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Abstract. We construct strong stationary dual chains for non-
symmetric random walks on square lattice, for random walks on hyper-
cube and for some Ising models on the circle. The strong stationary dual
chains are all sharp and have the same state space as original chains. We use
Möbius monotonicity of these chains with respect to some natural orderings
of the corresponding state spaces. This method provides an alternative way
to study mixing times for studied models.
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1. INTRODUCTION

Consider an ergodic Markov chain X = (Xn)n0 on a discrete (finite or count-
able) state space E with transition matrix P and initial distribution ν. One way of
studying the speed of convergence of X to its stationary distribution π is to find
(and bound its tail) so-called Strong Stationary Time (SST), i.e., such a stopping
time T (T implicitly depends on ν) that is independent of XT , and XT has distri-
bution π. SSTs were introduced by Aldous and Diaconis [2], [3], who also gave
examples of SSTs and their applications. Many examples can also be found in
Diaconis [4]. First examples of SSTs were created by ad hoc methods. A general
approach was invented by Diaconis and Fill [5] who introduced dual processes.
They showed that for X there always exists a so-called Strong Stationary Dual
(SSD) absorbing chain X∗ such that its time to absorption T ∗ is equal, in distri-
bution, to an SST T for X. Their proof is an existence type argument which does
not show how to construct a dual chain in general. They showed one tractable case
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(see [5], Theorem 4.6), where the state space is linearly ordered. Under the con-
dition of stochastic monotonicity (related to the linear order) of the corresponding
time-reversed chain (and some assumptions on the initial distribution) they gave
a recipe for constructing a dual chain on the same state space. A special, and im-
portant, case is a stochastically monotone birth-and-death chain for which the dual
chain is an absorbing birth-and-death chain.

Strong stationary dual chains have a variety of applications. Diaconis and Fill
[6] gave an extension of this theory to countable state spaces. Fill [12] gave a
stochastic proof of a well-known theorem (usually attributed to Keilson) which
states that the first passage time from 0 to M of a stochastically monotone birth-
and-death process on {0, . . . ,M} is equal, in distribution, to a sum of geometric
random variables related to the spectral values of X. Similar results for continuous
time birth-and-death processes were obtained by Diaconis and Miclo [7]. Diaco-
nis and Saloff-Coste [8] studied cut-off phenomena for birth-and-death chains by
using SSD theory. Different dualities in Markov chains are utilized in a variety of
contexts, see, e.g., Huillet and Martinez [16].

All the above-mentioned examples (although very interesting) somehow rely
on Theorem 4.6 of [5] which involves linearly ordered state spaces. That is why
most of the known examples are related to birth-and-death chains. The main under-
lying assumption is (classical) stochastic monotonicity of the time-reversed chain.
Although this monotonicity is defined also for partially ordered state spaces, it is
not sufficient for an analogous construction of an SSD chain as in Diaconis and
Fill [5]. Lorek and Szekli [19] gave a recipe for constructing dual chains on par-
tially ordered state spaces with a special feature that the duals have the same state
space as original chains. The assumption of the classical stochastic monotonicity
was replaced by the assumption of Möbius monotonicity. This extension (to par-
tially ordered state spaces) opens a new way of finding SSD chains defined for
not linearly ordered state spaces. The purpose of this paper is to get a new SSD
insight into some classical examples of finite state Markov chains. In Section 2 we
recall needed definitions and facts about Möbius monotone chains. In Section 3 we
present strong stationary duals for non-symmetric random walk on a square lattice,
for a random walk on the hypercube, and some Ising models on the circle. For the
latter one we give duals for specific cases, and conjecture the general case.

In Section 4 we give proofs of the main results. We believe that the pre-
sented method should be applicable in many other examples and can be used to
find bounds on the speed of convergence to stationarity, and to study cut-off phe-
nomena.

2. MÖBIUS MONOTONICITY AND DUALITY

In this section we recall needed results on SSD and Möbius monotone chains.
For a more complete material on duality see Diaconis and Fill [5], and for results
on Möbius monotone chains, see Lorek and Szekli [19].
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2.1. Strong stationary duality. For an ergodic Markov chain X = (Xn)n0
with the transition matrix P and initial distribution ν, we are interested in bounding
a distance between νPk (a distribution of a chain at step k) and its stationary dis-
tribution π. An often used distance is the total variation distance dTV (νP

k, π) =
maxA⊂E |νPk(A) − π(A)|. Another useful distance is the separation distance s
defined as follows: s(νPk, π) = maxe∈E

(
1 − νPk(e)/π(e)

)
. For random times

T which are SSTs, Aldous and Diaconis [3] show that dTV (νP
k, π) ¬ s(νPk, π)

¬ P (T > n).
Let X∗ be a Markov chain with transition matrix P∗, initial distribution ν∗ and

a state space E∗, with an absorbing state e∗a. Let Λ ≡ Λ(e∗, e), e∗ ∈ E∗, e ∈ E,
be a stochastic kernel (called a link) such that Λ(e∗a, ·) = π(·). X∗ is a Strong
Stationary Dual (SSD) chain for X if

(2.1) ν = ν∗Λ and ΛP = P∗Λ.

Diaconis and Fill [5] proved that the absorption time T ∗ of X∗ is an SST for X.
Thus, the problem of finding SST for X translates into the problem of studying the
absorption time of X∗.

DEFINITION 2.1. A Strong Stationary Dual chain X∗ is called sharp if
s(νPn, π) = P (T ∗ > n).

REMARK 2.1. The relation (2.1) implies that, for finite E and E∗, P and P∗

have the same set of eigenvalues.

It turns out that in some examples we can easily identify the eigenvalues of
P∗, and thus, by the above remark, we will also obtain the eigenvalues of P which
are usually not easy to obtain directly.

2.2. Duality for Möbius monotone chains. In this section we recall how to
construct an SSD chain for finite partially ordered state spaces. We shall consider
a finite state space E = {e1, . . . , eM} with a partial ordering ≼. From the very
beginning we shall choose an enumeration of E such that ei ≼ ej implies i < j
(which is always possible). We call such an enumeration consistent with ≼. With
this enumeration the partial ordering can be represented by an upper-triangular,
zero-one valued matrix C. The inversion C−1 represents (in the incidence algebra)
the so-called Möbius function, usually denoted by µ, see Rota [23]. The Möbius
function allows for the following calculus: it is possible to recover f from the
relation F̄ (e) =

∑
e:e≽ei f(e), namely f(ei) =

∑
e:e≽ei µ(ei, e)F̄ (e).

