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Abstract. It is shown that the class of best unbiased estimators 
can be characterized by two necessary a-fields Y and 4V. The "large" 
r-field Y is a makeshift of the minimal sufficient 0-field whereas 
the "small" a-field % is a makeshift of the maximal complete 
u-field. Each estimator which is best unbiased for a strictly convex 
loss function is 9-measurable. Every @-measurable estimator is best 
unbiased for arbitrary convex loss. Relations of properties of 9' 
and @ with the structure of the class of best unbiased estimators 
and with properties of universal loss functions are investigated. 

1. Introduction. Let (T, d, 8) be a statistical space. Since the fundamental 
paper [ll] of Lehmann and Schefli was published in 1950 it has been 
known that if the minimal sufficient and complete a-field A exists, then 
(in view of the Rao-Blackwell theorem) for each estimable function of para- 
meters there exists a unique A-measurable estimator which is uniformly 
best unbiased for an arbitrary convex loss function. In 1957 Bahadur [I] 
investigated the structure of estimators which are best unbiased for quadratic 
loss functions. He proved, making no assumptions on the existence of the 
minimal sufficient and complete rr-field, that there exists a necessary cr-field 
9 such that each'@-measurable estimator has the uniformly minimum variance. 
In 1970 Padmanabhan [14] and in 1972 Strasser [21] noted that the 
@-measurable estimators are uniformly best unbiased for an arbitrary convex 
loss function. In 1970-1974 Padmanabhan [14], Schmetterer [la]-[20], 
Strasser [20], [21], Linnik [7], [12], Klebanov [5]-[7] and Ruhin [7], [12] 
proved several characterizations of %-measurability. Their theorems state 
that if some additional conditions are satisfied and an estimator is uni- 
formly best unbiased for a strictly convex loss function of a special form, 
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then this estimator is uniformly best unbiased for each convex loss function. 
Loss functions having such a characteristic peculiarity have been called 
universal loss functions (see [5] and [6]) .  Moreover, there was a hope that 
each strjctly convex loss function is universal or, at least, that universal 
loss functions include a large class of convex loss functions (cf. [21], 
Remark 4.9, and [18J, Section 5). It is true that the situation was not 
too clear and that the Bahadur a-field Q had very interesting properties. 

In 1978 Bednarek-Kozek and Kozek [2] showed that there exist statistical 
spaces for which very natural strictly convex loss functions are not uni- 
versal. On the other hand, Proposition 3.5 in [8J suggested that the 
maximal necessary a-field 9 is important for the theory of unbiased 
estimation. z - 

In Section 2 we show that in the general case, where the minimal 
sufficient and complete a-field does not exist, two necessary a-fields Y 
and %(&'I describe the structure of the class of best unbiased estimators. 
The "large" a-field Y is the greatest necessary u-field for (T, d ,  9) and is 
related to sufficiency. Each estimator which is uniformly best unbiased for 
a strictly convex loss function is Y-measurable (Theorem 1). The "small" 
g-field %(&) depends on the class d of considered estimators and is related 
to the completeness. An estimator in C is %(&)-measurable if and only if 
it is uniformly best unbiased for an arbitrary convex loss function (The- 
orem 2). If I is the class of all square integrable estimators, then %(&') 
coincides with the original Bahadur's a-field. If the minimal sufficient and 
8-complete a-field exists, then both g-fields Y and a (&)  coincide. The- 
orem 2 was known previously, at least in the case of real-valued estimators 
and in connection with universal loss functions ([20], Satze 1 and 2; see 
also [5]-[7], [12], 1141, [18]-[21]), Our proof is valid for estimators with 
values in a Banach space and differs from the previous ones. 

Moreover, we answer the following questions concerning relations between 
the considered necessary 0-fields Y and 4(6) and the class of estimators 
which are best unbiased for a strictly convex loss function: 

1. Is a-field Y sufficient whenever a(&) = b ?  The answer is negative 
(Example 1). 

2. Does there exist for each Y-measurable estimator x, (-)E 8 a strictly 
convex loss function such that xl (.) is uniformly best unbiased? The answer 
is negative (Example 2). 

3. Suppose that for a given statistical space and for each Y-measurable 
estimator x ( . )EC there exists a strictly convex weakly dilTerentiabIe loss 
function for which x( - )  is uniformly best unbiased. Is it true that 9(8) 
= b? If X = R ,  the answer is affirmative (Theorem 3). 

In Section 3 we consider -universal loss functions for a given statistical 
space (in Linnik's sense) and universal loss functions which are not related 
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to any particular statistical space. We show (Theorem 5) that the class 
of loss functions universal in the second sense coincides with the known 
class of universal loss functions considered by Klebanov [ 5 ] ,  161, Schmet- 
terer E18-J-[20] and Strasser [20], [21]. Our proof is valid, however, only 
if values of considered estimators are in R, so the problem remains open 
in the general case of Banach spaces. Moreover, we answer the following 
problem posed by IUebanov: 

4. Suppose that in a given statistical space every strictly convex loss I 

function is universal ic Linnik's sense. Does there exist a minimal sufficient 
and complete a-field? The answer is negative (Examples 1 and 3). 

Finally, note that the Lehrnann-Scheffi-Rao lemma proved in [9] provides 
a basic tool for problems considered in the present paper. 

