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Abstract. A classical result of Paley and Marcinkiewicz asserts that
the Haar system on [0, 1] forms an unconditional basis in Lp provided 1 <

p <∞. The purpose of the paper is to study related weak-type inequalities,
which can be regarded as a version of this property for p = 1. Probabilistic
counterparts, leading to some sharp estimates for martingale transforms, are
presented.
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1. INTRODUCTION

Let h = (hn)n­0 be the Haar system, i.e., the collection of functions given by

h0 = [0, 1), h1 = [0, 1/2)− [1/2, 1),

h2 = [0, 1/4)− [1/4, 1/2), h3 = [1/2, 3/4)− [3/4, 1),

h4 = [0, 1/8)− [1/8, 1/4), h5 = [1/4, 3/8)− [3/8, 1/2),

h6 = [1/2, 5/8)− [5/8, 3/4), h7 = [3/4, 7/8)− [7/8, 1),

and so on, where we have identified a set with its indicator function. Schauder
[15] proved that the Haar system forms a basis of Lp = Lp(0, 1), 1 ¬ p < ∞
(throughout, the underlying measure will be the Lebesgue measure): for every
f ∈ Lp there exists a unique sequence a = (an)n­0 of real numbers satisfying∥∥f−∑n

k=0 akhk
∥∥
p
→0. Let βp(h) be the unconditional constant of h, i.e. the least

β ∈ [1,∞] with the property that if n ­ 0 is an arbitrary integer and a0, a1, . . . , an
are real numbers such that

∥∥∑n
k=0 akhk

∥∥
p
¬ 1, then

(1.1)
∥∥ n∑
k=0

θkakhk
∥∥
p
¬ β
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for any choice of θ0, θ1, . . ., θn ∈ {0, 1}. In other words, the unconditional constant
measures what might happen to the Lp-norm of a series

∑
akhk if we discard

some of the summands. In the literature, the reader may encounter an equivalent
definition of unconditionality in which the terms θi are assumed to take values in
the set {−1, 1} (cf. [8]).

It follows from the classical inequality of Marcinkiewicz [9] (which, in turn,
rests on an estimate proved by Paley [14]) that the Haar system is an unconditional
basis provided 1 < p <∞. There is an interesting analogue of the inequality (1.1)
in the martingale theory. Assume that (Ω,F ,P) is a probability space equipped
with a nondecreasing sequence (Fn)n­0 of sub-σ-algebras of F . Let f = (fn)n­0
be an adapted real-valued martingale and let df = (dfn)n­0 stand for its difference
sequence given by: df0 = f0 and dfn = fn − fn−1 for n ­ 1. Let θ = (θn)n­0 be
a predictable sequence with values in [0, 1]: by predictability we mean that each θk
is an F(k−1)∨0-measurable random variable. Then g = (gn)n­0, the transform of
f by θ, is given by

gn =
n∑

k=0

θkdfk, n = 0, 1, 2, . . .

Clearly, this is equivalent to saying that the difference sequence of g is given by
(θndfn)n­0. Note that the sequence g = (gn)n­0 is again an adapted martingale.

A celebrated result of Burkholder [1] states that for any 1 < p <∞ there is a
finite constant β′p such that, for f , g as above, we have

(1.2) ∥gn∥p ¬ β′p∥fn∥p, n = 0, 1, 2, . . .

Let β′p(mart) denote the optimal constant in (1.2). The Haar system is a martingale
difference sequence with respect to its natural filtration (on the probability space
being the Lebesgue unit interval), and hence so is (akhk)k­0 for given fixed real
numbers a0, a1, a2, . . . Therefore, βp(h) ¬ β′p(mart) for all 1 < p <∞. It follows
from the results of Burkholder [4] and Maurey [10] that in fact the constants coin-
cide. The question about the precise value of βp(h) was answered by Choi in [7];
the description of the constant is quite involved, so we do not provide it here and
refer the interested reader to Choi’s paper.

We will be interested in a substitute of the constant βp(h) for p = 1. The
above definition produces β1(h) = ∞, so some weaker analogue is needed; this
will be accomplished by considering weak norm L1,∞. Precisely, let γ(h) be the
smallest constant γ with the property that if n is an arbitrary nonnegative integer
and a0, a1, . . . , an are real numbers such that

∥∥∑n
k=0 akhk

∥∥
1
¬ 1, then∣∣∣{s ∈ [0, 1] :

∣∣ n∑
k=0

θkakhk(s)
∣∣ ­ 1

}∣∣∣ ¬ γ

for any choice of θ0, θ1, . . . , θn∈{0, 1}. It follows from the results of Burkholder [5]
that γ(h)=1. Our purpose is to establish an extension of this fact, namely, to study
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the exact dependence of the above tail on the size of the first norm
∥∥∑ akhk

∥∥
1
.

To formulate the results precisely, consider the domain D = {(x, y, F ) ∈ R2 ×
[0,∞) : F ­ |x|}. One of the main objects of this paper is the function B : D → R
defined by

B(x, y, F ) = sup
∣∣∣{s ∈ [0, 1] :

∣∣y + n∑
k=1

θkakhk(s)
∣∣ ­ 1

}∣∣∣,
where the supremum runs over all positive integers n, all sequences a1, a2, . . ., an
of real numbers and all sequences θ1, θ2, . . ., θn ∈ {0, 1} such that

∥∥x+
n∑

k=1

akhk
∥∥
1
¬ F.

We would like to mention here that a symmetric version of the above B (i.e., in the
case when the transforming sequence θ takes values in [−1, 1]) was successfully
identified by the author in [13] (see also [12]).