DEFINITION 2.2. Let P be a transition matrix with enumeration of states
consistent with C. We say that P (or, alternatively, X) is ↓-Möbius monotone
(↑-Möbius monotone) if C−1PC  0 ((CT )−1PCT  0) (each entry is nonnega-
tive).
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We say that f : E → RM is ↓-Möbius monotone (↑-Möbius monotone) if
f(CT )−1  0 (fC−1  0). In terms of the transition probabilities, we have
↓-Möbius monotonicity : ∀(ei, ej ∈ E)

∑
e:e≽ei

µ(ei, e) P(e, {ej}↓)  0,

↑-Möbius monotonicity : ∀(ei, ej ∈ E)
∑

e:e≼ej
P(e, {ei}↑)µ(e, ej)  0,

where {ej}↓ = {e : e ≼ ej}, {ej}↑ = {e : e ≽ ej}, and

P(e, A) =
∑
e′∈A

P(e, e′).

We recall the SSD result of Lorek and Szekli [19] (
←−
X denotes the time-

reversed process).

THEOREM 2.1 (Lorek and Szekli [19]). Let X be an ergodic Markov chain
on a finite state space E = {e1, . . . , eM}, which is partially ordered with ≼ and
has a unique maximal state eM . For the stationary distribution π and an initial
distribution ν we assume that

(i) g(e) = ν(e)/π(e) is ↓-Möbius monotone,
(ii)
←−
X is ↓-Möbius monotone.

Then there exists a Strong Stationary Dual chain X∗ on E∗ = E with link be-
ing a truncated stationary distribution Λ(ej , ei) = 111{ei≼ej}π(ei)/H(ej), where
H(ej) =

∑
e:e≼ej π(e). The initial distribution and transitions of X∗ are given,

respectively, by

ν∗(ei) = H(ei)
∑

e:e≽ei
µ(ei, e)g(e),

P∗(ei, ej) =
H(ej)

H(ei)

∑
e:e≽ej

µ(ej , e)
←−
P(e, {ei}↓).(2.2)

REMARK 2.2. Following Remark 2.39 of Diaconis and Fill [5] and the termi-
nology used there, the Strong Stationary Dual X∗ in Theorem 2.1 is sharp, and the
corresponding strong stationary time is the time to stationarity, i.e., s(νPn, π) =
P (T > n). The reason for this is that Λ(e∗, eM ) = 0 for all e∗ ̸= eM ∈ E∗.

REMARK 2.3. Theorem 2.1 is stated for ↓-Möbius monotonicity, but it can be
similarly stated for ↑-Möbius monotonicity (see Corollary 3.1 in [19]). The other
formulation is potentially useful, because a chain can be, e.g., ↓-Möbius monotone
but not ↑-Möbius monotone.

REMARK 2.4. The assumption on the initial distribution is not very restrictive,
for example, if e1 is a unique minimal state and ν = δe1(·), then the assumption is
fulfilled, and also ν∗ = δe1(·). For simplicity of presentation, in all subsequent ex-
amples the initial distribution will be the single atom at the minimal element (this
assumption may be relaxed).
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In order to find and use the above constructed SSD chains one has to find an
appropriate ordering (with respect to which the chain is Möbius monotone). It is
worth mentioning that for a linearly ordered state space ↑-Möbius monotonicity is
equivalent to the usual stochastic monotonicity; in general partially ordered spaces
this is not the case. It turns out that for partially ordered spaces some natural order-
ings work. A non-symmetric random walk on the unit cube is an example presented
in [19]. In the next section we shall give new examples.

3. MÖBIUS MONOTONE MARKOV CHAINS: EXAMPLES

3.1. Random walk on weighted directed graph. Consider a random walk on
a directed weighted graph G = (V,E) with vertices V = {v1, v2, . . . , vn}, edges
E = {(i, j) : edge from vi to vj} and with a weighting function w : E → [0,∞).
Denote by wi,j the nonnegative weight of the directed edge from node vi to vj . If
there is no edge between these nodes, i.e., (i, j) /∈ E, then wi,j = 0. We allow wi,i

to be non-zero.
Let N (i) = {j : (i, j) ∈ E} be a set of neighbours of node vi. Random walk

may be viewed as a process of sequential vertex visiting. We assume that weights
are normalized, i.e., for all i ∈ {1, . . . , n} we have wi,i +

∑
r∈N (i)wi,r = 1. The

probability of a single step from node i to j is then given by P (i, j) = wi,j .
In this section we consider the following example: Let V = {0, 1, . . . , N}2

with edges

(3.1)
(
(x1, y1), (x2, y2)

)
∈ E ⇐⇒ |x1 − x2|+ |y1 − y2| = 1

for x1, x2, y1, y2 ∈ {0, . . . , N}. Thus, for each node there are at most four edges in
four directions: up, down, left, right plus a possible self-loop. The weighting func-
tion depends only on the direction in the following way: for

(
(x1, y1), (x2, y2)

)
∈

E and nonnegative parameters λ1, λ2, µ1, µ2 such that λ1 + λ2 + µ1 + µ2 ¬ 1,

(3.2)

w((x1,y1),(x2,y2)) =



λ1 if x2 = x1 + 1, y2 = y1,

µ1 if x2 = x1 − 1, y2 = y1,

λ2 if x2 = x1, y2 = y1 + 1,

µ2 if x2 = x1, y2 = y1 − 1,

1−
∑

(x,y)∈N ((x1,y1))

w((x1,y1),(x,y)) if x2 = x1, y2 = y1.

We associate weights directly with one-step probabilities:

P
(
(x1, y1), (x2, y2)

)
= w((x1,y1),(x2,y2)).

Roughly speaking, we consider a random walk on square lattice {0, . . . , N}2, at
each step we can move (if feasible): right with probability λ1, left with probability



80 P. Lorek and R. Szekl i

µ1, up with probability λ2 and down with probability µ2. With remnant probability
we stay at a given vertex. For convenience, we let ρ1 := λ1/µ1 and ρ2 := λ2/µ2.
Denote by P the transition matrix of a corresponding Markov chain X. The chain
is time-reversible (i.e.

