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SEQUENTIAL ESTIMATION FOR THE SPECTRAL DENSITY
PARAMETER OF A STATIONARY GAUSSIAN PROCESS

BY

RYSZARD MAGIERA (Wrocraw)

Abstract. In this paper we consider the problem of sequential
estimation for- the stationary zero-mean Gaussian process whose
spectral density is of the form [2n(A%+9%)]"!, where 3> 0 is an
unknown parameter. We find the class of Markov stopping times
‘determining optimal sequential estimation plans for a given function
g(F. A sequential plan is optimal if the lower bound in the inform-
ation inequality is attained. Moreover, the form of efficient sequen-
tial estimators is derived and the class of efficiently estimable func-
tions is investigated.

1. Preliminaries. Let £(f) = &4(f), te T =[0, o0), be a separable stat-
ionary zero-msan Gaussian process with the spectral density '

1
1) AN=r—5—3, —0<i<ow,
where 3eD = (0, o0) is an unknown parameter. Such a process is a Markov
one and has continuous sample functions with probability 1. The covariance
function of the process &(t), te T, is defined by

By (1) = *,f e gg(A)di = (29)™ " exp (—91t)

and the variance of this process is equal to By(0) = (29)~ 1.

The processes {{4(t), te T}, $eD, can be determined in the following
way. Assume that W(t), teT, is a Wiener process on a probability space
(2, #, P) and X is a random variable on (Q, &, P), independent of W (t),
te T, and standard normally distributed. Let &, =6 {W(s),s<t; X} be a
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family of o -algebras. Then, for every 3eD, a unique solution &(t) = &(1),
te T, of the stochastic integral equation

t : 1
@ EW)—,(0) = -3 [s()ds+W (), ¢(0)= 3

considered with respect to W(t), te T, and #,, is the process with the above -
mentioned properties.

~In the sequel, if no ambiguity arises, we omit the index 9 and wrlte
simply &(t), teT. -

2. Sufficient statistics. An equivalent model of the processes {{,(t), te T},
9€D, obtained by the canonical form will be useful in our considerations.
Let C be the space of all continuous real - valued functions x = x(¢), teT,
and let € = o {x = x(t), te T} denote the minimal ¢ - algebra consisting of all
cylinder sets of C. By uy we denote the measure on (C, %) corresponding to
the process &,(t), teT:

ps(B) = P(¢5()eB), Beé.

Let py, be the truncation of the measure u, on

€ =o0{x=x(s),s<t,s, teT}.

Let us consider the sequential statistical space (C, €,, {y,, 3€D}), teT,
corresponding to the family of processes {&,(t), te T}, $€D. Let R be the
real line and let %, denote the g-algebra of Borel subsets of R. A function
Z(t, x): T x C - R* such that for every te T the mapping Z(t, *) is (%,, Bgs)-
measurable will be called a (k-dimensional) statzstzc on the space
(C (gts {/‘3:9 SED})’ teT.

LEmMMA 1. (a) The statistical space (C, €,, {15 SGD}) teT, is dommated .

‘by a measure pg, for some 3o€D.

(b) The densities dug/dp,,, are defined by

3) ;ﬂs" (x)=eXp{ [log 3—log 9o —(8—90)Z, (t x)— ('92 R Z, (¢, x)]}

S0t
=h(Z(t,x); 3, 9%), xeC,

where Z(t, x) = (Z,(t, x), Z,(t, x)), and

@ Z,(t, x) = x*(O)+x2 (1) —t,

5) .  Zy 9= (%2 ds.
. 0
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(c} The staﬁstic Z(t, x)=(Z,(, 'x), Z,(t, x)) with Z,(t, x) and Z,(t, x)

defined by (4) and (5), respectively, is a (two - dimensional) sufficient statistic on

the space (C, €,, {yg,, 3€D}), teT.

Proof. Using the results on absolutely continuous substitution of
measures [4] or the Skorohod theorems [6] we get (a) and the formula

s (2, ()

d 301

A=‘Pso (855(0); 9) C’EP.,[;_*

©

(83— 9)°

I &3, (5)ds =(8—30) I Ca0(8) dW(S)J

where pg (-; 9) denotes the distribution density of values of the process &, (t),
te T, at time t = 0 relative to this distribution for the process &5, (1), 1€ T. The
function py (-; 9) is defined as pg (-5 8) = p("; 9)/p(:; I0), where p(:; 9) is the

dlStI‘lbIlth]:l density of values of the process &4(t), te T, at time ¢t = 0. We
have

1 2 (O
Pliso(®: 8 =—— exp [—E%‘ ’J,

. O/ eT 203
where 62 =(29)"! is the variance of the process &g(t), te T. Thus
0] Pso(830(0); 9) = (8/90)"? exp [—(3—84) &3, (0)].