2. Necessary 0-fields % (8) and 9. We denote by (T, d ,  P) a statistical 
space, where T is a set, d is a n-field of subsets of T, and B is a class 
of probability measures on -d. A subset A of T is called 9'-null if there 
exists an A,  E d such that A c A, and P (A,) = 0 for every P E 9'. If P E 9' 
and a is a g-subfield of d, then we denote by ap the completion of 94 
with respect to P. A a-field 98 is called 8-complete if 

All a-fields we shall consider (thus d itself also) are assumed to be 
9-complete. We use the notation e x ( - )  both for a version of the con- 
ditional expectation of x(.) given a 0-field 9 and for the class of all such 
versions. So, we write x ( - )  = E"Bp x I-) or x (.) E x(.), respectively. IA ( a )  

stands for the indicator function of the set A. If (t  E T: xl (t) # xz (t)) is 
a 9-null set, we write x, (.) = x, (.) 9-a.e. 

We assume that the set X of decisions for a statistician is a separable 
Banach space and that Y, the dual space of X, is also separable. Certainly, 
the most important case is that where X is the space of real numbers R. 
However, the majority of arguments used in the paper remain valid with 
no change in a more general situation. Moreover, this somewhat more 
general framework leads to no complication of reasoning and formulas. I 
So, it seems more convenient to present the results of the paper in the 
general case. The assumptions on the separability of X and Y are imposed 
in order to avoid difficulties as to measurabilities of functions with values 
in X and Y. This does not exclude the most important infinite-dimensional 
spaces useful, e.g., in the estimation of density functions of probability 
measures on Borel subsets of Rn. 

Denote by d a set of considered estimators, i.e., a class of d-measurable 
functions from T into X which are Bochner P-integrable for every P E P .  
We assume that d fulfils the following conditions: 

E l ,  d is a vector space. 
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E2. Each d-measurable function which takes values in a compact subset 
of X is an element of 8. 

E3. If x ( - )  E b and { t  E T: x, (t) # x (t)] is a 8-null set, then x, (.) E 8. 
E4. If x (.) E fP and 9 is a sufficient u-field for (T, d ,  91, then I? x ( -1  €8. 
E5. If x (.)E b and q ( . )  is a real bounded &-measurable function, then 

V ( - ) ~ ( , > E & .  
E6. If x ( . ) ~ & ,  X E X  and ~ E Y ,  then ( x ( . ) , y ) x ~ & .  

If x (- ) E b and Ep x ( - 1  = 0 for every P E 8, then x ( a )  is called an unbiased 
estimator of zero. The set of all unbiased estimators of zero in d will be 
denoted by 6,. Moreover, if %' is a a-subfield of d, we denote by M @ )  
the set of a11 estimators from d which are W-measurable. . 

Now, we define two a-fields which will be investigated in the sequel. 
Definit ion 1. .CP is the intersection of a11 rr-subfields of d which are 

9'-complete and sufficient for (T, d, 8). 
Clearly, .Y is the greatest necessary a-field for (T, .d, 9'). 

Defini t ion 2. 4(&) is the class of subsets of T given by 

%(b) = ( ~ ~ d : f x ~ ( t ) ~ ( d t )  = 0 for every xo( . ) fbo  and each PEP}. 
A 

It is easy to see that all(&) is a 6-field (cf, the proof of Theorem 7 
in [17]). The a-field %(8) is called universal [6]. It was considered first 
by Bahadur [I] for I consisting of all square integrabIe functions and later 
by Schmetterer [17], [20], Strasser 1201, [21), and Klebanov 16). The 
definition of 9 ( 8 )  given above is adopted from [20], [21]. 

The following two simple propositions characterize the a-field % (8) (cf. also 
111, PI3 C61, C203, C211). 

PROPOSITION 1. %(&) is the greatest cr$eld in the class of all .P-complete 
~ ~ f i e l d s  '% such that 

holds P-a.e. for every P E 9 and x, (.) E b,. 
Proof. We know that %(Q is a cr-field. 9-completeness of %(Q is 

obvious and, moreover, the equality EY'X, ( - )  = 0 P-a.e. follows from the 
definitions of %(b) and conditional expectation. Assume that %? has property 
(2.1) and let A E %. Then 

S xo(t)P(dt) = 0 
A 

hoIds for each x,(-)E 8, and P E 9'. Hence A E % (8) and V c % (8). This 
proves the proposition. 

Defini t ion 3. A c-field b: is called &-complete if M(%)e)nb, consists 
of estimators equal to 0 9-a.e. 

PROPOSITION 2. % (8) is 9-complete. 
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P ro  of, Let x, (.) E M (@ (8)) n b,. Clearly, X, (.) E E?' X, (.) for each 
P E P .  In view of Proposition 1 we have 0 E EY' X ,  ( -1  for every F E 9. 
Thus, the set { t ~  T: x, ( t )  # 0) does not depend on P E P  and is P-null 
for each P E .9'. This proves the proposition. 

There exists an important relevance of the s-fields Y and %(C) to the 
theory of unbiased estimation with convex loss functions. This relevanoe 
is given in Theorems 1 and 2. 

A loss function L(., a )  is assumed to be a function from X x P  into [0, m) 
such that L ( a ,  P)  is convex and lower semicontinuous for every P E 9'. Recall 
that this implies that L[., P) is continuous on X. 