←−
P = P) and has (time-reversibility equations can easily be

checked) the stationary distribution on V defined as

π
(
(x, y)

)
= C−1ρx1ρ

y
2

for (x, y) ∈ V = {0, . . . , N}2, where the normalizing constant C for ρ1 ̸= 1 and
ρ2 ̸= 1 is given by

C =
1− ρN+1

1

1− ρ1
· 1− ρN+1

2

1− ρ2
,

and for other cases C can be obtained by obvious modifications.
We shall use the coordinatewise partial ordering: (x1, y1) ≼ (x2, y2) ⇐⇒

x1 ¬ x2 and y1 ¬ y2. Then we have the unique minimal element e1 = (0, 0) and
the maximal one eM = (N,N), where M = (N + 1)2. It turns out that X is
Möbius monotone for any set of parameters λ1, µ1, λ2, µ2 > 0 such that λ1 + λ2 +
µ1 + µ2 ¬ 1, and applying Theorem 2.1 we have:

THEOREM 3.1. Let X be a random walk on directed weighted graph with
G = (V,E), with V = {0, . . . , N}2 and E given in (3.1), weights given in (3.2)
and with positive parameters λ1 ̸= µ1, λ2 ̸= µ2 such that λ1 + λ2 + µ1 + µ2 ¬ 1.
Assume that X starts at e1 = (0, 0). Then there exists a sharp SSD chain X∗ which
is an absorbing Markov chain (with eM = (N,N) being the single absorbing
state) on the state space E∗ = E = {0, . . . , N}2, starting at e1 = (0, 0), with the
following transition probabilities (for x, x′, y, y′ ∈ {0, . . . , N}):

(3.3) P∗
(
(x, y), (x′, y′)

)
=

1−ρx+2
1

1−ρx+1
1

· µ1 if x′ = x+ 1, y′ = y,

1−ρy+2
2

1−ρy+1
2

· µ2 if y′ = y + 1, x′ = x,

1−ρy2
1−ρy+1

2

· λ2 if x′ = x, y′ = y − 1, y ̸= N,

1−ρx1
1−ρx+1

1

· λ1 if y′ = y, x′ = x− 1, x ̸= N,

1− (λ1 + λ2 + µ1 + µ2) if x′ = x, y′ = y, (x, y) ∈ {0, . . . , N − 1}2,

1− (λ2 + µ2) if x′ = x = N, y′ = y, y ∈ {0, . . . , N − 1},

1− (λ1 + µ1) if x′ = x, y′ = y = N, x ∈ {0, . . . , N − 1},

1 if x′ = x = y = y′ = N.
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Thus, the SSD chain X∗ is again a chain on E, with feasible moves in the
same directions as X except for movements on the upper borders of this square
lattice. Once the chain hits the border (·, N) (or (N, ·)), it can only move left or
right (up or down) until it hits the absorbing state (N,N). Note that probabil-
ity of changing the i-th coordinate, i = 1, 2, is independent of the value of the
(3− i)-th coordinate. The chain X∗, for a suitable selection of the parameters, can
have a drift towards the absorbing state. Note that the case ρ1 = 1 and/or ρ2 = 1
can be obtained by obvious modifications in computing H(x, y) (see the proof in
Section 4.1).

One can study the time to absorption T ∗ in the following way: it is the time
of hitting a border (·, N) or (N, ·) plus the time for the one-dimensional birth-
and-death chain with birth probability λ1 and death probability µ1 (or λ2 and µ2

respectively) to reach the state N (worst cases scenarios can be used).

3.2. Random change of a single coordinate on a cube. Let us consider a dis-
crete time Markov chain X with state space E = {0, . . . , k}n which evolves in
the following way: it stays with probability 1/2 or (with probability 1/2) for one
coordinate chosen uniformly, it changes uniformly its value to any other differ-
ent value. In terms of the transition probabilities, for e=

(
e(1), . . . , e(n)

)
∈E,

e(i) ∈ {0, . . . , k}, we set
(3.4)

P(e, e′) =


1/2 if e = e′,

1/(2nk) if, for some i, e(i) ̸= e′(i) and e(j) = e′(j), j ̸= i,

0 otherwise.

SinceP is symmetric, the corresponding stationary distribution is uniform, i.e.,

π(e) =
1

(k + 1)n
, e ∈ E.

The motivation for this example comes from DNA sequence alignment. Given n
sequences of length k + 1 the task is to find points of references in each one such
that, starting reading sequence i from its reference point r(i) we have the biggest
agreement in all sequences. Since the state space is huge (of size (k + 1)n), Monte
Carlo methods are often used. One constructs a chain such that its stationary distri-
bution assigns higher mass to states with high agreements. The chain given in (3.4)
is a simplified version of such a chain.

The chain X can be seen as an extension of the standard lazy random walk
on the unit cube (obtained for k = 1). Using the coordinatewise ordering ≼ on E,
it turns out that X (which is reversible) is Möbius monotone. For this ordering,
the state e1 = (0, . . . , 0) is the minimal state and eM = (k, . . . , k) is the maximal
state (with M = (k + 1)n), where we use an enumeration of E consistent with ≼.
Applying Theorem 2.1 we obtain
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THEOREM 3.2. Consider the above-described chain X on the state space E =
{0, . . . , k}n, with transition probabilities given in (3.4). Assume that X starts at
e1. Then there exists a sharp SSD chain X∗ on the state space E∗ = E, with the
state eM being the absorbing one, starting with probability one at e1, and having
transition probabilities, for all A ⊆ {1, . . . , n}, j /∈ A,

P∗(e
(k)
A , e

(k)
A∪{j}) =

k + 1

2nk
,

P∗(e
(k)
A , e

(k)
A ) =

n(k − 1) + |A|(k + 1)

2nk
,

where e
(k)
A =

(
e(1), . . . , e(n)

)
with e(i) = k if i ∈ A and e(i) = 0 if i /∈ A, and

all other transitions have probability zero.

Note that an SSD chain X∗ jumps, with probability one, only to greater or
equal states in the ordering ≼, thus its eigenvalues are the entries on the diagonal
of the matrix P∗ written using an enumeration of the states consistent with this
ordering. The states which can be traversed by X∗ are of the form e

(k)
A , which

means that X∗ can be identified with a random walk on the unit cube {0, k}n.
Again, by Remark 2.1, the eigenvalues of P are the same as diagonal entries of
P∗, i.e.,

n(k − 1) + i(k + 1)

2nk
, i = 0, 1, . . . , n.