As we have already mentioned above, the passage from (1.1) to its martingale
counterpart (1.2) does not affect the optimal constant involved. It follows from the
results of Burkholder [4] and Maurey [10] that the same phenomenon occurs for the
function B. That is, we have B(x, y, F ) = supP(|gn| ­ 1), where the supremum
is taken over all n and all pairs (f, g) of martingales satisfying f0 ≡ x, g0 ≡ y and,
for some predictable (θn)n­1 with values in [0, 1],

(1.3) dgn = θndfn for n = 1, 2, . . .

Thus, in the above definition, g is “almost” a transform of f : the inequality (1.3)
may fail for n = 0 (which happens for x ̸= ±y).

To state our main result, let us define the sets A0, A1, A2 contained in
{(x, y, F ) ∈ D : x ­ 0 and y ¬ x/2} as follows:

A0 = {(x, y, F ) : y ­ 1 or y ¬ x− 1 or F + y(y − x) ­ 1},
A1 = {(x, y, F ) : x− 1 < y< 1 and 2(x− y)(1 + y)− x ¬ F < 1− y(y − x)},
A2 = {(x, y, F ) : x− 1 < y< 1 and F < 2(x− y)(1 + y)− x}.

Let B : A0 ∪A1 ∪A2 → R be given by

B(x, y, F ) =


1 if (x, y, F ) ∈ A0,

F + y(y − x) if (x, y, F ) ∈ A1,

(x− 2y − 2 + F )2

4(y + 1)(x− y − 1)
+ 1 if (x, y, F ) ∈ A2

and extend it to the whole domainD by requiring that B(x, y, F ) = B(−x,−y, F )
= B(x, x− y, F ).
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THEOREM 1.1. We have B = B on D.

A typical approach to the above class of problems is as follows. One searches
for a certain concavity-type condition satisfied by B (the so-called main inequal-
ity); then rewrites it in its infinitesimal version, obtaining an appropriate differential
inequality; finally, one applies some additional properties of B (e.g., homogeneity
conditions coming from the structure of the problem), which enable to decrease the
number of variables involved, and solves the differential inequality. See Nazarov
and Treil [11] for the detailed explanation of the method.

However, our reasoning presented here is different and rests on reducing the
dimension of the problem. The function B will be extracted from a certain auxiliary
family of two-dimensional special functions. This family is introduced in the next
section and we present the proof of the bound B ¬ B there. In Section 3 we provide
the proof of the reverse inequality, which rests on the construction of appropriate
examples. The final part of the paper is devoted to an application, closely related
to Choi’s result [6] and having an interesting gambling interpretation.

2. PROOF OF B ¬ B

Let c ­ 0 be a fixed number. We will introduce a family {U c}c­0 of special
functions. If c ∈ [0, 1], define U c : R× R→ R by the formula

U c(x, y) =

{
1− c|x| if |x|+ |2y − x| ­ 2,

1− c+ cy(y − x) if |x|+ |2y − x| < 2.

In the case c > 1 the definition is more complicated. First introduce the subdo-
mains of {(x, y) : x ­ 0, y ­ x/2} given by (see Figure 1)

D0 =
{
(x, y) : x ­ 0, y ­ max{x/2, 1}

}
,

D1 = {(x, y) : x ­ 0, x+ 1− c−1 ¬ y ¬ 1},
D2 =

{
(x, y) : x ­ 0, x ¬ y ¬ min{x+ 1− c−1, 1}

}
,

D3 =
{
(x, y) : x ­ 0, x/2 ¬ y < min{x, 1}

}
.

Define U c : D0 ∪D1 ∪D2 ∪D3 → R by the formula

U c(x, y) =


1− c|x| if (x, y) ∈ D0,

c2(y − x− 1 + c−1)(y − 1 + c−1) if (x, y) ∈ D1,

x(x+ 1− y)−1 − cx if (x, y) ∈ D2,

x− xy + y2 − cx if (x, y) ∈ D3,

and extend it to the whole R2 by the requirement

(2.1) U c(x, y) = U c(−x,−y) = U c(x, x− y) for all x, y ∈ R.
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Figure 1. The regions D0, D1, D2 and D3

One easily verifies that for each c the function U c is continuous on R2. Further-
more, we will establish the following majorization.

LEMMA 2.1. For any c ­ 0 and any x, y ∈ R we have

(2.2) U c(x, y) ­ 1{|y|­1} − c|x|.

P r o o f. Assume that c ∈ [0, 1]. If |x| + |2y − x| ­ 2, then the majorization
is evident. On the other hand, if |x| + |2y − x| < 2, then we clearly have |x| < 2
and |y| < 1. Hence the bound (2.2) follows from

1− c+ cy(y − x) + c|x| ­ 1− c− cx2/4 + c|x| = 1− c(|x|/2− 1)2 ­ 0.

Now, suppose that c > 1. By the symmetry property (2.1), it is enough to verify the
claim for x ­ 0. If (x, y) ∈ D0, then the majorization holds trivially. For (x, y) ∈
D1, we have |y| < 1 and

U c(x, y) = c2(y − x− 1 + c−1)(y − 1 + c−1) ­ 0 ­ −cx.

The majorization on the regions D2 and D3 follows from the obvious estimates
x/(x+ 1− y) ­ 0 and x− xy + y2 ­ 0, which are due to x ­ 0 and |y| < 1. If
0 ¬ y ¬ x/2, then

U c(x, y) = U c(x, x− y) = x− xy + y2 − cx ­ −cx,

as we have just noted. If 0 ¬ x ¬ y + 1 and c−1 − 1 ¬ y < 0, then (x, x − y) ∈
D2, so

U c(x, y) = U c(x, x− y) =
x

y + 1
− cx ­ −cx.

