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Abstract. For background of this paper* see [2]. Given a pro-
‘bability space (X, o, P), let GP be the Gauss:an process with
mean 0, indexed by, and such that

EGp(A)Gp(B) = P(AnB)—P(A)P(B), A,Bed.

(1) Let ¥ < « and suppose that, for all probability measures
. (laws) @ on o, G, has.a-version with bounded sample functions '
on ¥. {For ekample, suppose % is a “universal Donsker class”)
Then; for some’n, ‘no set'F..of n elements ‘has all its subsets of
the foorm Cn F, . Ce¥, ie. % is a Vapnik-Chervonenkis class. An
example shows that limit theorems for .empirical measures need not -
hold uniformly over a Vapnik- Chervonenkis class of measurable sets,”
unless further measurability is assumed. )
(2) For a law P on X = {1,2,...}, the collection’ 2¥ of all
subsets, is a Donsker class 1f and only 1f . .

Z Pm'* < .

(3) For any probablhty space (X, o, P) suppose ‘«f is a P-Don-

-, sker class, ¥ < <. Let T, be a Poisson point process with iritensity
measure aP, a > 0. Then, as-a - oo, (T;=aP)/a*? converges in law,

. with respect to nniform convergence on %, to.the Gaussian process
Wp with mean O and EWp(A)W;(B) = P(AnB), A, Be%. ~

1. Introduction. Let (X, o, P) be any probability space. Let G, and Wp
be the Gaussian processes, indexed by &, with mean 0 and such that for
all A, Be s/ (

EWp (4) Wy (B) = P(Amb) and  EGp(4)Gp(B) = P(A A B)—P(4)P(B).

* This research was partlally -supported * by Natlonal Scnence Foundatlon Grant
MCS- 7904474
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Then for all Aes/ we can write
| Wp(4) = Gp(A)+P (A H,

where H:= Wp(X) is a standard Gaussian variable independent of Gp.

Let X,,X,,... be independent and identically distributed with law P,
and let P, be the random empirical measure n~' (5 (t .. t+0x) Let € = .
In [2], € was called a P-Donsker class if the convergence of laws

& (n**(P,—P)) - £ (Gp) holds with respect to uniform convergence on %

in a suitable sense, together with some measurability conditions. Here we

" will need only the followmg Skorohod-chhura form of convergence (see [2], -

p. 900-902):

11 If %is a P-Donsker class then. there is a probability space (22, £, Pr)
and for n = 1, 2, ... there are processes (v, C) = 4,(w, C), we 2, Ce ¥, such
that, for each ﬁxed n, the laws of the processes n”2 (P,~P) and 4, are the
same and such that

lim sup |4, (w, C)— Gp(C)(w)l =0 as,

C oo C
where Gp is deﬁned on the probability space Q. It follows that
sup |Gp(C) (w)] < 0 -as.
Cet i

Sections 2,3 and 4 use the above, but are independent of one another.

2. Universal Densker classes. are Vai)nik-Chérvonenkis classes. For any
set X let 2¥ be the collection of all its subsets (power set). Let ¢ = 2%,

‘Then € is said to shatter a set' F < X if 2F = {[FNC: Ce%}. Also, ¥ is

called a Vapmk-Chervonenkls class if, for some finite n, no set F with »
elements is shattered by %. :

2.1. THEOREM. For any set X and collection € of subsets of X which is

" not a Vapnik-Chervonenkis class, there are a purely atomic probability measure

P on X and a countable collectlon 9 c (g such that Gp is almost surely
unbounded on 9.

Proof. Since ‘6 shatters sets of all sizes, for each n = 1 2,... there

‘isa set F, with 4° elements shattered by €. Let

j<n

Then the G, are’ d1s101nt and have cardmahty
- card (G,,) Z 4’ = 4'l 4"—4)/3 > 2"

with G, shattered by €. Take E, < G, with card (E,) = 2". Then E, remain
disjoint ‘and are shattered by €. o
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Let P({‘c}) = 6/(n? " 2" for each er,,, and let P = 0 outside U E

Then P is a purely atomic probability measure on X. n=1
Let 2 be a countable subset of ¢ which shatters each of the E,.
Let us fix n. Then, for each Ce 2, .