As in the Ising model example, we can consider the time to absorption of the one-
dimensional projection Z∗t := S(X∗t ), where S(e) =

∑n
i=1 111{e(i)=k}. If Z∗0 = 0,

then the time to absorption T ∗ of Z∗t is the same as for X∗t , and is distributed as
the sum of independent variables

∑n−1
i=0 Yi, where Yi has geometric distribution

with the success parameter pi = (n− i)(k + 1)/(2nk). For the expected absorp-
tion time we have

ET ∗ =
n−1∑
i=0

1

pi
=

n−1∑
i=0

1

n− i

2nk

k + 1
=

2nk

k + 1

n∑
i=1

1

i
¬ 2k

k + 1
(n+ 1) log n.

For the variance of T ∗ we have

VarT ∗ =
n−1∑
i=0

1− pi
p2i

=
2nk

(k + 1)2

n−1∑
i=0

nk − n+ ki+ i

(n− i)2

=
2nk

(k + 1)2

[
nk

n−1∑
i=0

1

(n− i)2
+ k

n−1∑
i=0

i

(n− i)2
−

n∑
i=1

1

i

]
(∗)
¬

(
2nk

k + 1

)2 π2

6
,

where in (∗) we used the following inequalities:

n−1∑
i=0

1

(n− i)2
¬ π2

6
,

n−1∑
i=0

i

(n− i)2
¬ n

π2

6
.
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By Remark 2.2 and Chebyshev’s inequality, we see that after m = 2k
k+1(n+1) log n

+ c 2k
k+1

π√
6
n, c  0, steps we have

s(νPm, π) = P (T > m) ¬ P (T − ET ¬ c
√
VarT )

¬ P (|T − ET | ¬ c
√
VarT ) ¬ 1

c2
.

3.3. Ising model on a circle. Let G = (V,E) be a finite graph. Elements of the
state space E = {−1, 1}V are called configurations, and for e ∈ E the value e(v)
is called the spin at vertex v. For a given configuration e its energy is defined as

H(e) = −
∑

{x,y}∈E
e(x) · e(y),

where the sum is over all edges of the graph. For β  0, the Ising model on the
graph G with parameter β is the probability measure on E given by

(3.5) π(e) =
e−βH(e)

Zβ
,

where Zβ =
∑

e∈E e
−βH(e) is a normalizing constant. The parameter β has a phys-

ical interpretation as the inverse of the temperature of the configuration. Note that
for β = 0 (equivalent to infinite temperature) every spin configuration is equally
likely, i.e., it is the same as setting spin at each vertex to−1 or +1 with probability
1/2 independently. In general, β represents the influence of energyH on π.

This model has focused a lot of attention in the context of speed of conver-
gence to equilibrium of particle systems. Propp and Wilson [22] introduced Cou-
pling From The Past algorithm and used it to show how to draw an exact sample
from (3.5) in the case of square lattice. Recently Ding and Peres [10] showed that
for Ising models on any graph it takes at least

(
1/4 + o(1)

)
n log n steps for the

Glauber dynamics to mix, where n is the corresponding number of vertices. In
Ding and Peres [11] a simple proof for the bound n log n/2 was presented.

We shall consider the Ising model on a circle. We will present the dual chain
for a case of 2 and 3 vertices and a conjecture on a general number of vertices. We
set V = {0, . . . , N − 1} and E =

{(
i, (i+1) mod N

)
: i = 0, . . . , N − 1

}
. The

stationary distribution (3.5) in this case can be rewritten as

π(e) =
1

Zβ
exp

(
β

N−1∑
i=0

e(i)e(i+ 1)
)
,

where we always mean vertex number modulo N . The following is a classical
Gibbs sampler for this model, a Markov chain with stationary distribution (3.5):

• Given a configuration e at step n, i.e., Xn = e, choose a vertex v ∈ V with
probability 1/N .
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• Take Un+1, a random variable with the uniform distribution U(0, 1), inde-
pendent of Ui, i ¬ n. Update the spin at vertex v in the following way:

Xn+1(i) =

+1 if Un+1 <
e2β(k+(v,e)−k−(v,e))

e2β(k+(v,e)−k−(v,e)) + 1
,

−1 otherwise,

where k+(v, e) is the number of neighbours of vertex v, in configuration e, with
spin values +1, and k−(v, e) is the number of neighbours of vertex v, in configu-
ration e, with spin values −1.

The chain X constructed in this way is reversible. Moreover, X can be viewed
as a random walk on N -dimensional cube, where the probability of changing a
coordinate (corresponding to some vertex v) depends on the values of the neigh-
bouring (with respect to the underlying graph G) coordinates.

We consider the coordinatewise ordering, i.e., e ≼ e′ if e(v) ¬ e′(v) for every
vertex v ∈ V . Let M := 2|V | = 2N . Denote by e1 the state with all spins equal
to −1 (minimal state), and by eM the state with all spins equal to +1 (maximal
state). We identify E = {−1, 1}V with the enumerated set {e1, . . . , eM}, where
the enumeration is consistent with ≼. For specific cases N = 2 and N = 3 we can
directly calculate the dual chain in the matrix form from equation (2.1) with link
given in Theorem 2.1, namely

P∗ = ΛPΛ−1.

If the resulting P∗ is not a stochastic matrix, then it means that X is not ↓-Möbius
monotone (which will not be the case).

3.3.1. Two vertices case. Let us order the states as follows: e1 = (−1,−1),
e2 = (+1,−1), e3 = (−1,+1), e4 = (+1,+1). By using this enumeration, ma-
trices P and C are the following:

P =



1
e−2β+1

1
2

e−2β

e−2β+1
1
2

e−2β

e−2β+1
0

1
2

1
e−2β+1

1
e2β+1

0 1
2

e2β

e2β+1

1
2

1
e−2β+1

0 1
e2β+1

1
2

e2β

e2β+1

0 1
2

1
e2β+1

1
2

1
e2β+1

e2β

e2β+1


, C =


1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

.

From Theorem 2.1 we obtain the following dual chain:

P∗ =



0 1
2

1
2 0

0 1
2

1
2
e2β−1
e2β+1

1
e2β+1

0 1
2
e2β−1
e2β+1

1
2

1
e2β+1

0 0 0 1

.
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The chain started at the state (−1,−1) goes with equal probability in the first
step to (+1,−1) or (−1,+1). Then it either is absorbed in the next step with
probability 1

e2β+1
or not, with remnant probability 1

2 +
1
2
e2β−1
e2β+1

= e2β

e2β+1
. The time

to absorption in this case is of the following form: T ∗ = X0 +X1, X0 ∼ Geo(1)
(i.e., X0 ≡ 1), X1 ∼ Geo

(
1/(e2β + 1)

)
, i.e.,

P (T ∗ = k) =

(
e2β

e2β + 1

)k−2(
1

e2β + 1

)
, k = 2, 3, . . .