Next, if x− 1 < y < c−1 − 1, then (x, x− y) ∈ D1, so

U c(x, y) = U c(x, x− y) = c2(y − x+ 1− c−1)(y + 1− c−1) ­ 0 ­ −cx.

Finally, if y ¬ x− 1, then U c(x, y) = 1− cx, and the majorization is trivial. �
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The main property of U c is the following concavity condition.

LEMMA 2.2. Let c ­ 0 be fixed. For any x, y ∈ R and any θ ∈ [0, 1], the
function

G(t) = Gx,y,θ(t) = U c(x+ t, y + tθ), t ∈ R,
is concave.

P r o o f. Fix c­0, (x, y)∈R2 and θ∈ [0, 1]. It suffices to check that G′′(t)¬0
for those t at which G is twice differentiable, and G′(t−) ­ G′(t+) for remaining
t (here G′(t−) and G′(t+) denote, respectively, the left and right derivatives of G
at a point t). Actually, by the translation property Gx,y,θ(t+ s) = Gx+t,y+tθ,θ(s),
it is enough to consider the case t = 0 only.

First we study the simpler case c∈ [0, 1]. If |x|+ |2y − x|>2, then G′′(0)=0;
on the other hand, if |x| + |2y − x| < 2, then G′′(0) = 2cθ(θ − 1) ¬ 0. In the
boundary case |x| + |2y − x| = 2, we may assume, by symmetry, that x ­ 0.
Then we get G′(t+) = −c and G′(t−) = c(−θx + 2θy − y). However, since
|x|+ |2y − x| = 2, we have two possibilities: either y = 1 and x ∈ [0, 2], and then
G′(t−) ­ c(−2θ+2θ− 1) = G′(t+); or y = x− 1 ∈ [−1, 1], and then G′(t−)−
G′(t+) = c(θ − 1)(y − 1) ­ 0. This shows the desired claim for c ∈ [0, 1].

If c>1, the calculations are a little longer, but of similar type. If |x|+|2y − x|
> 2, then G′′(0) = 0. If (x, y) lies in Do

1, the interior of D1, then G′′(0) =
2c2θ(θ − 1) ¬ 0. For (x, y) ∈ Do

2, G′′(0)=2(1 − θ)(x + 1 − y)−3(y − xθ − 1)
¬ 0 (since xθ ­ 0 and y ∈ [0, 1]). Finally, if (x, y) belongs to the interior of D3,
then G′′(0) = 2θ(θ − 1) ¬ 0. By the symmetry condition (2.1), it is enough to
check that the one-sided derivatives behave appropriately at the common bound-
aries of the sets Di and their images via the “symmetries” (x, y) 7→ (−x,−y)
and (x, y) 7→ (x, x − y). However, some tedious, but straightforward computa-
tions show that U c is of class C1 on R2 \

[
{(x, y) : |x|+ |2y − x| = 2} ∪

(
{0} ×

(−1 + c−1, 1− c−1)
)]

, and hence it is enough to prove that G′(0−) ­ G′(0+) for
|x|+ |2y − x| = 2 or for x = 0 and |y| < 1− c−1. Suppose that the first possibil-
ity occurs. By symmetry (2.1) of U c, we may assume that x ­ 0 and y ­ x/2;
but these conditions enforce x ∈ [0, 2] and y = 1. For such x and y, we have
G′(0+) = −c and

G′(0−) =


c(θ − 1) + c2θ(−x+ c−1) if x ¬ c−1,

1− (1− θ)x−1 − c if c−1 < x ¬ 1,

θ(2− x)− c if 1 < x ¬ 2,

so the estimate G′(0−) ­ G′(0+) holds. It remains to compare the one-sided
derivatives at the line segment {0} × (−1 + c−1, 1− c−1). Actually, by symmetry,
we may restrict ourselves to the upper half of it: {0} × [0, 1 − c−1). If (x, y) lies
in this set, we easily compute that G′(0−)−G′(0+) = 2(y − 1)−1 + 2c > 0.

This completes the proof of the lemma. �
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Equipped with the two lemmas above, we can establish the following interme-
diate statement.

THEOREM 2.1. Suppose that f, g are two martingales satisfying the domina-
tion relation (1.3). Then for any c > 0 we have

(2.3) P(sup
n
|gn| ­ 1) ¬ c∥f∥1 + EU c(f0, g0).

In particular, if f0 ≡ x and g0 ≡ y, then

(2.4) P(sup
n
|gn| ­ 1) ¬ c∥f∥1 + U c(x, y).

P r o o f. We split the reasoning into two parts.
S t e p 1. A r e d u c t i o n. It is enough to show that for any f , g as above

and any nonnegative integer n we have

(2.5) P(|gn| ­ 1) ¬ cE|fn|+ EU c(f0, g0).

To see how this bound implies the stronger estimate (2.3) (and hence also (2.4)),
we use the following well-known stopping time argument. Namely, fix an arbitrary
ε ∈ (0, 1) and let τ = inf{n : |gn| ­ 1− ε}. An application of (2.5) to the stopped
martingales f τ/(1 − ε) =

(
fτ∧k/(1 − ε)

)
k­0, g/(1 − ε) =

(
gτ∧k/(1 − ε)

)
k­0

(for which the condition (1.3) is still satisfied) yields

P(|gτ∧n| ­ 1− ε) ¬ c(1− ε)−1E|fn|+ EU c
(
f0/(1− ε), g0/(1− ε)

)
¬ c(1− ε)−1∥f∥1 + EU c

(
f0/(1− ε), g0/(1− ε)

)
.