From Ito’s formula for processes satisfying equation (2) we obtain

® - [Eso()dW (s) = 3[&3, (00— &3,(0)— ]+ 90.!} £3,(s)ds.
0
Substituting (7) and (8) into (6) we get
dﬂa ]
d 30 ) (‘fﬂo( ))

= exp {3[log §—log o—(3—80) (£, (0 + &y (0 —1) (82~ 89 [ &, )]},

which is equivalent to (3).

(c) follows from the Fisher - Neyman theorem on factorlzatlon (see, eg.,
[2], Chap. II, §2)

3. Absolute contlnulty of the measures generated by a Markov- stopping
time and a sufficient statistic. Let 7 = t(x) be a finite Markov time with
respect to the family %,, te T, ie., 1: C — [0, o] so that {x: t(x) < t} €%, for
every te T-and py({x: 7(x) < o0})=1for all 9eD. Let U = T xR? and let ¢
= t(u) and z = z(u) = (z(u), z,(4)) be the components of the point ue U. The
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pair Z (x) = (t(x), Z(z(x), x)) of %, - measurable functions generates for every
9eD the measure my on (U, &) in the standard way: for every Aedy,

my(A) = pg (2~ 1(A)) = pg(( (%), Z(x(x), x))e A).

LemMA 2. For every finite Markov time 1 there exists a o - finite measure m,
on (U, By) independent of 3 and such that for every Ae By and every 3eD

©® mg(A) = £ exp {3 [log 9— 9z, (u)— 9° z, ()]} m. (du).

Proof. From the ‘modification of the Sudakov lemma obtained in [5] for
right-continuous functionals it follows that the measures my,, 9eD, are
absolutely continuous with respect to mg, and

dmg
dmg |

(W) = h(z(u); 3, 9),

ie. (see formula (3))

dmy
dm

S0

(u) = exp {z[log 8 —log 9 — (9 — ) z; () — (9> — 85) z, ()]} -

Introducing the measure m, defined by
m, (du) = exp {}[ ~log 8o+ 8oz; () + 932, ()1} m (du)
we complete the proof.

4. Sequential plans. Let g(3) be a real-valued function of the parameter
SeD. We observe the process &(t), te T, up to time 7 and want to estimate
the function g(9). A (#y, %) - measurable function f: U — R will be called
an estimator for g(9).

Definition. By a sequential estimation plan for g(3) we mean any pair &

.= (t, f) consisting of a Markov time 7 satisfying, for all $e D, the condition

(10) _ P(0<t(&) <) =1

(1)  Eyf3(Z(®)= J.f* @) exp (3 [log 8- 8z, (u)— 97230} me(d) < o0

and

12 Eyf(Z©)= lfl () exp {3[log §— 9z, () — 9z, (u)]} m, (du) = g (9).

It follows from (10) that the observation of the process £(f), teT,
terminates in a finite time. Condition (12) means that f is an unbiased
estimator for g(9). E
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From (10) and Lemma 2 we have
(13) fexp (4 [log 9 — 9z, (u)— 9% 2, W]} m, (du) = 1
U

for every SeD. ' ,
For simplicity, in the sequel we put Z,(r) =Z,(z(¢), {) and Z,(7)
=Z,(2(2). 9).
Now, we formulate the followmg regularity conditions:
(i) g(9) is differentiable and not identically constant on D;
(i) 0 < Eg[§—2Z,(1)—29Z,(1)]* < o for every 3eD;

(iii) the differentiation and repeated differentiation of the 1ntegral with -

respect to 9 in identities (12) and (13), respectively, is allowed;

(iv) E¢Z,(7) is a differentiable function of the variable 9eD.

Lemma 3. If the regularity conditions (i)-(iv) are satisfied for a sequential
plan (z, f), then the following identities hold:

(14) 292Ey Z, (1) = 1—-9E, Z, (1),

(15) 92E4[1/8—Z,(t)—29Z ()] = 492 E4 Z,(1)+ 2,

(16) Ey {f(t, Z@)[1/9-Z,(x)—28Z, ()]} = 29’ (9),

(17) Ey{Z,(0)[1/8—~Z,(1)-28Z,(v)]} = 2E5Z, (),

(18) $DyZ, (1) = 49° Dy Z,(1) +49°Ey Z, (1) + 89° B4 Z, (1) + 2

(Dg(*) denotes the variance evaluated at 9).

A simple proof of Lemma 3 is omitted. Identity (18) is obtained from (14),
(15), and (17).