In particular, ET ∗ = 2 + e2β and after k = 1 + 1
2β−ln(2β+1) ln(ε) steps we have

s(δe1P
k, π) = P (T ∗ > k) = ε.

We can depict the chain and its dual on a graph as follows:

Original chain P Dual chain P∗

3.3.2. Three vertices case. Consider a simple case of three vertices all be-
ing each other’s neighbour, say, labelled v1, v2, v3. Let us enumerate the states
as follows: e1 = (−1,−1,−1), e2 = (+1,−1,−1), e3 = (−1,+1,−1), e4 =
(−1,−1,+1), e5 = (+1,+1,−1), e6 = (+1,−1,+1), e7 = (−1,+1,+1), e8 =

(+1,+1,+1). To shorten the notation, let us put: p = e4β

1+e4β
and q = e−4β

1+e−4β
. The
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transition matrix is the following:

P =



1− q 1
3q

1
3q

1
3q 0 0 0 0

1
3 −

1
3q

1
3 + 1

3q 0 0 1
6

1
6 0 0

1
3 −

1
3q 0 1

3 + 1
3q 0 1

6 0 1
6 0

1
3 −

1
3q 0 0 1

3 + 1
3q 0 1

6
1
6 0

0 1
6

1
6 0 2

3 −
1
3p 0 0 1

3p

0 1
6 0 1

6 0 2
3 −

1
3p 0 1

3p

0 0 1
6

1
6 0 0 2

3 −
1
3p

1
3p

0 0 0 0 1
3 −

1
3p

1
3 −

1
3p

1
3 −

1
3p p



.

The stationary distribution in this case is of the form

π
(
(−1,−1,−1)

)
= π

(
(+1,+1,+1)

)
= 1/Z,

π(e) = e−4β/Z for e /∈ {(−1,−1,−1), (+1,+1,+1)},

where Z is a normalizing constant equal to 2 + 6e−4β . In this case, the function H
is as follows:

H
(
(+1,−1,−1)

)
= H

(
(−1,+1,−1)

)
= H

(
(−1,−1,+1)

)
=

1 + e−4β

2(1 + 3e−4β)
,

H
(
(+1,+1,−1)

)
= H

(
(+1,−1,+1)

)
= H

(
(−1,+1,+1)

)
=

1

2
,

H
(
(−1,−1,−1)

)
=

1

2(1 + 3e−4β)
, H

(
(+1,+1,+1)

)
= 1.

We obtain the following dual chain:

P∗ =

0 1
3

1
3

1
3 0 0 0 0

0 1
3

1
6
1−e−4β

1+e−4β

1
6
1−e−4β

1+e−4β

1
6
1+3e−4β

1+e−4β

1
6
1+3e−4β

1+e−4β
0 0

0 1
6
1−e−4β

1+e−4β

1
3

1
6
1−e−4β

1+e−4β

1
6
1+3e−4β

1+e−4β
0 1

6
1+3e−4β

1+e−4β
0

0 1
6
1−e−4β

1+e−4β

1
6
1−e−4β

1+e−4β

1
3 0 1

6
1+3e−4β

1+e−4β

1
6
1+3e−4β

1+e−4β
0

0 0 0 0 2
3

1
6
1−e−4β

1+e−4β

1
6
1−e−4β

1+e−4β

2

3(1+e4β)

0 0 0 0 1
6
1−e−4β

1+e−4β

2
3

1
6
1−e−4β

1+e−4β

2

3(1+e4β)

0 0 0 0 1
6
1−e−4β

1+e−4β

1
6
1−e−4β

1+e−4β

2
3

2

3(1+e4β)

0 0 0 0 0 0 0 1



.
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Note that, when the chain is on level 1, i.e. in states (+1,−1,−1), (−1,+1,−1) or
(−1,−1,+1), then it either gets to some state on level 2 with probability 2

6
1+3e−4β

1+e−4β

or stays somewhere on level 1 with remnant probability. Similarly, when the dual is
on level 2 it can get to the absorbing state (+1,+1,+1) with probability 2

3(1+e4β)

or stays at the level with remnant probability. Thus, the time to absorption is of the
form

T ∗ = X0 +X1 +X2,

where

X0 ∼ Geo(1), X1 ∼ Geo

(
1 + 3e−4β

3(1 + e−4β)

)
, X2 ∼ Geo

(
2

3(1 + e4β)

)
.

The dual for this case can be depicted as follows:

where

a =
1

6
(1− e−4β)/(1 + e−4β),

b =
1

6
(1 + 3e−4β)/(1 + e−4β),

c = 2/(3 + 3e4β).

Self-loops (strictly positive at each vertex except (−1,−1,−1)) are not depicted.
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3.3.3. General N vertices case. Here we will present a conjecture for the case
of any number of vertices N . First, we conjecture that the chain for this Ising
model is always ↓-Möbius monotone for an arbitrary graph G with respect to co-
ordinatewise ordering. Second, for G being a circle (what is under consideration
throughout a section), the structure of a dual is “nice” in a sense we are about to
describe. The details for this case will appear in a subsequent paper.

Let us recall that we consider G = (V,E), where V = {0, . . . , N − 1} and
E =

{(
i, (i + 1) mod N

)
: i = 0, . . . , N − 1

}
. We identify a vertex v with a

number v and keep general-graph notation. For example, (v, w)∈E actually means
that w = v± 1. For notational convenience, let ev↔w denote a configuration e with
swapped spins at v and w. Recall also that within coordinatewise ordering, the state
with all spins equal to −1 (denoted by e1) is a minimal state, and the state with all
spins equal to +1 (denoted by eM , where M = 2N ) is a maximal state.