However, the events {|gτ∧n| ­ 1 − ε} are increasing as n → ∞, and we have
the inclusion {g∗ ­ 1} ⊆

∪
n­0{|gτ∧n| ­ 1− ε}. Consequently, the above bound

implies

P(g∗ ­ 1) ¬ c(1− ε)−1∥f∥1 + EU c
(
f0/(1− ε), g0/(1− ε)

)
.

It suffices to let ε → 0 to obtain (2.3) by the Lebesgue dominated convergence
theorem (as the majorant of U c

(
f0/(1 − ε), g0/(1 − ε)

)
, we take the variable

A|f0|+B for some sufficiently large A = A(c), B = B(c)).
S t e p 2. P r o o f o f (2.5). The key observation here is that the sequence(

U c(fn, gn)
)
n­0 is a supermartingale. Indeed, the integrability follows from the

aforementioned majorization |U c(x, y)| ¬ A|x|+B. To show the supermartingale
property, fix a nonnegative integer n and note that, by Lemma 2.2,

E[U c(fn+1, gn+1)|Fn] = E[U c(fn + dfn+1, gn + θn+1dfn+1)|Fn] ¬ U c(fn, gn).

Consequently, the majorization (2.2) gives

P(|gn| ­ 1)− cE|fn| ¬ EU c(fn, gn) ¬ EU c(f0, g0),

which is the desired claim. �
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P r o o f o f B ¬ B. By (2.3), we have B(x, y, F )¬cF+U c(x, y), and hence

B(x, y, F ) ¬ min
c­0

[cF + U c(x, y)].

It turns out that the minimum on the right-hand side is precisely the function B.
Since both B and U c satisfy the symmetry (2.1), we will be done if we check this
for x ­ 0 and y ¬ x/2. We consider three cases.

C a s e I. Suppose that y ¬ x− 1. Then the function ξ(c) = cF + U c(x, y) is
increasing on [0,∞), and hence ξmin = ξ(0) = 1 = B(x, y, F ).

C a s e II. Suppose that x− 1 < y ¬ 0. We have

ξ(c) = cF + U c(x, y)

=


1− c+ cy(y − x) + cF if c ∈ [0, 1],

cF + (cx− cy − c+ 1)(1− cy − c) if c > 1, y ¬ c−1 − 1,

cF + x(y + 1)−1 − cx if c > 1, y > c−1 − 1.

Consequently,

ξ′(c) =


F + y(y − x)− 1 if c ∈ (0, 1),

F + (x− y − 1)(1− 2cy − 2c)− y − 1 if c > 1, y < c−1 − 1,

F − x if c > 1, y > c−1 − 1.

Now, if F + y(y − x)− 1 ­ 0, then also

F + (x− y − 1)(1− 2cy − 2c)− y − 1 ­ 0,

and hence we obtain ξmin = ξ(0) = 1 = B(x, y, F ). If 0 > F + y(y − x) − 1 ­
−(y+1− x)(y+1), then ξ′ < 0 on [0, 1]; furthermore, if c > 1 and y < c−1 − 1,
then

ξ′(c) > ξ′(1+) = F + (x− y − 1)(−1− 2y)− y − 1

= F + y(y − x)− 1 + (y + 1− x)(y + 1) ­ 0.

In addition, ξ′(c) > 0 if c > 1 and y > c−1 − 1. Thus, we get ξmin = ξ(1) =
F + y(y − x) = B(x, y, F ).

Finally, suppose that F + y(y − x)− 1 < −(y + 1− x)(y + 1). Let

c̃ =
x− 2y − 2 + F

2(y + 1)(x− y − 1)
.

Then c̃ > 1, which is a direct consequence of the above assumption on F ; further-
more, we have c̃ ¬ (y + 1)−1, which is equivalent to F ­ x. One easily verifies
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that ξ′ < 0 on (0, 1)∪ (0, c̃) and ξ′ ­ 0 on
(
c̃, (y+1)−1

)
∪
(
(y+1)−1,∞

)
. Thus,

ξ attains its global minimum at c̃ equal to

ξmin =
x2 + 2(x− 2y − 2)F + F 2

4(x+ y)(x− y − 1)
= B(x, y, F ).

C a s e III. Suppose that 0 < y ¬ x/2. Then

ξ(c) = cF + U c(x, y) =

{
cF + 1− c+ cy(y − x) if c ∈ [0, 1],

cF + x− xy + y2 − cx if c > 1

and

ξ′(c) =

{
F − 1 + y(y − x) if c ∈ (0, 1),

F − x if c > 1.

Hence, if F ­ −y(y − x) + 1, then ξmin = 1 = B(x, y, F ); if F < 1− y(y − x),
then ξmin = ξ(1) = F + y(y − x) = B(x, y, F ). This completes the proof. �

3. PROOF OF B ­ B

Now we will show the estimate B ­ B, which will be accomplished by pro-
viding appropriate examples. Let us start with some symmetry properties of B.
First observe that B(x, y, F ) = B(−x,−y, F ). Indeed, take a martingale pair sat-
isfying f0 ≡ −x, g0 ≡ −y, (1.3) and ∥f∥1 ¬ F . Then the pair (−f,−g) starts
from (x, y) and satisfies (1.3) and ∥ − f∥1 ¬ F as well, so for any n we have

B(x, y, F ) ­ P(| − gn| ­ 1) = P(|gn| ­ 1).

Taking the supremum over all n and all (f, g) as above gives the estimate B(x, y, F )
­ B(−x,−y, F ), and the reverse bound follows from interchanging the roles of x,
y and −x, −y. This symmetry of B and the analogous fact about B imply that we
may restrict ourselves to x ­ 0. We consider four cases separately.

