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Abstract. We consider a simple regression model where a regressor is
composed of order statistics, and a noise is Markov-modulated. We intro-
duce an empirical bridge of regression residuals and prove its weak con-
vergence to a centered Gaussian process. In the proof we use convergence
properties of order statistics.
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1. INTRODUCTION AND A MAIN RESULT

Brown et al. [4] proposed a test for change of regression at unknown time.
Their approach is based on computation of recursive residuals. MacNeill [11] stud-
ied a linear regression against values of continuously differentiable functions. He
obtained limit processes for sequences of partial sums of regression residuals. Later
Bischoff [3] showed that the MacNeill theorem holds in a more general setting,
namely for continuous regressor functions. Aue et al. [1] introduced a new test
for polynomial regression functions which is analogous to the classical likelihood
test. Stute [13] proposed a class of tests that are based on regression residuals.
His general approach also allows for analysing models where regressors are order
statistics.

We consider another model of a simple linear regression on order statistics
where the noise is Markov-modulated. The need for this model comes from ap-
plications. Kovalevskii [10] analysed dependence of logarithm of a car price on a
production year basing on a list of ads. The standard homoscedasticity test shows
that there is significant dependence of variance on a date of submission of an ad.

∗ The work was supported in part by Russian Foundation of Basic Researches (grant 13-01-
00661).
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Our model includes a case of heteroscedasticity by allowing of Markov-modulated
noise. Variance can variate in wide limits in an initial sequence under this model
but an asymptotic result holds true and does not depend on limiting distribution of
Markov chain.

So we have Yi (a logarithm of price in this example) that is assumed to de-
pend linearly on production yearXi and noise εvi with zero mean and non-constant
variance. Deviations of variance are modelled as Markov-dependence. Then we
reorder the data to correspond to ascending order of Xi. We need in a statistical
criterium to verify the model.

To define the model, we introduce three mutually independent families of ran-
dom variables:

1) {εvi , i > 1, 1 6 v 6 M}, a family of independent random variables where
{εvi , i > 1} are identically distributed for each v, Eεv1 = 0, Varεv1 = σ2v > 0 and∑M

v=1 σ
2
v > 0;

2) {Xi}∞i=1, a sequence of i.i.d. random variables with distribution function F
and finite positive variance VarX1;

3) {Vi}∞i=1, an irreducible aperiodic Markov chain on the finite state space
{1, . . . ,M} with stationary distribution {πi}Mi=1.

A regression model before ordering is of the form

Yi = a+ bXi + εVi
i , i = 1, . . . , n.

So we have a three-dimensional vector (Yi, Xi, ε
Vi
i ). Then we order it on the

second component (Xi) and obtain the vector (Yni, Xni, ε
Vni
ni ). Here Xni = Xi:n

is the i-th order statistic of the first n random variables X1, . . . , Xn. In particular,
Xn1 = min16i6nXi and Xnn = max16i6nXi. Values Yni, ε

Vni
ni are values of Y

and εV corresponding to Xni (that is, induced order statistics, concomitants).
We have the following regression model after ordering:

Yni = a+ bXni + εVni
ni , i = 1, . . . , n.

For this model, we introduce an empirical bridge and show its weak convergence
to a centered Gaussian process.

The novelty of our model lies in consideration of both ordered regressors and
Markov-modulated noise.

Let

b̂n =
XY −X Y

X2 −X2 , ân = Y − b̂nX

be the classical Gauss–Markov estimators for a and b. Here X = 1
n

∑n
i=1Xni =

1
n

∑n
i=1Xi, Y = 1

n

∑n
i=1 Yni =

1
n

∑n
i=1 Yi, etc. Note that a sum over all i does

not depend on order, therefore estimators coincide for models before and after
ordering.
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Define fitted values Ŷni, regression residuals ε̂ni and their partial sums ∆̂ni

by Ŷni = ân + b̂nXni, ε̂ni = Yni − Ŷni and ∆̂ni = ε̂n1 + . . .+ ε̂ni for 1 6 i 6 n,
∆̂n0 = 0. Note that ∆̂nn = 0.

An empirical bridge is a random polygon Ẑn with nodes

(
k/n, ∆̂nk/

√
nσ̂2

)
, k = 0, . . . , n,

where σ̂2 = ε̂2 is an estimator of variance σ2 =
∑M

v=1 σ
2
vπv.

Let GLF (t) =
∫ t

0
F−1(s) ds be the theoretical general Lorenz curve (see

Gastwirth [6], Davydov and Zitikis [5]), where F−1(s) = sup{x : F (x) < s} is
the inverse of distribution function F (x). Let GL0

F (t) = GLF (t) − tGLF (1) be
its centered version. Let GLn(t) =

1
n

∑⌊nt⌋
i=1 Xni be the empirical Lorenz curve.

Goldie [7] showed that, as n → ∞, the empirical Lorenz curve converges a.s. to
the theoretical curve in the uniform metric, i.e.

sup
t∈R
|GLn(t)−GLF (t)| → 0 a.s.