Definition 4. An estimator x1 (.) E 8 is called unfirmly best unbiased 
(or, simply, best unbiased) for a loss function L if - . 

holds for every xo ( .)E 8, and each P E P, where 

THEOREM 1. I f  x1 ( - )E&  is best unbiased for a strictly convex loss function 
L and the risk function RL(xl  (.), P)  is Jinite for every P E 9, then xo (-) 
is Y-measuriable. 

Proof. Let 93 be an arbitrary 9'-complete and sufficient a-subfield of d .  
Let I? x1 (.) be a version of EX,  (.) which does not depend on P. By 
Jensen's inequality for conditional expectations (see [lo] and [15]) we have 

(2.4) x1 I.) ( t ) ,  P) < E$L(X,  (-), P) ( t )  P-a.e. 

for each P  €9. However, since x ,  ( - )  is best unbiased, the equality 

is valid for every P E  9. Inequality (2.4) together with (2.5) imply 

L (x l  (-), P )  (t)  = L (E? x l  (.) ( t ) ,  P) P-a.e. 

for every P E 9. The strict convexity of L (., P) for each P E 9' implies 
x1 ( t )  = x ,  (.) ( t )  P-a.e. for every P E  9' [lo] (for X = R", see [15]). The 
set ( t  E T: x l  ( t )  # E" x i  (.) ( t ) )  is d-measurable and does not depend on P. 
Since 93 is 9-complete, this implies that x, (.) is B-measurable. Note that 
this conclusion is valid for an arbitrary 9-complete and sufficient g-field B. 
Hence x ,  (-) is 9'-measurable. 

Remark. It is interesting to compare Theorem 1 with Proposition 3.5 
from [83 assuming that the Lehmann-Schefii-Rao lemma is applicable. 
Suppose first that x, (-) is best unbiased 401 a strictly convex and weakly 
differentiable L. Then L' (-, P) is star-weakly continuous ([13], p. SO),  and 
hence (Wx, By)-measurable, where Bx and Wy are 0-fields of Bore1 subsets 
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of X and Y, respectively. On the other hand. x, (.) is 9-measurable, and 
so is L ' ( x ,  ( - 1 ,  P ) .  Thus, if L is strictly convex and weakly differentiable, 
Theorem 1 implies Proposition 3.5 of [S]. Conversely, Proposition 3.5 in [ S ]  
asserts that L'(x,  (.), P )  is, for each P €9, P-equivalent to an Y-measurable 
function. By the strict convexity of L( - ,  P)  the transformation L ' ( - ,  P )  is 
one-to-one and, therefore, the image of a Borel set in X is a Borel set 
in Y ([4], p. 13  1 ) .  So, we can conclude that x, (-) is Y-measurable, i.e., 
Proposition 3.5 of [XI implies Theorem 1 .  However, if L is neither strictly 
convex nor differentiable, then for each P E P  there exists y p ( . )  such that 

y ~ ( t ) ~ a L f ~ , [ t ) , P )  and j ( x , ( t ) , y ~ ( t ) ) P [ d t ) = O .  

The Example in [9], Section 3, shows. that, in general, y p ( - )  is not 
a function of x, (.). None the less, Proposition 3.5 in [8] implies that for 
each P E 9 the. function y, (.) is P-equivalent to an Y-measurable function. 
Clearly, if L ( . ,  P) is not strictly convex, then x ,  ( a )  may be best unbiased 
for L, notwithstanding x ,  ( + )  # M (9'). However, the discussion above suggests 
that there exists x ,  ( a )  E M (9) such that E, x ,  (.) = E p  x, (.) and x, (a) is best 
unbiased for L. This is the case where Y is a minimal sufficient a-field, 
however, we do not know the answer in the general case. 

Remark. It is easy to see that an argument analogous to that given 
in the proof of Theorem 1 shows that the following statement is true: 

If L(., P )  is strictly convex, RL (x, ( e ) ,  P)  is finite for every P E 9 and 
x, ( . ) is admissible, then x ,  (. ) is Y-measurable. 

THEOREM 2. An estimator x ,  ( . ) E  8 is best unbiased for each convex loss 
function L if and only i f  it is 9(b)-measurable. 

Proof. Sufficiency. In view of Proposition 1 and Jensen's inequality 
for conditional expectations [lo], we have 

for every P E 9 and x, ( . ) E  .8,. Now, integration of both sides of the ine- 
quality shows that the estimator x,(.) is best unbiased. 

Necessity. Inequality (2.2) holds for every loss function L, thus also 
for loss functions L,,, which are of the form 

L y . c ( ~ ,  P)  = max {O, ( x - g ( ~ ) ,  y ) - c ) ,  

where y E Y, c E R, g ( -) is a function from 9 into X and ( x ,  y) = y ( x )  . For 
simplicity we can take g ( P )  = 0. Thus we have 

For a given y  E Y, c E R and x ,  ( .) E 8, we put 
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and 

B = B(c)  = B ( c ,  y )  = ( t ~  T :  (xl(t),  y )  > c). 

Then, by (2.3), we have 

R L ~ , ~  (x, + Bxo. PI - RL,. (XI .  P) = (XI (l), Y) P (dt) - 
A n B -  

where 3-  and A -  denote the complements of 3 and A, respectively. 
Moreover, we have 

lim I A ~ P )  ( t )  = 1 ~ ( t ) +  1~~ ( t )  and Jim ( t )  = aB(t)+ lA2 (t), 
0 - o +  B-0- 

where A, = ( t  E T :  (xo( t ) ,  y )  > 0, ( x , ( t ) ,  Y )  = c )  and A, = ( t ~  T :  ( x , ( t ) ,  y )  
< 0, ( ~ l ( t ) ,  Y )  = c). 