Using (14)-(16) and the Schwarz inequality we obtain

THEOREM 1. For every sequential plan (z, f) satzsfymg conditions (1) - (iii)
the inequality

29°[g'(9]*

, 1429%E, Z,(7) .
holds for all 3 D. The equality holds at a particular value of 3 if and only if
(20) - f (u) = c(PH[1/3—2z, (u)—2.922(u)]+g(.9) m.-ae, where c(3) #0.

Condition (i) implies that a sequential estimation plan (z, f) for g(9)

cannot consist of the estimator f(u) = const m,-a.c. Indeed, if f(u) = const
m,-a.e., then Ey f(t, Z (7)) = const = g(9) for all $eD, which contradicts the
assumption.

A sequential estimation plan (r, f) for g(9) is said to be efficient at (a
fixed value) 9 if (19) becomes equality at 9. The estimator f is then called
efficient at this value 3 and the function g(9) is efficiently estimable at the
point 3.

(19) Def(r, Z(@) >
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A sequential estimation plan (z, f) for g(9) is said to be efficient if it is
efficient at each 3e D. The estimator f is then called ejﬁczent and the function
g(9) is efficiently estimable.

It follows from Theorem 1 that a sequential estimation plan (z, f) for
g(9J) is efficient at a point 3 if and only if the estimator f is of the form (20).

THEOREM 2. If (1, f) is an efficient sequential estimation plan for g(9), then
there exist constants a,, a, not both equal to zero and a constant ay such that

(21) oz (W)t ayz(u)+ay =0 m-ae.

Proof By assumption we can choose points 3, and 92 m D (9 #9,)
and-then we write equality (20) in the form

£ = c(9)[1/9; — 2, (W)~ 28, z, ()] +4(8,) m, -a%.
and ‘
F (W) = (85 [1/9;— 2, () — 29, 2,)] +9(9;) m,-a.e,

where ¢(9,) and c(9,) are both different from zero.
Subtracting one equality from the other we obtain

[e(32) = c(31)]z1 (W) +2[92¢(92) — 91 c(S1)] z2 () +
+c¢(31)/9,—¢c(3:)/%:+9(31)—9g(3;) =0 m,-ae,
which completes the proof.

THEOREM 3. In a given sequential plan (z, f) the function g(9) is efficiently
estimable at a point 3 = 9° if and only if it is of the form

(22) g(9) = c(89{1/9°~1/8-2(8°- 9) Es [Z, (1)1} +4(3°).

Proof. By Theorem 1 the only efficient estimators at a point 3 = 3° are
those which take the form '

(23) F(2) = c(8)[1/98°-Z,(1)-29° Z,(1)] +4(3°)
with probability. 1, where ¢(3°) # 0. Thus the function g(9) is efficiently
_estimable at 9 = 8° if and only if it is equal to the expected value of the
estimator deﬁned by (23). Therefore

9= Es LS (2)] = c(9°H1/9°— B4 [Z, (1) - 28° B4 [Z, (1)1} +4(9°).
Hence, making use of (14) we obtain (22), which completes the proof.

THEOREM 4. If in a given sequential plan (t, f) the function g(9) is

efficiently estimable, then it must be of the form
ko+k; 9+k, 92

L9+1,9% °

where ko # 0, and ki, kz, L, 1, are arbitrary constants.

(24 EETOE
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Proof. Suppose that 3, and 9, belong to D and 9, # 9,. Since the
function g(9) is efficiently estimable at these points, it follows from Theorem
3 that the equalities

g(9) = c(3y) {1/9,-1/9-2(8, — N E3 [Z, (1)1} +4(9))
and
- g(9) = c(87) {1/9,—1/9~2(8,— 9 E4 [Z5(x)]} +4(9,)

must __hold. Eliminating Eg[Z, (7)] from these equalities we get

9918, c(9)—9;¢(9)+[c(8)— (818} = 872 e(8)c(9;) (3, = 9))+
T+ 93 c(9)(1/81 ~1/8,) +c(92)9(31)—<(81) g (9)]+
+¢(81)€(92)(81/92— 92/91) + 9, ¢(81)9 (92) — 92¢(92) 9 (91)-

Since neither c(9;) nor c(9,) can be equal to zero, the coefficients
=9, c(%)—8,¢(9,) and I, = c(3,)—c(IJ;) cannot vanish simultaneously and
ko = c(3,)c(9,)(8,—9;) #'0. Thus the function standing by g(9) in the
above-given equality cannot vanish and, consequently, by a proper choice of
coefficients we obtain formula (24). 4

It follows from Theorem 2 that one should seck the effiCient sequential
plans for a given function g(9) from the class described in Theorem 4 among
the plans determined by Markov stopping times for which (21) holds.