Now we formulate the main result of the paper.

THEOREM 1.1. The empirical bridge Ẑn converges weakly, as n→∞, to the
centered Gaussian process ZF with covariance kernel KF (t, s) given by

KF (t, s) = min{t, s} − ts−
GL0

F (t)GL
0
F (s)

VarX1
, t, s ∈ [0, 1].

Here weak convergence holds in the spaceC(0, 1) of continuous functions on [0, 1]
endowed by the uniform metric.

2. PROOF OF THEOREM 1.1

Let X0
ni = Xni −X , ε0ni = εVni

ni − ε, where ε = 1
n

∑n
i=1 ε

Vni
ni = 1

n

∑n
i=1 ε

Vi
i ,

because the sum over all i does not depend on order.
The proof includes four steps. In the first step, we show that, in the formu-

lae under consideration, the sum
∑n

i=1 ε
0
niX

0
ni/
√
n may be replaced by the sum∑n

i=1(ε
0
niEX

0
ni)/
√
n. Secondly, we prove weak convergence of a normalized vec-

tor with coordinates (∆̂nk1 , . . . , ∆̂nkm) to a normalized vector with coordinates
(∆nk1 , . . . ,∆nkm), where ∆nki are defined below. Then we prove weak conver-
gence of finite-dimensional distributions. The third step contains a proof of relative
compactness of the family {Ẑn(t), 0 6 t 6 1}. We complete with a proof of the
convergence of sample variance σ̂2 to variance σ2.

In what follows, the notation
p→ means convergence in probability.
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S t e p 1. Note that

∆̂nk =
k∑

i=1

(
ε0ni −

X0ε0

(X0)2
X0

ni

)
.

We show that

(2.1)
1√
n

( n∑
i=1

ε0niX
0
ni −

n∑
i=1

ε0niEX
0
ni

) p→ 0.

Theorem 1 together with Theorem 2 in Hoeffding [8] imply 1
n

∑n
i=1VarXni → 0

as n→∞. Note that VarX = VarX1/n, and

1

n

n∑
i,j=1

cov(Xni, Xnj) =
1

n
Var

n∑
i=1

Xni = VarX1.

As
∑n

i=1(X
0
ni −EX0

ni) = 0, we have

n∑
i=1

ε0ni(X
0
ni −EX0

ni) =
n∑

i=1

εVni
ni (X0

ni −EX0
ni).

Due to Chebyshev’s inequality, we get

P

{∣∣∣∣ 1√
n

n∑
i=1

εVni
ni (X0

ni −EX0
ni)

∣∣∣∣ > δ

}
6

Var
n∑

i=1
εVni
ni (X0

ni −EX0
ni)

nδ2
.

As {εVni
ni } are conditionally independent for fixed {Vni} and do not depend on

{Xni}, we have

Var
n∑

i=1

εVni
ni (X0

ni −EX0
ni) =

n∑
i=1

VarεVni
ni Var(X0

ni −EX0
ni)

=
n∑

i=1

VarεVni
ni VarX0

ni.

VarεVni
ni have an upper bound and

n∑
i=1

VarX0
ni =

n∑
i=1

VarXni − 2
n∑

i=1

cov(Xni, X) + nVarX

=
n∑

i=1

VarXni −
2

n

n∑
i,j=1

cov(Xni, Xnj) +VarX1

=
n∑

i=1

VarXni −VarX1 = o(n).
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Thus
1

n
Var

n∑
i=1

εVni
ni (X0

ni −EX0
ni)→ 0,

so (2.1) is proved.
S t e p 2. Let ⌊t⌋ be the integer part of t. For any fixed m and for 0 6 s1 <

. . . < sm 6 1, ki = ⌊nsi⌋, we establish the weak convergence, as n→∞, of the
vector η⃗ = 1

σ
√
n
(∆̂nk1 , . . . , ∆̂nkm) to the vector Z⃗F =

(
ZF (s1), . . . , ZF (sm)

)
.

By (2.1) and by the convergences

(X0)2 → VarX1 a.s. and
1

n

ki∑
i=1

X0
ni → GL0

F (si) a.s.

(see Goldie [7]), it is enough to prove ζ⃗ ⇒ Z⃗F , where

ζ⃗ =
1

σ
√
n
(∆nk1 , . . . ,∆nkm),

∆nkj =
kj∑
i=1

ε0ni −
GL0

F (sj)

VarX1

n∑
i=1

ε0niEX
0
ni =

kj∑
i=1

ε0ni −
GL0

F (sj)

VarX1

n∑
i=1

εVni
ni EX0

ni.

We prove the weak convergence ζ⃗ ⇒ Z⃗0
F using the characteristic function

φ
ζ⃗
(⃗t ) = E

m∏
j=1

exp

(
i
tj∆nkj

σ
√
n

)
.