Given P E  .P we assume that c satisfies the following condition: 

(2.7) ~ ( { t  E T :  (x, ( t ) ,  y )  = c ) )  = 0. 

Then 

lim ~ A ( P )  ( t )  = 1 B  ( t )  
8+0 

holds P-a.e. Therefore, if S (xo ( t ) ,  y )  dP # 0, then the integrals 
B 

have the same sign provided (PI is sufficiently small. Thus, we can choose 
/3 such that 

holds. This, however, contradicts inequality (2.2). Therefore 

holds for each c E R such that condition (2.7) is satisfied. Denote by C ( P )  
the class of all numbers c satisfying (2.7). The function ( x ,  (.), y) is P-integrable, 
thus the set R\C(P) is at most countable. Therefore, if c'$ C ( P ) ,  we can 
choose numbers c, (n = 1, 2, . . .) such that c,, + c', c, > *c' and c, E C (P). 
Since (2.8) holds for each c,,, it follows from the dominated convergence 
theorem that (2.8) is valid also for c'. Hence equality (2.8) holds for every 
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c E R, P E P, y E Y and x, ( - )  E go. A standard argument shows that the class 
of all sets D for which 

for every y E Y, P E P and xo ( - 1  E bo forms a a-field and contains sets 3 (c). 
Since X is a separable Banach space, the Borel a-fields spanned over 
norm-open and over weakly-open subsets of X coincide. Hence 

for each D EX; l (Bx), xO(.) E go and P E  P. Let W = x;-' ($3,). The Iast 
equality implies E ~ X ,  ( A )  = 0 P-a.e. for each P E 9' and x, ( a )  E 8,. In view 
of Proposition 1 we obtain % c %(b), i.e., x, ( 7 )  is OJ($)-measurable, 

COROLLARY 1. The a$eld Q(b) is a a-subjeId of 9'. 
Proof. By Theorem 2 every estimator x (.) which is 42 (#)-measurable 

is best unbiased for each convex loss function, hence also for a strictly 
convex one. Thus, if a strictly convex function on the Banach space X 
exists, then Theorem 1 implies that x(.) is Y-measurable. Thus the inclusion 
@(6) c Y holds. To colnplete the proof it is enough to note that on each 
separable Banach space there exists a strictly convex function. This is an 
immediate consequence of the existence of a strictly convex norm 1 1 1  . I I [  on 
X which is equivalent to the original one (see [3], Corollary 3.1, p. 179). 
For instance, the function L(x) = Illxlll-ln (1 +Illxlll) is strictly convex and 
dominated by c /lxll, where c is a constant. Hence the risk RL is finite 
on b. This completes the proof of the corollary. 

Denote by E,, the class of estimators in d which are best unbiased 
for a strictly convex losi function, i.e. 

EPt = ( x ( - ) ~ b :  there exists a strictly convex loss function L 
such that x(.) is best unbiased for L ) .  

In the sequel we shall be concerned with relations between EPt and 
the a-fields @(&) and Y. Note that if Y = 9(6 ) ,  then EW consists of all 
9-measurable estimators. The equality M(Y)  = apt holds, e.g., if Y is 
&'-complete and minimal sufficient. However, the converse implication does 
not hold. In Example 1 below we construct a statistical space (T, d, 9 ) ,  
where 9 is not sufficient even though a(&') = 9. This is a slight modi- 
fication of a well-known example of Pitcher [16]. 

Example 1. Let T = (-l,O)u(O, 1). Assume that d' is the a-field of 
Borel subsets ofeT. A set 9 consisting of probability measures on d is 
given by 

s = { P , :  t € ( O ,  1)) U (Pf: f€L: (0, I)}, 
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where P, is a probability measure on d such that P , ( { t ) )  = P,({ - t)) = 1/2 
and PI is a probability measure on .d with density function f (with respect 
to the Lebesgue measure restricted to d) such that f (t) = 0 for t E ( -  1,O). 
The unique @-null subset of T is the empty set. Hence cc4 is 9-complete. 
It is known that o-fields d, are sufficient for 9, where s ~ ( 0 ,  1) and 

(see [16]). Let 
-. 

.. - . do = n d,. 
. SE(O, i ) 

It is easy to see that do consists of all Borel subsets A such that 
A = -A and that do is not sufficient [16j. Let d be the set of all bounded 
.d-measurable estimators from T into W. The set &o of unbiased estimators 
of zero consists of functions satisfying the conditions x, (f) = - x, (- t), 
t E (0 ,  l), and x (t) = 0 a.e. with respect to the Lebesgue measure. If A E d o ,  
then 

1 xo (t) P (d t )  = O 
A 

for every ~ ~ ( 7 )  and P E 9. Thus EP x, ( a )  = 0 holds for each P E  9' 
and x o ( . )  E 8,. By Proposition 1 we obtain 9(6) 3 do.  On the other hand, 
.do 2 Y and Corollary 1 implies 4 (6) = do 9'. 

Example 2, which we are going to construct, shows that, in general, 
sets M (Y)\EOpt and n (M (Y)\M (a (b))) are not empty, i.e. there may 
exist both Y-measurable estimators which are not elements of E,, and 
Y-measurable estimators which are not @(&')-measurable but belong to ILpt. 