C a s e I: y ­ 1 or y ¬ x − 1. If y ­ 1, then we consider the constant pair
(f, g) ≡ (x, y); then ∥f∥1 = x ¬ F and P(g∗ ­ 1) = 1, so B(x, y, F ) ­ 1 =
B(x, y, F ). If y ¬ x − 1 and y < 1, then we consider a martingale pair (f, g)
such that (f0, g0) ≡ (x, y), df1 = dg1 is a mean-zero variable taking values −x
and 1− y only, and df2 = dg2 = df3 = dg3 = . . . = 0. Then f does not change its
sign, so ∥f∥1 = x ¬ F ; furthermore, the variable g1 takes values y − x and 1, so
P(|g1| ­ 1) = 1, and thus B(x, y, F ) ­ 1 = B(x, y, F ).

C a s e II: x− 1 < y ¬ 0. Suppose first that F + y(y − x)− 1 ­ 0. Consider
the martingale pair (f, g) starting from (x, y) such that:

(i) df1 = dg1 takes values 1− y and −1− y only.
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(ii) On the set df1=1− y, we put dg2=0, and df2 is a random variable taking
values y − x+ 1 and −x+ y − 1; on the set where df1=−1− y, we put dg2=0,
and df2 is a random variable taking values −x+ y + 1 and −x+ y − 1 only.

(iii) We put df3 = dg3 = df4 = dg4 = . . . = 0.
Then g1 ∈ {−1, 1} with probability one and

∥f∥1 = E|f1| =
1 + y

2
|x+ 1− y|+ 1− y

2
|x− 1− y| = y(x− y) + 1 ¬ F.

Hence B(x, y, F ) ­ 1 = B(x, y, F ).
Next, assume that 0 > F + y(y − x) − 1 ­ −(y + 1 − x)(y + 1). Then the

example is slightly more complicated. Consider the martingale pair (f, g) starting
from (x, y) and satisfying the following properties:

(i) The differences df1 = dg1 take values in the set {−1− y,−y}.
(ii) When df1 = −1− y, we set dg2 = 0, and df2 is a random variable taking

values −x + y + 1 and −x + y − 1. On the set {df1 = −y}, we put dg2 = 0,
while df2 takes values 1 − x + y, −x + y and −1 − x + y with (conditional)
probabilities α, β and 1 − α − β, respectively, where α = (F + x)/

(
2(1 + y)

)
and β = 1− 2α+ x− y.

(iii) On the set df1 = −1 − y, we put df3 = dg3 = 0. On each of the sets
{df1 = −y, df2 = 1 − x + y} and {df1 = −y, df2 = −1 − x + y}, the variables
df3, dg3 are equal and take values ±1 only. On the set where df2 = −x + y, the
pair stops.

(iv) We have df4 = dg4 = df5 = dg5 = . . . = 0.
Actually, we need to prove that the definition in (ii) makes sense. To this end,

note that α ­ 0 and (1+ x− y)(1+ y)− x = 1− y(y− x) > F , which is equiva-
lent to β > 0; moreover, we have F + x ­ 1− y(y− x)− (y+1− x)(y+1)+ x
= 2(x− y)(1 + y), which is equivalent to α ­ x− y or α+ β ¬ 1. Finally, note
that

α(1− x+ y) + β(−x+ y) + (1− α− β)(−1− x+ y) = 0,

which implies that the variable df2 described in (ii) is indeed the martingale differ-
ence. Now, we derive that

E|f3| = E|f2|
= (−y)|x− 1− y|+ (1 + y)α · 1 + (1 + y)β · 0 + (1 + y)(1− α− β) · 1
= F

and
P(|g3| ­ 1) = 1− (1 + y)β = F + y(y − x).

Consequently, B(x, y, F ) ­ F + y(y − x) = B(x, y, F ).
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The final possibility we need to consider is the following: F + y(y− x)− 1 <
−(y + 1− x)(y + 1). Recall the number

c̃ =
x− 2y − 2 + F

2(y + 1)(x− y − 1)

defined in the previous section. We have c̃−1 − 1 ­ y, which is equivalent to

(F − x)(y + 1)

2y + 2− x− F
­ 0

and follows from the fact that F ­ x, y ­ −1, y ­ x− 1 and c̃ ­ 0. Consider the
martingale pair (f, g) starting from (x, y) and satisfying the following conditions:

(i) The variable df1 = dg1 takes values −1− y and c̃−1 − 1− y only.
(ii) On the set when df1 = −1 − y, we put dg2 = 0, and df2 is a random

variable taking values −x+ y + 1 and −x+ y − 1. On the set {df1 = c̃−1 − 1−
y}, we have dg2 = 0, while the variable df2 takes values −x + y − c̃−1 + 1 and
−x+ y − c̃−1 + 2 (and hence f2 moves either to 0 or to 1).

(iii) On the set {df1 = −1 − y}, we put df3 = dg3 = 0. On the set where
df2 = −x+ y − c̃−1 + 1 (that is, f2 = 0), the pair stops; on the set where f2 = 1,
the variable df3 = dg3 takes values ±1 only.

(iv) We have df4 = dg4 = df5 = dg5 = . . . = 0.
Directly from this definition, we check that

E|f3| = E|f2| =
c̃−1 − 1− y

c̃−1
|x− 1− y|+ 1 + y

c̃−1
· 1− x+ y

c̃−1
· 0

+
1 + y

c̃−1
· x− y + c̃−1 − 1

c̃−1
· c̃−1

= F

and

P(|g3| ­ 1) = 1− 1 + y

c̃−1
· 1− x+ y

c̃−1
= 1 +

(x− 2y − 2 + F )2

4(y + 1)(x− y − 1)
= B(x, y, F ).