Notice that

m∑
j=1

tj

( kj∑
i=1

(εVni
ni − ε)−

GL0
F (sj)

VarX1

n∑
i=1

εVni
ni EX0

ni

)

=
n∑

i=1

εVni
ni

m∑
j=1

tj

(
I{i 6 kj} −

kj
n
−
GL0

F (sj)

VarX1
EX0

ni

)
.

It is well known that the finiteness of Eψ1 implies the convergence ψn:n/n → 0
a.s. and in mean for a sequence of i.i.d random variables ψ1, . . . , ψn, and, more
generally, for a stationary ergodic sequence as a consequence of the subadditive
ergodic theorem (see Kingman [9]).

Applying this fact and using Hölder’s inequality we have EX0
ni = o(

√
n) uni-

formly in 1 6 i 6 n.
Let

βni =
m∑
j=1

tj

(
I{i 6 kj} −

kj
n
−
GL0

F (sj)

VarX1
EX0

ni

)
.
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Then βni/
√
n→ 0, and

n∑
i=1

β2ni
n
→ CF :=

m∑
j1=1

m∑
j2=1

tj1tj2KF (sj1 , sj2).

As for any 1 6 v 6M , t→ 0 it follows that

E exp(itεvni) = exp

(
−1
2
t2Varεvni

)(
1 + o(1)

)
,

and VarεVni
ni → σ2 as i, n→∞, we have, by integration on Markov chain distri-

bution (as in Step 1),

φ
ζ⃗
(⃗t ) = E

n∏
i=1

exp

(
i
εVni
ni βni
σ
√
n

)
= exp

(
− 1

2

n∑
i=1

β2niVarεVni
ni

nσ2

)(
1 + o(1)

)
→ exp(−CF /2).

Consequently, we have φ
ζ⃗
(⃗t ) → exp(−CF /2). Thus, the convergence of finite-

dimensional distributions is proved.
S t e p 3. We show that the family of distributions {Ẑn(t), 0 6 t 6 1} is rela-

tively compact.
Let Snk =

∑k
i=1Xni, k = 1, . . . , n, Sn0 = 0.

By Prokhorov’s theorem (see Section 1 §6 in Billingsley [2]) it suffices to show
that the family of distributions of random processes {∆̂n,⌊nt⌋/(σ

√
n), 0 6 t 6 1},

n = 1, 2, . . . , is tight. Put k = ⌊nt⌋ and let

∆̂0
nk =

k∑
i=1

(
εVni
ni −

X0ε0

(X0)2
Xni

)
.

Then ∆̂nk = ∆̂0
nk −

k
n∆̂

0
nn.

As {εvni} are i.i.d. for any v, the invariance principle implies the tightness of
the family

{(∑⌊nt⌋
i=1 ε

v
ni

)
/(σ
√
n), 0 6 t 6 1

}
for any v ∈ {1, . . . ,M}. Thus the

family
{(∑⌊nt⌋

i=1 ε
Vni
ni

)
/(σ
√
n), 0 6 t 6 1

}
is tight. The invariance principle for

this Markov-modulated sequence goes from Corollary 3.9 in McLeish [12].
So, it is enough to establish the tightness of{

X0ε0
√
n

σ(X0)2

Sn,⌊nt⌋

n
, 0 6 t 6 1

}
.

In turn, by Theorem 8.3 in Billingsley [2], it suffices to prove that, for any
ε > 0, α > 0, there are 0 < δ < 1, n0 ∈ N such that, for all n > n0, 0 6 t 6 1,

(2.2)
1

δ
P

{
sup

t6s6t+δ

∣∣∣∣∣X0ε0
√
n

σ(X0)2

Sn,⌊ns⌋ − Sn,⌊nt⌋
n

∣∣∣∣∣ > ε

}
6 α.
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Notice that (X0ε0
√
n)/σ(X0)2 ⇒ ζ/

√
VarX1, and (see Goldie [7])

sup
t6s6t+δ

∣∣∣∣Sn,⌊ns⌋ − Sn,⌊nt⌋n

∣∣∣∣→ sup
t6s6t+δ

|GLF (s)−GLF (t)| a.s.

Here ζ is a standard normal random variable and GLF (x) is the general Lorenz
curve.

By the Cauchy–Bunyakovsky inequality,

sup
t6s6t+δ

|GLF (s)−GLF (t)| 6 sup
t6s6t+δ

s∫
t

|F−1(x)|dx 6
√
δEX2

1 .

Thus, one may choose a positive δ that satisfies (2.2).

S t e p 4. It remains to prove σ̂2
p→ σ2. Indeed, ε = 0, Xε

p→ 0, ε2
p→ σ2, and

ε̂2 =
1

n

n∑
i=1

(Yni − â− b̂Xni)
2

=
1

n

n∑
i=1

(
εVni
ni −

Xε

X2 − (X)2
(Xni −X)

)2

= ε2 − (Xε)2

X2 − (X)2
p→ σ2.

This completes the proof of Theorem 1.1.
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