Example 2. Let X = R,  T = {1,2, 31, d = 2T and 9' = ( P I ,  P , ) ,  
where 

and 

Assume that b consists of all &-measurable functions. Thus d can be 
identi6ed with R3. It is easy to see that 8, consists of estimators of the 
form jLxO, where I IE  R and x, = (xo(l), xo (2), x,(3)) = (- 1, 1,  1). Therefore, 
8, corresponds to the one-dimensional subspace of R3 spanned on the vector 
(- 1, 1, 1). By the factorization theorem, d is a minimal sufficient o-field. 
Therefore, c92 = Y and each estimator in d is Y-measurable. If x, (.)E go,  
xo (.) # 0 and A E @(E) ,  then lA ( a )  xO (.) E 8,. SO Z A  (-)xO = AxO (.) holds 
and, since xo(t) # 0 for every t E T, we obtain ZA(') = A. Hence we get 
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9 (6') = (0, T). Therefore, the set of 42 (8)-measurable functions can be 
identified with the one-dimensional subspace of R3 spanned on the vector 

1 (I, 1,  1). Let x, ( - ) E  8 and let L ( x ,  P) be a strictly convex loss function. 
I In view of the Lehmann-Scheffi-Rao lemma [9 ]  the estimator x ,  (.) is best 
I 
I unbiased for L  if and only if 

holds for P E (P,, P,}  , where y ,  ( t )  is an element of d L ( x , ( t ) ,  P). Define 
vectors 1.7, and v ,  as follows: 

01 = (YP, ( 1 1 ,  Y p l  (213 Ypl (3))  
and 

u2 = ( Y P ~  ( 1 ) )  yp2 (2)) Y P ~  (3))- 

! 
Equality (2.9) can be interpreted in the following way: the vectors v l  

and o2 are perpendicular in R3 to vectors 
i 

! and 

respectively. It is easy to check that 

u = i n  1  1 ,  1 ,  (- I ,  5 ,  - 4 )  and u i  = Lin {(I,  1, I), f1,2, -3)). 

where Lin {...) stands for the linear space spanned by vectors indicated 
in the brackets. Since L(-,  P) is strictly convex, y,(t,) < yp ( t , )  holds whenever 
x ,  ( t , )  < x ,  (t,). Moreover, since v ,  E u+ and v2 E uk, the ranks of the compo- 
nents of v,, v2 and x ,  are the same and equal to ( 2 , 3 ,  1) or (2,  1, 3). 
Therefore, if x ,  (-) is an estimator such that ( x ,  ( I ) ,  x, (21, x ,  (3))  has the rank 
vector different both from ( 2 , 3 , 1 )  and ( 2 ,  1 , 3 )  (e.g., x ( t )  = t), then there 
is no strictly convex loss function L(., P) such that (2.9) is satisfied. 
Consequently, there is no strictly convex loss function such that x,(.) is 
best unbiased for L, i.e. x ,  (.) is not an element of &,, 

On the other hand, an estimator x, (.) given by x, ( 1 )  = 2, x ,  (2)  = 3 ,  
x2 (3) = 1  is best unbiased for the loss function L ( x ,  P) given by 

, (2.10) 

where 
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To this end it is enough to verify that x, ( A )  satisfies conditirsn (2.9) 
provided the loss function L is given by (2.10)-(2.11). We omit the easy 
calculations. -. -. 

The situation illustrated by Example 2 seems to be typical for the 
general case. The existence of 9-measurable estimators which are not 
elements..of E,,, can be interpreted in the following way: the class of 
strictly convex loss functions is too small in order to label each 9'-measur- 
able estimator best unbiased for a strictly convex loss. 

Now, we shall be concerned with the problem whether @(C) = Y 
whenever each 9-measurable estimator is best unbiased for a strictly convex 
loss function. If the loss functions are weakly differentiable, then Theorem 3 
gives a partial answer for X being a Banach space and the complete 
one for X = R .  

THEOREM 3. As~tlrne thur for ~ u i . h  set A E 9 there exists n strictly convex 
and weakly difrrentiable loss function L such that 

(a) L(x, P) 2 cp llxll whenever llxll B r p ,  CP > 0,  rp > 0;  
(b) for each x E X  the estimator x . I A ( * )  is best unbiased for L;  
(c) for each x, (-) E 8,  and P E 9 the risk RL (Axo (a ) ,  P) is finite for some 

positive 3L = 3L(x0(-), P). 
Then 42 (8) = 9. 
Proof .  Given x E X and AE 9' we put x 1  (.) = x - I*(-).  By our assump- 

tion x ,  ( a )  is best unbiased for L. It is easy to see that the assumptions of 
the Lehmann Scheffi-Rao lemma (part (b)) [9 ]  are satisfied. So 

holds for every x, (-)E bo and P E 9'. For each x, (.) E bo we have 

Jxo( t )p(dt)  = - S x0(t)P(dt). 
A A- 

Thus from (2.12) we obtain, for each x,(.) E &',, x E X and P E 9, 

(2.13) ( J  xo(t)P(dt), E ( x ,  P)-E(0, P)) = 0. 
A 

Assumption (a) implies that L*(-, P),  the conjugate of L(., P), is finite 
on Ky(O, cp), the ball in Y centred at zero and of radius cp. The range 
of L' I., P) contains int dom L* (. , P), and hence it contains int Ky (0, c,). 
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So (2.13) implies that 

f xo (t) P (dt) = 0 
A 

for every XD(-) E do and P E ~ .  By the definition of % (8) we get A E %(&I. 
This proves the theorem. 