C a s e III: 0 < y ¬ x/2. If F ­ 1− y(y− x), then we use the same example
as in Case II (see the first example there). This gives B(x, y, F ) ­ 1 = B(x, y, F ).
If F < 1− y(y − x), then consider the martingale pair (f, g) starting from (x, y)
and satisfying the following conditions:

(i) The differences df1 = dg1 take values in the set {1− y,−y}.
(ii) On the set {df1 = 1 − y}, we put dg2 = 0, and df2 takes values −x +

y − 1 and −x + y + 1. On the set {df1 = −y}, we put dg2 = 0, while df2 takes
values 1− x+ y,−x+ y and−1− x+ y with (conditional) probabilities α, β and
1−α− β, respectively, where α = (F + x)/

(
2(1 + y)

)
and β = 1− 2α+ x− y.
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(iii) On the set {df1 = 1 − y}, we put df3 = dg3 = 0. On each of the sets
{df2 = 1− x+ y} and {df2 = −1− x+ y}, the variables df3, dg3 are equal and
take values ±1 only. On the set where df2 = −x+ y, the pair stops.

(iv) We have df4 = dg4 = df5 = dg5 = . . . = 0.
This is very similar to the second example of Case II. An analogous com-

putations show that this pair is well defined and satisfies E|f3| = E|f2| = F and
P(|g3| ­ 1) = F + y(y − x).

C a s e IV: x/2 < y < 1. We will use an appropriate symmetry argument. Let
us look carefully at the examples constructed above. Each (f, g) built in Cases II
and III either terminates in the parallelogram |x| + |2y − x| < 2 or at one of its
vertices. Suppose that (x, y) satisfies 0 ¬ x/2 < y < 1 and consider the pair (f, g)
corresponding to the point (x, x − y). Then the pair (f, f − g) starts from (x, y),
satisfies ∥f∥1 ¬ F and

B(x, y, F ) = B(x, x− y, F ) = P(|f3 − g3| ­ 1)

= P
(
(f3, g3) ∈ {(2, 1), (0, 1), (−2,−1), (0,−1)}

)
¬ P(|g3| ­ 1).

Hence B(x, y, F ) ­ B(x, y, F ), as claimed. The proof of Theorem 1.1 is com-
plete.

4. AN APPLICATION

In the final section of the paper, we will apply the previous results to ob-
tain certain sharp estimates for martingales, which are closely related to those of
Burkholder [5] and Choi [6]. Consider the following setup. Suppose that a gambler
starting with an initial fortune α > 0 plays a sequence of fair games: that is, if we
denote by fn the fortune of the gambler after the n-th game, then (fn)n­0 forms a
martingale. Let β > α. Can the gambler be assured that he can increase his fortune
to β without the possibility of running into debt? This question was answered neg-
atively by Ville [16]: if f = (f0, f1, f2, . . .) is a nonnegative martingale starting at
α, then

(4.1) P(sup
n­0

fn ­ β) ¬ α

β
.

This inequality can be seen to be sharp: the number α/β on the right cannot be
replaced by any smaller number independent of f . This estimate was extended by
Burkholder [5] to

(4.2) P(sup
n­0

gn ­ β) ¬ α

β
,

where g = (g0, g1, g2, . . .) is the martingale transform of a nonnegative martingale
f by a predictable sequence ε = (ε0, ε1, ε2, . . .), each term εk having its values in
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[0, 1]. In other words, a gambler with an initial fortune α > 0 cannot improve his
chance beyond α/β even if he has a certain control of the martingale: he can either
skip the n-th game or play a smaller bet, based on the outcomes of the previous
n− 1 games. This estimate is again sharp, since it generalizes the preceding one.

One can ask about versions of the above results when f is allowed to take
negative values. Then the analogues of (4.1) and (4.2) need to involve the L1-
norm of f on the right-hand sides. Namely, Doob’s weak type bound for maximal
function implies that

βP(sup
n­0
|fn| ­ β) ¬ ∥f∥1, β > 0.

This contains Ville’s inequality (4.1), since for a nonnegative martingale f start-
ing from α we have ∥f∥1 = α. Concerning the extension of (4.2), Burkholder [5]
proved the following:

(4.3) βP(sup
n­0
|gn| ­ β) ¬ ∥f∥1, β > 0,

provided f is an L1-bounded real-valued martingale and g is its transform by a
predictable sequence with values in [0, 1]. Again, this bound implies (4.2) for non-
negative martingales, and hence it is sharp.

The next modification one can consider is to allow the transforming sequence
ε = (ε0, ε1, ε2, . . .) to take values in [−1, 1]. Then (4.3) holds with constant 2: that
is, we have

(4.4) βP(sup
n­0
|gn| ­ β) ¬ 2∥f∥1, β > 0,

and the constant 2 is optimal. This result is due to Burkholder [2]. An interesting
extension of this estimate was obtained by Choi [6]. Here is the precise statement:

THEOREM 4.1. Let α, β ∈ R and t ∈ [0, 1]. Let f = (f0, f1, f2, . . .) be a
real martingale with f0 = α. If g is the transform of f by a predictable sequence
ε = (1, ε1, ε2, . . .), with εk having its values in [−1, 1] for all k ­ 1, and g satisfies
the one-sided condition

P(sup
n­0

gn ­ β) ­ t,

then
∥f∥1 ­ |α| ∨ {β − α− [β+(β − 2α)+(1− t)]1/2}.

The inequality is sharp.