CONJECTURE 1. Consider the Gibbs sampler X for the Ising model on an
arbitrary graph G = (V,E). Assume that X starts with the configuration e1. Then
there exists a sharp SSD chain X∗ = (X∗n)n0 on the state space E∗ = E, with the
state eM being the absorbing one, starting with probability one at e1, and having
the following transition probabilities for e, e′ ∈ {e1, . . . , eM}:

(3.6) P∗(e, e′) =

0 if e ≻ e′,

1
N S(e) if e = e′,

H(e′)
H(e)

1
N

(
1− e2β(k+(v,e)−k−(v,e))

e2β(k+(v,e)−k−(v,e))+1

)
if e′ = e+ sv, e(v) = −1,

H(ev↔w)
H(e)

1
N

(
e2β(k+(v,e)−k−(v,e)+2)

e2β(k+(v,e)−k−(v,e)+2)+1
− e2β(k+(v,e)−k−(v,e))

e2β(k+(v,e)−k−(v,e))+1

)
if e′ = ev↔w, (v, w) ∈ E, e(v) = −1, e(w) = −1,

where sv = (0, . . . , 0, 2, 0, . . . , 0) (2 for the coordinate corresponding to vertex v),
S(e) =

∑
v∈V 111{e(v)=1} (called a level ), and H(e) =

∑
e′≼e π(e).

The conjectured dual chain, being at some state e1 (thus on level S(e1)),
• can stay at the same state;
• cannot go to any state with lower level;
• can go to higher levels only to states of the form e+ sj (i.e., only one level

higher, to a comparable state);
• can move “across” the level only by swapping spins at some vertices v and

w which are neighbours, i.e., (v, w) ∈ E.
The special cases N = 2 and N = 3 were particularly “nice”. For N = 2 the

transitions from e to e′ = ev↔w are all zero. For N = 3 the transitions to another
state on the same level or to a higher level do not depend on the particular state,
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but only on the current level. This is mainly due to the fact that “neighbours of v”
actually means “all other vertices of v”. It implies that the time to absorption in
these cases was distributed as the sum of geometric random variables. For N  4,
the probabilities depend on a particular state. However, the dual has a nice block-
matrix form:

P∗ =



P∗0,0 P∗0,1 0 . . . 0
0 P∗1,1 P∗1,2 0 . . . 0

0
. . . 0 . . . 0

0 . . . P∗i,i P∗i,i+1 0 . . . 0

0
. . . 0 . . . 0

0 . . . P∗N−1,N−1 P∗N−1,N
0 . . . 0 1


,

where P∗(i, i) is a square matrix corresponding to all states with level i of size(
N
i

)
×

(
N
i

)
, and P∗(i, i+ 1) is a matrix of size

(
N
i

)
×

(
N
i+1

)
, i = 0, . . . , N − 1.

REMARK 3.1. The time to absorption for such block-matrices can be further
studied again via some dualities. Roughly speaking, for a given absorbing chain
P∗ there is a method for finding another “dual” absorbing chain P̂ which has the
same time to absorption. The method is due to Fill and Lyzinski [14].

3.4. Further examples and developments.

3.4.1. Simple symmetric random walk on a circle. Let Zd be the set of integers
modulo d, regarded as d labelled 1, 2, . . . , d points arranged anticlockwise around a
circle with one at the bottom, say. Suppose we start at one, that is, ν = δ1, and with
probability 1/3 the random walk X moves one step in either direction along the
circle or remains. The stationary distribution for this Markov chain is the uniform
distribution πu on E = Zd. Diaconis and Fill [5] showed, for d = 2a, an SST T
such that

dTV (νP
n, πu) ¬ P (T > n) ¬ 3

16
d2/n,

and pointed out some extensions of this model. The point of this example was that
an SST was found by identifying sets of states increasing in size and times at which
the process is uniform on each set. This transformed the original problem of study-
ing convergence to stationarity into a different problem of analysing first passage
times. It might be interesting to know that there is an alternative way of finding an
SSD chain for this walk by using Möbius monotonicity. It is possible if we order
linearly the state space by a zigzag ordering on the circle. For example, for d = 23,
the ordering is 1 < 2 < 8 < 3 < 7 < 4 < 6 < 5, with 5 being the maximal state,
or, for d = 24, the ordering is 1 < 2 < 16 < 3 < 15 < 4 < 14 < 5 < 13 < 6 <
12 < 7 < 11 < 8 < 10 < 9, with 9 being the maximal state. It turns out that with
this ordering X is Möbius monotone. The corresponding dual is a Markov chain
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with one-step transitions only on one side of the circle, that is, for example, in the
case d = 16 moving as a birth-death chain on 1, 16, 15, 14, 13, 12, 11, 10, 9, with
the maximal state 9 being the absorbing state. That means that the original problem
of studying convergence to stationarity for a symmetric random walk on a circle
can be transformed into a different problem of analysing passage time for a birth-
and-death process on a linearly ordered segment from the minimal to maximal
state, which is a more standard one. Möbius monotonicity here is a delicate prop-
erty, because changing the probability of remaining in a state from 1/3 to a smaller
value destroys this monotonicity, however, changing the probability to remain from
1/3 to a greater value does not influence the property of Möbius monotonicity. Also
making the walk not symmetric destroys this kind of monotonicity.

4. PROOFS

4.1. Proof of Theorem 3.1. We start with a detailed expression for the transi-
tion probabilities of X:

P
(
(x, y), (x′, y′)

)
=



λ1 if x′ = x+ 1 ¬ N, y′ = y,

λ2 if x′ = x, y′ = y + 1 ¬ N,

µ1 if x′ = x− 1  0, y′ = y,

µ2 if y′ = y − 1  0, x′ = x,

1− (λ1 + λ2 + µ1 + µ2) if x′ = x > 0, y′ = y > 0,

1− (λ1 + λ2 + µ1) if x′ = x > 0, y′ = y = 0,

1− (λ1 + λ2 + µ2) if x′ = x = 0, y′ = y > 0,

1− (µ1 + µ2) if x′ = x = y = y′ = N,

1− (µ1 + µ2 + λ1) if x′ = x > 0, y′ = y = N,

1− (µ1 + µ2 + λ2) if x′ = x = N, y′ = y > 0,

1− (λ1 + λ2) if x′ = x = y = y′ = 0,

1− (λ1 + µ2) if x′ = x = N, y = y′ = 0,

1− (λ2 + µ1) if x′ = x = 0, y = y′ = N.

In a standard way we can check that X is reversible, and the stationary distribution
is given by

π
(
(x, y)

)
= C−1ρx1ρ

y
2,
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where C is the normalizing constant, and ρi = λi/µi, i = 1, 2. For the coordinate-
wise ordering

(x, y) ≼ (x′, y′) ⇐⇒ x ¬ x′ and y ¬ y′,

with the minimal state e1 = (0, 0) and the maximal state eM = (N,N) (M =
(N + 1)2), directly from Proposition 5 in [23] we find the corresponding Möbius
function:

µ
(
(x, y), (x′, y′)

)
=



1 if x′ = x, y′ = y,

−1 if x′ = x+ 1, y′ = y,

−1 if x′ = x, y′ = y + 1,

1 if x′ = x+ 1, y′ = y + 1,

0 otherwise.