Remark. The proof of Theorem 3 is adopted from [17], Theorem 7 
(cf. also [6]  and [21]). 

-COROLLARY 2. Let X = R and assume thut for each Y-measurable esti- 
mator xl I.) there exists a strictly convex and diyerentiable loss function L 
such- that x, (.) is best unbiased for L and R L ( l x , ( . ) ,  P) is finite for every 
xo(.)~rEo, P E P  and for some positive A, i = L(x,( .) ,  P ) .  Then %(b) = 9'. 

Proof. Let us consider estimators of the form x, c) = I A ( . ) ,  where A E  9, 
Repeating the argument given in the proof of Theorem 3, we obtain equality 
(2.13) which is now of the form 

(r(1, P ) - c ( 0 ,  P)) J xo (t)  P(d t )  = 0 
A 

I Since L(. ,  P) is strictly convex, L'(1, P) > L'(0, P)  and we conclude that 

J xo ( t )  P (dt )  = 0 
A 

for each xO (.) E 8,, and P E 9. Hence A E 9(&). 

3. Universal loss functions. By Theorem 1 we know that if x ( . ) E  b is 
best unbiased for a strictly convex loss function L(x, P), then x(.) is 
9-measurable. It is also important to know conditions which guarantee 
a best unbiased estimator to be 9(4-measurable. Then, by Theorem 2, 
the %(b)-measurable estimator is best unbiased for each convex loss 
function. The first sufficient conditions for %(@-measurability of estimators 
were given by Bahadur [I]. Other conditions were given in [17], Theorem 7, 
and - after 1970 - in [5], 161, [12], [18]-[21]. In all theorems of this type 
it has been assumed that an estimator x,(.) is best unbiased for a strictly 
convex differentiable loss function of a specific form. Assuming, moreover, 
various additional conditions on x,c), on the loss function and on the 
class d of considered estimators to be satisfied it has been proved that 
x, (-) is 8(4-measurable. It is convenient for us to recall in Theorem 4 
a typical result of this kind. In the proof of Theorem 4 we use the arguments 
of Schmetterer and Strasser [20], Satz 2. However, the present proof is 
given for the general case where X is a Banach space whereas the earlier 
ones were formulated for X = R. 

Let O be a set of parameters and let (KO(., 8): 8 6  8) be a class of 
convex functions of the form 
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where C,(Bj > 0, C, (19) E R ,  yo E Y and W(.) is a strictly convex finite 
non-negative and weakly differentiable function on X. Every function x 
from 0 , ,  8, c 8, onto a set 9 of probability measures is called a para- 
metrization of 9. 

THEOREM 4. Let (T, d ,  9) be a stetistical space and let 8 be a set of 
estimators. Assume that x ~ ( . ) E  8 takes ualues in a compact subset of X and 
that the condition 

(3.2) - R~(xl(-)+%i,j ,  P )  = jL(xl(t)+Lx,(t), t ) P ( d t )  < W _  
- -  "- 

is sati&ed for every xo (-1 E to, P E 9 and 1 E (- e ,  e). Assume further that 
the loss function L(x,  P )  admits a representation 

where B, c @, n is a parametrization of 9' and KO i s  of tha form (3.1). 
If x, I-) is best unbiased for L(x , P ) ,  then x, I.) is % (8)-measurable. . 

Proof. First, we note that if for a given parametrization x the loss 
function L is of the farm (3.3) and K O  is of the form (3.1), then the 
partial orderings in (x, (.)+go) induced by L and W are the same. Therefore, 
x, (-) is best unbiased for W. 

By the Lehmann-Scheffk-Rao lemma, the equality 

holds for every P E 9 and x, (.j E 8,. In particular, since (xo(.) ,  y) x €go, 
we have 

I (x, w (x 0))) (xo @ I ,  y )  P (dt) = O 

for every P E P, x E X and y E Y. Note that x, (.) takes values in a compact 
set and W' is a continuous {unction from X into Y endowed with admis- 
sible topologies (031 ,  p. 79). Therefore, (x, W1(x1 (.))) is a bounded function 
and (x , W' (x, (.))) (x, (. j, y )  x E go. So, by the Lehmann-Scheffi-Rao lemma, 
we obtain 

~ ( x , w f ( x , ( t ) ) r ( ~ o ( t ) , y ) P ~ d t ) = 0 ,  n =  1,2 ,3? . . . ,  

for every x E X, y E Y? xO (.) E go and P E P. Similarly as in [20] we obtain 

5 xo ( t )P (d t )  = 0 
~1 (')EB 

for B provided W'(B)  is a Borel subset of Y for every B E  Wx. 
Since W'(.) is continuous, it is Borel measurable. Moreover, by the strict 
convexity of W the mapping W': X + Y is one-to-one. Thus, by 141, 
Theorem III,7.2, we have Wf(B) E By for each B E BX. This completes 
the proof of Theorem 4. 
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Given a set of parameters O, denote by {K(., 0): B E  0) a class of 
convex finite lower semicontinuous and non-negative functions on X. If 
is a parametrization from @,, 0, 8, into a class of probability measures 
9, then it is possible to create convex loss functions of the form 

Thus, it is convenient to call the function K :  X x O + [0, cn), described 
above, a parametric loss function or, simply, a loss function if there is no 
danger of confusion. 