This theorem can be regarded as an extension of (4.4), in which we provide
the sharp lower bounds for ∥f∥1 under the exact information on the size of the
probability P(supn­0 gn ­ β). In the special case t = 1, the above statement can
be found in [4].
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The gambling interpretation of Theorem 4.1 is clear. Let α, β ∈ R. If a gam-
bler with initial fortune α is allowed to control his martingale f by a predictable
sequence ε = (1, ε1, ε2, . . .), each term εk having its values in [−1, 1] so that the
transform g has at least probability t of exceeding β, then ∥f∥1 needs to be appro-
priately bounded from below.

We will show how the function B derived in the preceding sections leads to a
version of Theorem 4.1 in which the transforming sequence ε takes values in [0, 1].
We will prove the following statement, the gambling interpretation being similar
to that above.

THEOREM 4.2. Let α, β ∈ R and t ∈ [0, 1]. Let f = (f0, f1, f2, . . .) be a
real martingale with f0 = α. If g is the transform of f by a predictable sequence
ε = (1, ε1, ε2, . . .), with εk having its values in [0, 1] for all k ­ 1, and g satisfies
the one-sided condition

(4.5) P(sup
n­0

gn ­ β) ­ t,

then

(4.6) ∥f∥1 ­ |α| ∨ {2β − α− 2[β+(β − α)+(1− t)]1/2}.

The inequality is sharp.

P r o o f o f (4.6). If t = 0, β ¬ α or β ¬ 0, then the above bound becomes
∥f∥1 ­ |α|, which is trivial. So, from now on, let us assume that t > 0, β > 0 and
β > α. We need to prove that

∥f∥1 ­ 2β − α− 2[β+(β − α)+(1− t)]1/2,

since ∥f∥1 ­ |α| is evident. Fix numbers β′ ∈ (0, β) and t′ ∈ (0, t). Consider the
stopping time

τ = inf{n ­ 0 : gn ­ β′},

with the usual convention inf ∅ =∞. By (4.5), we have P(τ <∞) ­ t, and hence
there is an integer N such that

(4.7) P(gτ∧N ­ β′) ­ t′.

Now, fix a large positive number M and consider the scaled martingales f̃ =
(f̃n)n­0, g̃ = (g̃n)n­0, where

f̃n =
2fτ∧n
β′ +M

and g̃n =
2(gτ∧n − β′)

β′ +M
+ 1, n = 0, 1, 2, . . .

By (4.7), we see that

P(|g̃N | ­ 1) ­ P(g̃N ­ 1) = P(gτ∧N ­ β′) ­ t′.
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Hence, by the definition of the function B, we must have B(f̃0, g̃0, ∥f̃∥1) ­ t′.
By Doob’s optional sampling theorem, we have ∥f̃∥1 ¬ 2∥f∥1/(β′ + M); fur-
thermore, by the very definition of B, we see that the function F 7→ B(x, y, F ) is
nondecreasing. Combining these two facts with the preceding estimate yields

(4.8) B
(

2α

β′ +M
,
2(α− β′)

β′ +M
+ 1,

2∥f∥1
β′ +M

)
­ t′.

Now suppose that the assertion of the theorem does not hold and we have

(4.9) ∥f∥1 < 2β − α− 2[β(β − α)(1− t)]1/2.

Consider two cases.

C a s e α ¬ 0. Note that if M is sufficiently large, then

(4.10) (x, y, F ) =

(
− 2α

β′ +M
,−2(α− β′)

β′ +M
− 1,

2∥f∥1
β′ +M

)
∈ A2

(for the definition of A2, see the introductory section). Indeed, let us check the
required estimates; first, we need x ­ 0, y ¬ x/2 and x − 1 ¬ y ¬ 1, which are
clear: we have α ¬ 0,

−2(α− β′)

β′ +M
− 1 < − α

β′ +M
and − 2α

β′ +M
− 1 ¬ −2(α− β′)

β′ +M
− 1 ¬ 1.

The second condition on A2 is the requirement F ¬ 2(x− y)(1 + y)− x, which
becomes

2∥f∥1
β′ +M

¬ 2

(
− 2β′

β′ +M
+ 1

)
·
(
−2(α− β′)

β′ +M

)
+

2α

β′ +M

or, equivalently,

∥f∥1 ¬ 2

(
1− 2β′

β′ +M

)
(β′ − α) + α.

Now, when M → ∞, the right-hand side converges to 2β′ − α > 2β′ − α −
2[β(β − α)(1 − t)]1/2; thus, by (4.9), the above bound holds true, and hence the
inclusion (4.10) is valid (for large M ). Hence, (4.8) implies

B(x, y, F ) = B(−x,−y, F ) ­ t′

or (x − 2y − 2 + F )2 ¬ 4(y + 1)(x − y − 1)(t′ − 1) (the sign of the latter in-
equality changes since x− y − 1 < 0). This is equivalent to

(2β′ − α− ∥f∥1)2 ¬ 4β′(β′ − α)(1− t′)

and implies ∥f∥1 ­ 2β′ − α− 2[β′(β′ − α)(1− t′)]1/2. Letting t′→ t and β′→β,
we obtain the bound reverse to (4.9). The contradiction proves the claim.
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C a s e α > 0. The reasoning and the calculations are very similar. This time
we start with the inclusion

(4.11) (x, y, F ) =

(
2α

β′ +M
,

2β′

β′ +M
− 1,

2∥f∥1
β′ +M

)
∈ A2,

valid for sufficiently large M . This is easy to check. Indeed, the estimates x ­ 0,
y ¬ x/2 and x− 1 ¬ y ¬ 1 are evident, and F ¬ 2(x− y)(1 + y)− x is equiva-
lent to

∥f∥1 ¬
(
1 +

2(α− β)

β′ +M

)
β′ − α.