Let us consider the Markov times

(25) W) =inf {t: Z,(t, ) =a},
(26) D (x) =inf {t: Z,(t, ) =b}, 0<b<oo,
27 @ (x) = inf {t: Z,(t, %) = ¢; Z1 (¢, )+¢3},

where a, b, ¢;, c;, are boundaries given in advance and Z, (¢, x), Z,(t, x) are
defined by (4), (5), respectively. A sequential plan determined by 7 will be
called a fixed - energy plan. ' '
Observe that from Ito’s formula for processes satisfying the stochastic
integral equation (2) it follows that the relation. :

(28) __ Z,(t, 0= 2}52 (0)—29Z,(t. O+21(t, §)

holds with probability 1, where I(t, £) denotes the stochastic integral
[E@aW ).

" LEmMMa 4. If —o0 <a <0, then

(29) . By <o

Jor every n=1,2,... and all 3eD.
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Proof. Observe that (sec formula (4) and Fig. 1)
D (&) =inf {t: E2(0)+LE2(t) = t+a)}

and

PED(@) > ) < P(EO)+E®) > t+a)

< p(cZ(O) > 5“;—)+P(52(t) ;“)

AL 0)+£%)

2£%(0)

o) /a[ L1

Fig. 1

S

Y

~r

&

Since the process £(t), t€ 7, is stationary, the terms on the right - hand side of
the above inequality are equal. Thus

(30) PEVQ > )< 2P(¢2(0) ";“).

Takmg into account the fact that the randon variable 6 (0) is normally
distributed with mean zero and variance (29~ ! and using the mequahty

P(X|> A <2(/2n ) texp (=447, 7 4>,

for the standard normally distributed random variable X, from (30) we:
obtain

P(x® (&) > 1) < 2P(/29[E(0) > \/9(t+a)
<42n9(t+a)] Yexp [—19(t+a)]

for t > |a|. Consequently, putting k = 4(219)" 2 exp (—~49a) we have
31 Pz > t) < k(t+a)" 2 exp (—399),
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which implies

T " PPV (&) > t)dt < o
Ja)

for all 9eD. Thus the lemma is proved.

In particular, it follows from Lemma 4 that for — o < a <0 condition
(10) of the closedness of a sequential plan (z'V), f) is satisfied. Henceforth, we
shall suppose that — o0 <a < 0.

THEOREM 5. A sequential plan 6V = (zV), V) with
G . T Y=Z,6Y)+,
is efficient for

A (1—a%)+24, 8
292 ’

G g(%) =

where A, # 0 and A, denote arbitrary constants. The variance of the estimator

SN is equal to -

A2(2—a9)

298¢
Proof. First we show that EgZZ(:'V) < o0 for all $eD.
Using the Schwarz inequality we get

(1)
BoZy(") = E, | &()ds = Ey jx[s\,u,,«: (s)ds

G4 D, f* =

<l I(Es x[.,g,(l),)mds = I_[ [P(tﬂl(fs) > S)]llzds,
0 0

where y, denote the indicator function of the set 4 and I = (E, é“(s))” ’isa
positive and finite constant. Thus, by (31), we obtain E; Z, (1) < oo for all
e D. Then it follows from the properties of stochastic integrals with random
upper limits (see, e.g., [3], Part I, § 4) that EgI(z*") =0 and

(35) Es I*(cY) = By Z,zV).

For the sequentlal plan 6 we have Z, (1Y) =a with probablhty 1, and
formula (28) implies that for this plan the relation

29Z, (e V) +a = 2820+ 21 (x*V)
is valid with probability 1. Taking into account (35) we obtain
Es[29Z, (1Y) +a]? < 8E4 £4(0)+8E, I (+V)
= 8E‘g 64 (0) +8Es Zz (T(l)).
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Since Ey&4(0) < o0 and EyZ,(1V) < oo for all €D, ‘we have EyZ3(zV)
< oo for all 3eD. _

Taking into account the finiteness of Eg ZZ(r™") it is easy to verify that
regularity condition (iii) is satisfied for the plan 6.

By (14) and (18), for the plan 6 we have

1—ad
(36) Eﬂ Zz (T(l)) = 2‘92
-and ' )
T I 2—ad
EY) ' _ Dy Z,(:) = 794 °

and formula (34) follows from (37). e

Now we shall prove that an efficient sequential estimator f (), Z (")) in
the plan 6V is indeed of the form defined by (32) and the function (33) is the
only efficiently estimable one in this plan.