- Def in i t ion  5.  A convex parametric loss function K is called universal 
if Theorem 4 remains true whenever K is used in (3.3) instead of KO. 

Clearly, Definition 5 implies that each KO of the form (3.1) is universal. 
The first known universal parametric loss function was the most popular 
quadratic one K (x, 61) = (X - 8)2, where X = R and 0 E R (see [I]). Note 
that Klebanov [6], Theorem 7, proved that if X = W, then a natural 
class of convex but not strictly convex parametric loss functions is not 
universal. 

There was a hope that every strictly convex weakly differentiable 
parametric loss function is universal or, at least, that the class of universal 
loss functions is large (cf. [IS], Section 5, and [21], Remark 4.9). Recently 
it has appeared that very natural classes of strictly convex differentiable 
parametric loss functions are not universal [2]. Now? we shall prove that, 
at least in the case X = R, every universal loss function is of the form (3.1). 

First, however, we note that a strictly convex loss function K ( x ,  0) 
is of the form (3.1) if and only if for each 01, 82 E O 

(3.4) K ( x ,  62) = jr(e15 02)K(x, Q1)+(x, ~e,.o~)+c"(B,; 02), 

where C' (B,, 6,) > 0, C"(B,, 8,) E R and ye,,,, E Y. For X = R, (3.4) can 
be rewritten in the form 

where 
a 1 = u 1 ( B , , 0 2 ) > 0 ,  ~ z ~ = o r , ( 8 , , B , ) ~ R  and a 3 = o r 3 ( B 1 , B 2 ) ~ R .  

THEOREM 5. Let X = R and let K1 and K2 be two strictly convex jhnctions 
on X which do not admit representation (3.5). Then there exists a statistical 
space (T, d, {PI,  P , ) )  such that for each class 8 of estimators there exists 
a bounded estimator xl(.) which is not %(b)-measurable and is best unbiased 
for the loss function L given by  

Proof .  Let us put T = {1,2 ,  3) and .d = 2T. Then every class W of 
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estimators satisfying condition E2 coincides with the class of all functions 
from T into R. Let vl(.) and v2(-) be arbitrary selectors of multifunctions 
x + dKl {x) and x + dK2(x), respectively. Since K, and K ,  do not satisfy 
condition ( 3 4 ,  functions vi (.), vZ ( w )  and I(.) (I (x) = 1 for each x E R) are 
linearly independent and there exist points x,, x,, x3, x1 < x2 < x3, such 
that vectors 

v, = (01 01 (x2), V l  (xa)), 
- -  _ 

V 2  = (02 (XI), 02 (~219 02 ( ~ 3 ) )  and u3 = r - 
- -  

are linearly independent. Indeed, otherwise, for every three different points 
xi, x2, x3 we would have 

where yl and y, are suitably chosen coefficients. However, vI(.) is increasing 
and, therefore, vectors (v, (x,), v, (x,)) and (1, 1) are independent. So, if x is 
different from xl  and x, and 

then equalities y ,  = y ,  and y2 = y, must hold. Hence v2 (x) = y v I  (x)+ y2 
holds for every x ER. Since any selector of the subdifferential mapping may 
be used in the integral representation of a convex function, we conclude 
that K1 and K2 fulfil condition (3.5). This, however, contradicts our 
assumption. 

Define an estimator x1 (.) by 

Functions vl(.) and v,(-) are increasing, so we have 

NOW, let u, = (u,,, u12, u13) and u2 = (u,,, u,,, u,,) be vectors in R3 
defined by 

(3.6) u1 = V ~ A V ~  and u,= v,nv3,  

where A denotes the outer product in R3. Clearly, u, and u2 are linearly 
independent and, moreover, the components of u, and u2 satisfy the 
following inequalities : 

I 

Let P l  and P, be two probability measures on .d given by 
3 

(3.8) Pj(t) = luj,l/ (ujil, t~ T, j = 1, 2 .  
i = l  
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Let p, and p,  be vectors in R3 given by 

PI = ( P I ( ~ ) , P I @ ) , P I ( ~ ) )  and P , = ( P I ( ~ ) , P ~ ( ~ ) , P , ( ~ ) ) -  

Since u, and u, are linearly independent, so are p, and p, .  Thus P, and 
P, are two different probability measures on d. Consequently, the minimal 
sufficient a-field exists, equals Y and is different from the trivial cr-field 
(@, T}. Clearly, the estimators from d may be identified with vectors in R3. 
Since p ,  and p ,  are independent, the space 8, consisting of all unbiased 
estimators of zero -corresponds to a one-dimensional subspace of R3. Note 
that if xo (1) = - 1, xo (2) = 1 and x, (3) = - 1, then the equality EPi x, (-) = 0, 
i = 1,2, follows easily from (3.6)-(3.8). Hence go = { A x o ( . ) :  i, E R ] .  

Let A E 42($). By the definition of @(b) the estimator 1, ( . )xo ( - )  is also 
an element of 8,. However, this is possible only if A = T or A = (b. 
Thus @(8) = (@, T). It is clear that the estimator x,(- )  defined above 
is not (4-measurable. 