For sufficiently large M , the right-hand side is arbitrarily close to 2β′ − α, and
hence the estimate holds due to (4.9). Thus the inclusion (4.11) holds true,
and (4.8) implies B(x, y, F ) = B(x, x − y, F ) ­ t′, or (x − 2y − 2 + F )2 ¬
4(y + 1)(x − y − 1)(t′ − 1). Plugging the above formulas for x, y and F , we
arrive at the same estimate as in the previous case:

(2β′ − α− ∥f∥1)2 ¬ 4β′(β′ − α)(1− t′),

which, as we already know, contradicts (4.9) after the passage t′ → t and β′ → β.
The proof of (4.6) is complete. �

S h a r p n e s s o f (4.6). Let us study several cases separately.
C a s e I. Let us first handle the trivial possibilities. If t = 0 or β ¬ α, we

take the constant martingale f = (α, α, . . .) and the deterministic sequence
ε = (1, 1, . . .). If β ¬ 0, we consider the i.i.d. sequence η1, η2, . . . such that
P(ηj = 0) = P(ηj = 2) = 1/2 and define f0 = α, fn = αη1η2 . . . ηn for n =
1, 2, . . . Moreover, we take the deterministic and constant sequence ε = (1, 1, . . .).
Then f is a martingale which converges almost surely to zero. Hence

P(sup
n­0

gn ­ β) = P(sup
n­0

fn ­ β) = 1 ­ t

and, since f is of constant sign, we have ∥f∥1 = |α|.
C a s e II. Next, suppose that β > 0, t > 0 and βt ¬ α < β. Then we con-

sider f given by f0 ≡ α and such that P(f1 = β) = 1 − P(f1 = 0) = α/β (and
satisfying f1 = f2 = f3 = . . .). Take ε = (1, 1, . . .). Then

P(sup
n­0

gn ­ β) = P(f1 = β) =
α

β
­ t,

and since f is nonnegative, we have ∥f∥1 = α; hence both sides of (4.6) are equal.

C a s e III. Now assume that β > 0, t > 0 and βt + α(1 − t) ¬ 0. Note that
then α must be negative. Consider the martingale pair (f, g) starting from (α, α)
and given as follows: at the first step (f, g) moves to (0, α) or to (α − β, α); if
it goes to (0, α), it stays there forever. On the set {f1 = α − β}, we consider
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the i.i.d. sequence η2, η3, . . . of random variables with the “0–2” distribution as
above, independent also of the variable f1, and put fn = (α− β)η2η3 . . . ηn, gn =
fn + β for n = 2, 3, . . . Then f is indeed a martingale and g is its transform by
a deterministic sequence with values in {0, 1}. Directly from the construction we
compute that

P(sup
n­0

gn ­ β) = 1− P(f1 = 0) =
−α

β − α
­ t,

and since f does not change its sign, we have ∥f∥1 = |α|. Consequently, (4.6) is
an equality.

C a s e IV. Finally, suppose that β > 0, t > 0, βt > α and βt+α(1− t) > 0.
Introduce the constant γ = β − [β(β − α)/(1− t)]1/2. By the preceding assump-
tions, we see that γ is a negative number and γ < α. In this case the construction
of extremal martingales will be slightly more complicated. Consider (f, g) starting
from (α, α) and satisfying the following conditions:

(i) We have df1 = dg1, and the random variable df1 takes values β − α and
γ − α; so (f1, g1) goes to (β, β) or to (γ, γ).

(ii) On the set where df1 = β − α, the pair (f, g) stops; on the set where
df1 = γ − α, we put dg2 = 0 and assume that df2 takes values −γ and −β (so, on
this set, f2 goes to 0 or −β + γ, while g2 stays at the level γ).

(iii) On the set where df2 = −γ, the pair stops. To explain what happens on
the set {df2 = −β − γ} (where we have (f2, g2) = (−β + γ, γ)), consider an
i.i.d. sequence η3, η4, . . . with the same distribution as above (i.e., P(ηj = 0) =
P(ηj = 2) = 1/2), which is also independent of the variables f1 and f2 we have
already constructed. On {df2 = −β− γ}, we define fn = −βη3η4 . . . ηn and gn =
fn + β, n = 3, 4, . . .

We easily check that f is indeed a martingale and g is a transform of f by a
deterministic sequence with values in {0, 1}. Furthermore, we have

P(sup
n­0

gn ­ β) = 1− P(f2 = 0) = 1− β − α

β − γ

β

β − γ
= t

and, since f changes its sign only at the first step,

∥f∥1 = E|f1| =
α− γ

β − γ
β +

β − α

β − γ
(−γ) = 2β − α− 2[β(β − α)(1− t)]1/2.

Thus, both sides of (4.6) are equal. This completes the proof of Theorem 4.2.
We conclude by formulating the analogue of Theorem 4.2 for the Haar system.

THEOREM 4.3. Let α, β ∈ R and t ∈ [0, 1]. Assume further that n is a posi-
tive integer, a1, a2, . . . , an is a sequence of real numbers and θ1, θ2, . . . , θn is a
sequence with values in [0, 1] such that

(4.12)
∣∣{s ∈ [0, 1] : α+

n∑
k=1

θkakhk(s) ­ β
}∣∣ ­ t.
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Then we have the sharp bound

(4.13)
∥∥α+

n∑
k=1

akhk
∥∥
1
­ |α| ∨ {2β − α− 2[β+(β − α)+(1− t)]1/2}.

The validity of the estimate follows from the fact that the Haar system forms
a martingale difference sequence; the sharpness of the statement follows from the
reasoning presented in Section 10 of Burkholder [4] or Maurey [10].
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