Let f(z*), Z(r'Y)) be an efficient estimator in the plan 6. Then it is
- efficient at a certain point 9; €D and, by Theorem 1, takes the form

D, ZEV) =c(9,)[1/%—a—2% Z, (T(l')] +g(3y)
with probability 1, where c(9;) # 0. Hence, if f(z'V, Z(z'?)) is an efficient
estimator, then there exist constants 4; # 0 and 4, such that
| FED, Z@ D) = 4 Zo (V) +4; = £,
Moreover, only the function
(8) | g(9) =Es fP = 4 B Z,(: )+ 4,

is efﬁciently estimable in the plan 5. By (36), from (38) we obtain (33),
which completes the proof of the theorem.
In particular, it follows from Theorem 5 that
)

Z,@) = | &(s)ds
AR

is an efficient sequential estimator for g(9) = (1 —?19)/2.92.
‘Let us now consider the fixed -energy plan. From the ergodic theorem we
obtain the following lemma: '

Lemma 5. We have
(39) .. PE?P(¢)<o)=1 for all $eD.

THEOREM 6. A sequential plan 8 = (z'?, f®) with
49 . SO =4 Z D)+,
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is efficient for

A (1=2b8Y) 41,9
@) gy < LZ BRI TA2,

where A, # 0 and A, are arbitrary constants. The variance of the estimator f*
is given by

213

92
Proof. In the plan 3 we have Z,(z®) = b with probability 1, and

relation (28) takes the form

42) Z, (?)— 282 (0) = 21 (z'?)— 2b3. -

Since

D, f® = =1 (1+2b93).

2(2).
EsZz(T(z))=E‘g j fz(S)dS=b<w,
0 .

using the properties of stochastic integrals with random upper limits ‘and
relation (42), we infer in an analogous way as in Theorem 5 that E, Z%(z?)
< oo for all 9eD and the regularity conditions for the sequential plan are
satisfied. . ' :

By (14) and (18), for the plan 6® we have,

1—2b9?

43) ' EsZ, (Tm) =
and

2
D_g Zl (T(z)) = "F(l + 2b!92).

Let f (z'?, Z(1?)) be an efficient estimator in the plan 6. Then, similarly
as in Theorem 5 we infer from Theorem 1 that it is equal with probability 1
to the estimator defined by (40). By (43) we have :

2 (1-2b9%)+ 1,9
9

By f® = 4By Z, (1) 41, = =99

Thus the fixed -energy plan 62 is efficient and g(9) defined by (41) is the
only efficiently estimable function in this plan.

By Theoreni 6 we conclude that, e.g., Z; (v'¥) = £2(0)+&*(z'¥)— ! is an
efficient sequential estimator for g(9) = (1-2p8H 971

LemMMA 6. If ¢; >0 and ¢, > 0, then

@) P (&)< oo)=1 for all 9¢D.
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Proof. Let us observe that, by (28),
(&) =inf {r: (1+2c, \9)]'62 (s)ds—2c, jf(s)dW(s) = 2¢,; E2(0)+c,}.

Putx =142, & and B =2c,. It is easy to see that condition (44) is satisfied
if, for all 3eD,

P(lim [a féz(s) ds— ﬁj'f(s)dW(s)] ©) =

t—'oo

Let

lim sup [a 552(s)ds ﬁIé(S)dW(S)] n.
To—® 0SISTg

Then for every K > 0 and all 9eD we have

(45) P(rz?K)?P( sup [aj«fz(s)ds—ﬁj'f(s)dW(s)]?K)

> Pla Iéz(S)ds p sup. Hé(S)dW(S)I

O0=t<T 00
To

> P jfz(s)ds>2K p supT Hé(s)dW(s)l<K
o<r< 0
To

> P j' iz(s)ds>2K)+P(ﬁ sup |j§(s)dW(s)| < K)—-

01T 00

Let T, = K32, Then

a K 2
P(a jfz(s)ds 2K) = P(K3/2 j{z(s)dSZ—ﬁ)

and by the ergodic theorem this probability tends to 1 as K — 0. Moreover,

from the well-known inequality for stochastic integrals (see, eg, [1],

Theorem 5.1.1, or [3] Part 1, § 3) we get

g e ﬁv
P( sup Hé(s)dW(s)l )> 1—-— j E, E2(s)ds = 1———,
~ 0<I<Tg \/E

where y = Eg €?(s) = (29)~ L. Thus the second probability on the right - hand
side of (45) tends also to 1 as K — oo. We then have P(yp = o0) = 1, for all
3eD, which proves the closedness of the plan.

I wish to thank Dr. L. Partzsch for his helpful comments and discussions.
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