We prove that x, (.) is best unbiased for L. In view of the Lehmann- 
Scheffk-Rao lemma it is enough to show that the condition 

(3-9) I ui (XI (t)) xo ( t )  Pi (d t )  = 0 

is satisfied for i = 1, 2. 
For every i = 1,2 the vector (xo (1) Pi (I), xo.(2) Pi (21, xo (3) Pi  (3))  is parallel 

to ui .  Therefore, x l  (.) fdHs condition (3.9). Thus the estimator x, (.) is 
best unbiased for L, however, it is not %(@-measurable. This completes 
the proof of Theorem 5. 

Apart from the universal parametric loss functions we shall also consider 
universal loss functions for a statistical space (T, d ,  9') introduced in [5] 
and [63 and named by Linnik. 

Definition 6. Let (T, d, 9') be a statistical space, X = R" and let 8 
be the class of all estimators which are square P-integrable for each p €9. 
A convex loss function L: X x 9 + LO, oo) is called universal for (T, d ,  9) 
(or universal in Linnik's sense) if each bounded estimator which is best 
unbiased for L is 42 (8)-measurable. 

In the rest of this section we shall assume that (T, d, B), X and 6 
satisfy conditions formulated in Definition 6. In the classical case, where 
the minimal sufficient and &-complete a-field exists, we have Y = 9 ( 8 )  
and 9' is sufficient. Then, in view of Theorem 1, each strictly convex loss 
function is universal in Linnik's sense. Clearly, every strictly convex loss 
function is universal in Linnik's sense if Y = %(&) and the existence of 
the minimal suficient a-field is not necessary for this (cf. Example 1, 
Section 2). However, the converse implication is not valid. Namely, in 
Example 3 we shall indicate a statistical space where each strictly convex 
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loss function is universal in Linnik's sense and, simultaneously, a(&) is 
a proper a-subfield of 9'. 

This is a slight modification of an example considered by Lehmann 
and Scheffi ([ill, Example 3.5). 

Ex amp  l e 3. Let X = R and let d be the 0-field of Lebesgue measurable 
subsets of T = R". Let 9' = ( P o :  ~ E R ) ,  where Po is the product of n 
identical rectangular distributions concentrated on the interval [B - i, 8 + $1. 
Thus, if A, is the Lebesgue measure on R, then dPB/d;ln(~i, ..., x,) = 1 if . I 

xi€ LO-*, 8++] for i = 1, 2, ..., n and dP,/dl,  = 0 otherwise. A reduction 
by sufficiency (t, = kin { x i ) ,  t2  = rnax { x i ] )  leads to the statistical space 
(T', d', PI), where T' = {(t,, t2) E R2: t l  < t2  < tl + l), at' is the a-field of 
Lebesgue measurable subsets of T', and if P ~ E  P', then 

const(t2-tl).-2 if 0-+ < t l  G tz < 8+6 ,  
dPh/dA, (t1, tz) = 

otherwise. 

Let us assume that the set d qf considered estimators consists of all 
bounded dl-measurable functions on T'. 

Now, hold % = 0, fixed and consider the Hilbert space H of (equivalence 
classes of) functions square integrable with respect to Pho and defined on 

Let (el , e2, . . .) be an orthonormal base in H consisting of bounded 
functions on T(8,) aud such that e l  ( t )  E 1, t E T(8,). Let e E H be a bounded 
function such that e is orthogonal in H to el. Now, let x0(., .) be 
a function on T' dehed  by 

where n E  (..., - 1, 0, 1, 2, ...). It is easy to see (cf. [ I l l ,  p. 326) that x0(., -) 
is an unbiased estimator of zero, i.e., xo(-, -)€go. SO, to each bounded 
function in H orthogonal to e l  there corresponds an unbiased estimator 
xo(-,  -) of zero in d such that xo(tl, t2 )  = e( t l  , t2)  for PB,-a.e. ( t l ,  t z ) ~  T(Oo). 
In particular, to each ei(-), i = 2,3, ..., there corresponds an element of 8,. 

Suppose that x ,  (-, a )  is best unbiased for a strictly convex loss function 
L. Since d consists of bounded functions and L is finite (hence continuous 
on X), the risk function RL (-, P') is finite for each x (-, .) E 8 and each 
P'E 9''. SO, by the Lehmann-Scheffi-Rao lemma, for each 0 E R there exists 
a function y o ( . ,  .) such that y , ( t , ,  t , ) ~  dL(x, (t,, t2), P I )  and 

holds for each x, (-, - ) € g o  and each B E R .  So, if 0 = O,,  it follows from 
(3.10) that the function yo, restricted to T(8,) is orthogonal to each ei, 
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i = 2, 3 ,4 ,  ... Therefore, we infer that yo,( . ,  .) is constant PL,-a.e. on 
T(8,). Moreover, L ( . ,  Pi,) is strictly convex, and hence 

8L(x1, Pb,) n dL (x", PAo) = Q) 

whenever x' # x". So, ye(t,, t z ) €  8L(xl ( t i ,  t,), Ph,} and ye(tl, tz) = const 
PA,-a.e. on T(&) imply that x1 (ti, t,) = const PL,-a.e. on T(B,). Repeating 
this argument for other B's we obtain x, I., a) = const A,-a.e. on T'. 

Hence, in view of Corollary 1, we conclude that 9 ( C )  is the a-field 
spanned on measurable subsets of T' which are of A,-measure zero. More- 
over, by the factorization theorem, d' is the minimal sufbcient u-field, and 
therefore Y = A'. So, we have proved that each strictly convex loss 
function is universal for (TI, d', B') and, simultaneously, a() is a proper 
cr-subfield of Y.  
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