For

H(x, y) = C−1
∑
x′¬x

ρx
′

1

∑
y′¬y

ρy
′

2

= C−1(1− ρ1)
−1(1− ρ2)

−1(1− ρx+1
1 )(1− ρy+1

2 ),

we shall compute

(4.1) P∗
(
(x, y), (x2, y2)

)
=

=
H(x2, y2)

H(x, y)

∑
(x′,y′)≽(x2,y2)

µ
(
(x2, y2), (x

′, y′)
)←−
P
(
(x′, y′), {(x, y)}↓

)
.

Set
S :=

∑
(x′,y′)≽(x2,y2)

µ
(
(x2, y2), (x

′, y′)
)←−
P
(
(x′, y′), {(x, y)}↓

)
.

Note that in order to prove that
←−
X is ↓-Möbius monotone it is enough to show that

S  0. Since X is reversible, we take P instead of
←−
P in the above formula. We

shall consider all possible transitions, case by case.
• (inside lattice, up x direction)

x2 = x+ 1, y2 = y,

S =
∑

(x′,y′)≽(x+1,y)

µ
(
(x+ 1, y), (x′, y′)

)
P
(
(x′, y′), {(x, y)}↓

)
,

where µ will be non-zero only in the following cases:

µ
(
(x+ 1, y), (x+ 1, y)

)
= 1, µ

(
(x+ 1, y), (x+ 1, y + 1)

)
= −1,

µ
(
(x+ 1, y), (x+ 2, y)

)
= −1, µ

(
(x+ 1, y), (x+ 2, y + 1)

)
= 1.
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Combining these cases with the values of P
(
(x′, y′), {(x, y)}↓

)
we get

S = µ
(
(x+1, y), (x+1, y)

)
P
(
(x+1, y), {(x, y)}↓

)
− 1 · 0− 1 · 0+ 1 · 0 = µ1.

• (inside lattice, up y direction)

x2 = x, y2 = y + 1.

Proceeding as above, we get

S = µ
(
(x, y+1), (x, y+1)

)
P
(
(x, y+1), {(x, y)}↓

)
− 1 · 0− 1 · 0+ 1 · 0 = µ2.

• (inside lattice, down x direction)

x2 = x− 1  0, y2 = y.

Using the formula for S we have

S = µ
(
(x− 1, y), (x− 1, y)

)
P
(
(x− 1, y), {(x, y)}↓

)
+ µ

(
(x− 1, y), (x, y)

)
P
(
(x, y), {(x, y)}↓

)
+ µ

(
(x− 1, y), (x− 1, y + 1)

)
P
(
(x− 1, y + 1), {(x, y)}↓

)
+ µ

(
(x− 1, y), (x, y + 1)

)
P
(
(x, y + 1), {(x, y)}↓

)
= 1 · (1− λ2)− 1 · (1− λ2 − λ1)− 1 · µ2 + 1 · µ2 = λ1.

• (inside lattice, down y direction)

x2 = x, y2 = y − 1  0,

S = µ
(
(x, y − 1), (x, y − 1)

)
P
(
(x, y − 1), {(x, y)}↓

)
+ µ

(
(x, y − 1), (x, y)

)
P
(
(x, y), {(x, y)}↓

)
+ µ

(
(x, y − 1), (x+ 1, y − 1)

)
P
(
(x+ 1, y − 1), {(x, y)}↓

)
+ µ

(
(x, y − 1), (x+ 1, y)

)
P
(
(x+ 1, y), {(x, y)}↓

)
= 1 · (1− λ1)− 1 · (1− λ2 − λ1)− 1 · µ1 + 1 · µ1 = λ2.

• (inside lattice, down on both axes)

x2 = x− 1  0, y2 = y − 1  0,

S = µ
(
(x− 1, y − 1), (x− 1, y − 1)

)
P
(
(x− 1, y − 1), {(x, y)}↓

)
+ µ

(
(x− 1, y − 1), (x− 1, y)

)
P
(
(x− 1, y), {(x, y)}↓

)
+ µ

(
(x− 1, y − 1), (x, y − 1)

)
P
(
(x, y − 1), {(x, y)}↓

)
+ µ

(
(x− 1, y − 1), (x, y)

)
P
(
(x, y), {(x, y)}↓

)
= 1 · 1− 1 · (1− λ2)− (1− λ1) + 1− (λ1 + λ2) = 0.
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In a similar way it is possible to check that inside the lattice the only one
remaining movement with positive probability is the feedback movement:

• (feedback inside lattice) x2 = x > 0, y2 = y > 0,

P∗
(
(x, y), (x, y)

)
= 1− λ1 − λ2 − µ1 − µ2 = P

(
(x, y), (x, y)

)
.

• (upper border, up x direction)

x2 = x+ 1 ¬ N, y2 = y = N,

S = µ
(
(x+ 1, N), (x+ 1, N)

)
P
(
(x+ 1, N), {(x,N)}↓

)
= µ1.

• (upper border, down y direction)

x2 = x < N, y = N, y2 = N − 1,

S = µ
(
(x,N − 1), (x,N − 1)

)
P
(
(x,N − 1), {(x,N)}↓

)
+ µ

(
(x,N − 1), (x,N)

)
P
(
(x, y), {(x,N)}↓

)
+ µ

(
(x,N − 1), (x+ 1, N − 1)

)
P
(
(x+ 1, N − 1), {(x,N)}↓

)
+ µ

(
(x,N − 1), (x+ 1, N)

)
P
(
(x+ 1, N), {(x,N)}↓

)
= 1 · (1− λ1)− 1 · (1− λ1)− 1 · µ1 + 1 · µ1 = 0.

• (upper-right corner, down y direction)

x2 = x = N, y = N, y2 = N − 1,

S = µ
(
(N,N − 1), (N,N − 1)

)
P
(
(N,N − 1), {(N,N)}↓

)
+ µ

(
(N,N − 1), (N,N)

)
P
(
(N,N), {(N,N)}↓

)
= 1− 1 = 0.

• (upper border, down x direction)

N − 1 > x2 = x− 1  0, y2 = y = N,

S = µ
(
(x− 1, N), (x− 1, N)

)
P
(
(x− 1, N), {(x,N)}↓

)
+ µ

(
(x− 1, N), (x,N)

)
P
(
(x,N), {(x,N)}↓

)
= 1 · 1− 1 · (1− λ1) = λ1.