W (C) = Wp(C N E,)+ Wp(C\E,).
Thus for any K, 0 < K < oo, we have

) {0 |We(C) (@) < K for all CeD} = &, U&,,
where o ’

éal -— {o: lWP(B)(cu)I 2K for all B < E,},

{co —for some B < E,, |Wp(B)(w)| > 2K, and for all such B
and a}{l Ce2 with CnE, = B we have IW,,(C\E,,)(a))I > K}.

Let :
o ‘ Z |WP({x})I

xeEy

“Then since sup (Wo(B): B © E,} > 5,12, we have &, < < {S, < 4K}. For
each x € E,, Wp({x}) is a normal random variable with mean 0 and variance
02 := 6/(n*n?-2"). Thus

EIW,(x)l = @026, and  var (We({ehl) = o3 (1—2/).
Then - : o
ES, =2 (2/n)'?6, and var(S,) = (6/(n?n?)(1-2/n),

since W, has indépendent values on disjoint sets. Hence, by Chebyshev’s
inequality, for large n we get

Pr {S, < 4K} < Pr {|S,—ES,| > ES,~4K} < n"%/4K—ES,)*
< 1/(4Kn_2u/2('12/n3)1i2)2 :=f(n,K)->0; as n - OO‘

for any fixed K. ‘ |
Now we consider the event é”z Let t(n):= 22" Enumerate 2%» by
B(l) , B(tt(n)), and let R T R

= —{m: |We(B(1) ()| > 2K}, .
m—1
= {w¢ U M;: |Wp(B(m) ()| > 2K}, m>2,

= {weM;: for all Ce2Z such that CNnE, = B(;) |We(C\E,) (®)] > K}
By the 1ndependenoe of Wp on dlS_]Olnt sets, we have
Pr (D;) = Pr (M)) Pr {for all .C‘EQ such that CnE, = B()),
|Wp(C\E,) (@) > K} < Pr(M))-2&(-K),
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where @ is the standard normal distribution function, since, for any fixed
set A, Wp(A4) is normal with mean O and variance less than 1. Now,
L&, < U D, o

1< jStt_(n)

so that .
Pr(6;) < Y Pr(M) 29(<K)
1€ j<un)

= 20 (—K) Pr(lWP(B)| > 2K for some B < E,) < 2&(— K)
It follows that - )
Pr (jW:(C) < K for all Ce@) f(n, K)+2®(=K). .

Making K large enough, and then n large enough, completes the proof.

It follows that if € is a universal Donsker class, ie. it is a P-Donsker
class for all P on the o-algebra .o/ .> %, then % is a Vapnik-Chervonenkis
class. In [2], Section 7 and Correction, it is shown that every Vapnik-Chervo-
nenkis class satisfying some measurability conditions is a universal Donsker
class. The remaining problem is to find what measurability conditions are
needed. The following example shows that some further measurability is
necessary. : : ‘

2.2. PROPOSITION. There exist. a set X and a class € of countable
subsets of X, which shatters no 2-element set, and a probability measure P
such that almost surely

sup (P,—P)(A) = 1 for all n.
At

Assummg the continuum hypotheszs we can take X = [O 1] and P to be
Lebesgue measure. : .

~ Proof. Let (X, <) be an uncountab]c well-ordered set such that all its
initial segments {x: x < y}, ye X, are countable. Let ¥ be the collection

.of all these initial segments. Then % does not shatter any set with two -

elements. Let P be any probability measure on X which is 0 on countable
sets and 1 on their complements. Given any finite set {X,,..., X,} < X,
there is a set A in % containing all the X;, so (P —P) (A) 1, which
completes the proof.

Steele [3] assumes that all sets in % are measurable and that
sup |(P,—P)(A4)| is measurable These cond1t1ons are both satisfied in the

example above. Thus it appears that further measurablllty cond1t10ns need
to be added to some of the statements and proofs in [3].

