see the above by using symbolic representation of Examples 2 and 3
in [5]. Similarly we obtain examples of quasi-Markov chains from quasi-Markovian
processes (see [4] and [1]). Here cardX ¬ ℵ0. For the case cardX > ℵ0 we may
take stationary Markov chain of order r (for the definition see [8], p. 21).

PROPOSITION 5.2. If the support of Lrνf belongs to B for any function f ∈
L1

(∏r−1
n=0X, ν

)
(0 ¬ f), and (σ, ν) is a Markov chain of order r ­ 1, then (σ, ν)

is a quasi-Markov chain.

P r o o f. If (σ, ν) is a Markov chain of order r, then (σr, ν) is a Markov chain
on

(∏r−1
n=0X

)N
. Let T be a skew product given by (3.1). Then T r is the skew

product of type (3.1) over (σr, ν). Let η be a T -invariant measure absolutely con-
tinuous with respect to ν ×m. The measure η is also T r-invariant. Therefore, by
Theorem 3.1,

h =
dη

dν ×m
is
( r−1∏
n=0

B ×A
)
-measurable.

Thus LrTh = h, i.e., Lrν(Lωrh) = h, which under the assumptions implies that the
support of h belongs to B ×A. �

Let us consider Gauss endomorphisms.

PROPOSITION 5.3. Gauss endomorphism which is Markov chain of order
r ­ 1 is quasi-Markov chain.

P r o o f. If (σ, ν) is a Markov chain of order r, thenLrν(f) ∈ L1

(∏r−1
n=0R, ν

)
for f ∈ L1

(∏r−1
n=0R, ν

)
. By the proof of Proposition 5.1 and by Proposition 5.2

it is sufficient to show that the support of Lrν1A belongs to B for any A ∈ Br such
that ν(A) > 0. Let us observe that∫

(Lrν1A)1Bdν =
∫
1A1B(σ

r)dν =
∫
1A×Bdν > 0

as ν|
∏2r−1

n=0 B is a 2r-dimensional Gaussian measure. Here B ∈ Br is such that
ν(B) > 0. Therefore,

Lrν1A > 0 ν a.e.,

and the support of Lrν1A is Ω ∈ B. �
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A non-quasi-Markov chain can be obtained as follows.

PROPOSITION 5.4. If the Gauss endomorphism (σ, ν) is nonergodic, then it
is not a quasi-Markov chain.

P r o o f. Suppose, on the contrary, that (σ, ν) is a quasi-Markov chain. If
(σ, ν) is not ergodic, then the Gauss automorphism is not ergodic either. By the
Corollary in Chapter 8 of [3], p. 191, there exists a non-constant eigenfunction y
such that

y = lim
n→∞

n∑
k=−n

ankXk in L2.

As Gauss automorphism is the natural extension of (σ, ν), it follows from [9] that y
is also an eigenvalue for (σ, ν). Therefore, y(ω) = y(ω0) by Corollary 5.1. Every
sequence convergent in L2-norm has a subsequence convergent a.e. Therefore, we
can assume without loss of generality that

y = lim
n→∞

n∑
k=−n

ankXk a.e.

Hence there exists (. . . , ω∗−1, ω
∗
1, . . .) ∈ RZ−{0} such that

y(ω0) = lim
n→∞

an0ω0 +
∑

k∈Z−{0}
ankω

∗
k

for µ a.e. ω0. Thus
y(ω) = aω0 + c

for some constants a, c. Here a ̸= 0 because y ̸= c. But this contradicts the asser-
tion that y is an eigenfunction. �

There are ergodic Gauss endomorphisms which are not quasi-Markov chains.
Let us put S = {z ∈ C : |z| = 1}.

THEOREM 5.2. The Gauss endomorphism (σ, ν) with the spectral measure γ
of ν such that

1

eiα − eit
∈ L2(S, γ)

for some α ∈ (−π, π) is not a quasi-Markov chain.

P r o o f. Suppose, to the contrary, that (σ, ν) is a quasi-Markov chain. With-
out loss of generality we assume that α = 0. Let H denote the real complete sub-
space of L2(ν) generated by finite combinations

∑
k∈I

akXk for I ⊂ {0, 1, 2, . . .}.
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We put

ξ(t) =
1

1− eit
.

Then 1 = ξ − zξ, and by the canonical isometric mapping Θ of H into L2(S, γ)
(see Chapter 8 in [3]) we get ω0 = X0(ω) = g(ω)− g

(
σ(ω)

)
, where g = Θ−1(ξ).

In fact, g(ω) =
∑∞

n=0Xn(ω). Therefore, f
(
σ(ω)

)
= e−iω0f(ω), where f = eig.

Hence f(ω) = f(ω0) by Corollary 5.1, and f(ω1) = e−iω0f(w0) for ν a.e. ω. As
ν|B × B is a 2-dimensional Gaussian measure, we get f = const, eiω0 = 1, but it
is impossible because X0 has Gaussian distribution. �

COROLLARY 5.2. There are exact Gauss endomorphisms which are not quasi-
Markov chains.

To see this let us take (σ, ν) such that the spectral measure γ of ν is absolutely
continuous with respect to the Lebesgue measure Λ and put p(t) = 1

π sin2 t for
t ∈ (−π, π).

6. AN APPLICATION

Stochastic perturbations are used in the modeling of processes connected with
real life. For example, Schenk-Hope [10] presents procesess in economy. The
model has usually the form of skew product

T (x, y) =
(
θ(x), hx(y)

)
,

where θ : X → X is an ergodic transformation preserving a measure µ, and
hx : Y → Y is a measurable family of maps and nonsingular with respect to a
measure m. By the results of Section 3 we can replace the deterministic base by
the random one. Namely, we consider a nonsingular measure µ with respect to
transition function P (x, ·) on X × B. Hence we have the Markov chain (σ, P ),
where σ is a one-sided shift on Ω = XN , and P is the measure given by µ and
P (x, ·). We get the skew product

T (ω, y) =
(
σ(ω), hω(0)(y)

)
.

Let us assume that T has an invariant absolutely continuous measure ν. Then the
density of ν belongs to L1(µ ×m) by Corollary 3.1. Let g ∈ L1(µ ×m) be an
observation. Then by the Birkhoff ergodic theorem we get

lim
n→∞

1

n

n−1∑
k=0

g
(
T k(ω, y)

)
= g∗,

where g∗ ∈ L1(µ × m). Therefore, the limits of time averages of observations
along random trajectory are still in L1(µ×m) as in the deterministic case.
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