• (lower border, up x direction)

N − 1 > x2 = x+ 1 ¬ N, y2 = y = 0,

S = µ
(
(x+ 1, 0), (x+ 1, 0)

)
P
(
(x+ 1, 0), {(x, 0)}↓

)
= µ1.
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• (lower border, down x direction)

x2 = x− 1  0, y2 = y = 0,

S = µ
(
(x− 1, 0), (x− 1, 0)

)
P
(
(x− 1, 0), {(x, 0)}↓

)
+ µ

(
(x− 1, 0), (x, 0)

)
P
(
(x, 0), {(x, 0)}↓

)
+ µ

(
(x− 1, 0), (x− 1, 1)

)
P
(
(x− 1, 1), {(x, 0)}↓

)
+ µ

(
(x− 1, 0), (x, 1)

)
P
(
(x, 1), {(x, 0)}↓

)
= 1 · (1− λ2)− 1 · (1− λ1 − λ2)− 1 · µ2 + µ2 = λ1.

• (lower border, up y direction)

x2 = x  0, y2 = 1, y = 0,

S = µ
(
(x, 1), (x, 1)

)
P
(
(x, 1), {(x, 0)}↓

)
= µ2.

In a similar way we get:
• (right border, up y direction)

x2 = x = N, y2 = y + 1 ¬ N , S = µ2.

• (right border, down y direction)

x2 = x = N,N − 1 > y2 = y − 1  0, S = λ2.

• (right border, down x direction)

x2 = N − 1, x = N, y2 = y, S = 0.

• (left border, up y direction)

x2 = x = 0, y2 = y + 1 ¬ N , S = µ2.

• (left border, up x direction)

x = 0, x2 = 1, y2 = y, S = µ1.

• (left border, down y direction)

x2 = x = 0, N − 1 > y2 = y − 1  0, S = λ2.

• (absorbing state)

x2 = x = N, y2 = y = N , S = 1.

• (feedback movements)

for all (x, y) ∈ {0, . . . , N − 1}2, S = 1− (λ1 + λ2 + µ1 + µ2);

for x = N and y ∈ {0, . . . , N − 1}, S = 1− (λ2 + µ2);

for y = N and x ∈ {0, . . . , N − 1}, S = 1− (λ1 + µ1).

Now by (4.1) and using values of H(x, y), we obtain P∗ given in (3.3). �
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4.2. Proof of Theorem 3.2. Consider the coordinatewise ordering

e =
(
e(1), . . . , e(n)

)
≼
(
e′(1), . . . , e′(n)

)
= e′ iff e(i) ¬ e′(i), i = 1, . . . , n.

Again, for this ordering with minimal element e1 = (0, . . . , 0) and maximal
element eM = (k, . . . , k) (with M = (k + 1)n), directly from Proposition 5 in
Rota [23] we find the corresponding Möbius function

µ
((

e(1), . . . , e(n)
)
,
(
e(1) + d1, . . . , e(n) + dn

))
=

(−1)
n∑

i=1
di
, di ∈ {0, 1}, e(i) + di ¬ k, i = 1, . . . , n,

0 otherwise.

For H(e) =
∑

e′≼e π(e
′) = |{e′ : e′ ¬ e}| · 1/(k + 1)n, we shall compute di-

rectly transitions of the dual chain (2.2) from Theorem 2.1. Note that in order to
prove that

←−
X is ↓-Möbius monotone, it is enough to show that all summands in

(2.2) are nonnegative. We take P instead of
←−
P since this chain is reversible.

For convenience, we shall consider states of the form

e
(k)
A =

(
e
(k)
A (1), . . . , e

(k)
A (n)

)
, A ⊆ {1, . . . , n},

with e
(k)
A (i) = k if i ∈ A, and 0 otherwise. Note that there are (k + 1)|A| states

less than or equal (with respect to ≼) to e
(k)
A , and we have

(4.2)
H(e

(k)
A∪{j})

H(e
(k)
A )

=
(k + 1)|A∪{j}|

(k + 1)|A|
= k + 1 for j /∈ A.

Let us calculate transitions of the dual chain from the state e
(k)
A . We shall use

si = (0, . . . , 0, 1, 0, . . . , 0) with 1 at position i. For the probability of staying at
this state we get

P∗(e
(k)
A , e

(k)
A ) = 1 ·

∑
e≽e(k)A

µ(e
(k)
A , e)P(e, {e(k)A }

↓)

= µ(e
(k)
A , e

(k)
A )P(e

(k)
A , {e(k)A }

↓) +
∑
i∈Ac

µ(e
(k)
A , e

(k)
A + si)P(e

(k)
A + si, {e(k)A }

↓)

= 1 ·
(
1

2
+

∑
i∈A

k · 1

2nk

)
−

∑
i∈Ac

1

2nk

=
1

2
+

k|A|
2nk

− n− |A|
2nk

=
n(k − 1) + |A|(k + 1)

2nk
,

since P(e
(k)
A + si, {e(k)A }↓) = P(e

(k)
A + si, e

(k)
A ).
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Now, for the probability of transition from e
(k)
A to e

(k)
A∪{j}, j /∈ A, we obtain

P∗(e
(k)
A , e

(k)
A∪{j}) =

H(e
(k)
A∪{j})

H(e
(k)
A )

∑
e≽e(k)

A∪{j}

µ(e
(k)
A∪{j}, e)P(e, {e(k)A }

↓).

The only state e for which P(e, {e(k)A }↓) > 0 is e = e
(k)
A∪{j}, thus (using (4.2)) we

have

P∗(e
(k)
A , e

(k)
A∪{j}) = (k + 1)µ(e

(k)
A∪{j}, e

(k)
A∪{j})P(e

(k)
A∪{j}, {e

(k)
A }
↓) =

k + 1

2nk
.

This completes our argument since all other transitions have probability zero, which
is clear from the following summation:

P∗(e
(k)
A , e

(k)
A ) +

∑
j∈Ac

P∗(e
(k)
A , e

(k)
A∪{j})

=
n(k − 1) + |A|(k + 1)

2nk
+ (n− |A|) · k + 1

2nk

=
n(k − 1) + n(k + 1) + |A|(k + 1)− |A|(k + 1)

2nk
= 1.

Note that the dual chain starts at the minimal state which is also of the form e
(k)
A ,

namely with A = ∅. �
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