3. When is 2% P-Donsker -for X countable? Let X be a countable set
say X = {1,2,...}, and let P be a law on X with P{m}:=p,, m= 1,2
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/ . : . : o
3.1. THEOREM. The collection 2% of all subsets of X is a P-Donsker
class if and only if

(*) ) Z p1/2

Proot. Suppose () holds. We have E(v, {m})* = p,—p2 for all n and m,
where v, := n'/2(P,~P). Thus E|v, {m}| < p.?, and

supE Z [Vn {J}|—>0 as m — 00.

izm

So, for any e > Q,

supPr{ Iv,,{j}|>s}—>0 as m— .
izm - . :
Thus condmon (b) in Theorem 1.2 of [2] holds as the other condltlons
also hold for % = 2%, X countable, it is a P-Donsker class. ;
On the other :hand, if Zp”z = o0, then

Y |G {m}l = 0 a.e.

by Proposition 6.6 of [1], letting b, := pL% @mw = 1w /pL/?, and recalling
the relations L(1,4) = Wp(A) = Gp(4)+P(A)Wp(X). Thus GP has sample
functions almost™ surely unbounded on 2¥ (it .is enough to consider the
countable collection of finite sets) Consequently, 2% is not a Donsker class,
which completes the proof.

4. A limit theorem for Poisson processes. Let (X, o/, u) be a .o-finite
measure space. Then the Poisson process T, with intensity measure u is
indexed by the measurable ‘sets 4 with u(4) < oo; T,(4) is a Poisson
variable with parameter ;(4), and 7, has independent values on disjoint
sets, being additive for (finitely many) disjoint sets.. These conditions, as is

~known, consistently define a stochastic process.

For 0 < u(X) < oo, let T(X) =n be a P01sson varlable with parameter

u (X ). Then Iet

— . T= 2 8x;s

1S1$n

where the X are 1ndependent and identically. distributed w1th law p/u (X ),
and .independent of n. It is easily seen that this T is a Poisson process T,.

- Now let P be a probabiity measure and 0 < A < oo. Then, as 1 —» oo,
(T;p—AP)/A*? converges in law to Wp, at least on any finite collection of

-ineasurable sets. For ¥ — .o/, we say that this convergence in law holds

with respect to uniform convergence on ¥ if there- exists a probability space

(82, Pr) carrying a process Wp and processes S;, 0 < A < oo, such that for
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.each A the process §; has the same law (as a process on ‘6) as
(Thp—AP)/2Y?, and such that

lim sup |(S1— Ws) (le =0 as.

Ao

The followmg result was proposed by E B. Dynkin in a discussion in
Oberwolfach, March 1979.

~ 4.1. THEOREM. For any probability measure P and P-Donsker class €,
(T,”,—}.P)/Jl”2 converges in law to Wy with respect to uniform convergence on %.

Proof. Take X,, X,,..., 1ndependent with distribution P. For each A,
0 <A< o0, let n=n(w,A) be a Poisson variable with parameter A, inde-
pendent of the X;. Then we can write Tjp = n(w, ) Pyw,y (in law).

Now (n(w, A)—A)/AY? converges in law to a standard Gaussian variable
as A = 0. To replace this convergence by almost sure convergence of real
random variables, we use the following standard procedure. For any prob-
ability distribution function F on R and for 0 < y < 1, let

F7'(y):= inf {x: F(x) > y}.

Suppos¢ laws p, on R with distribution functions F, converge to
a law po. Then F,'(y)— - F; !(y) whenever the interval Fg!{y} contains
at most one point. Thus F 1) = Fgl(y) for all y, 0 <y <1, if F, has
an everywhere positive density, eg if it is a non-degenerate normal
distribution function. Thus if p; = yy as A — oo, where p; has distribution -
function F; and pu, has an everywhere strictly positive density, then, for
0<y<l1, Ff'(y) » F3'(y) as A » oo (continuously).
- Now, taking a new probablllty space if necessary, we may assume that,'
for all o, : , cs

lim (n(w, ,1)—,1)/,111'2' - H,

where H is a standard normal variable. Also, by 1.1, we can take
n'/?(P,—P}:= v, - Gp uniformly on % almost surely as n — oo, where the
n{(w, A) and H are independent of P, and Gp.

Now (n(w,A)—2)/A -0 as., so n(w, )/A - 1 as. and n(w, A)—» © as.
Thus v,,(,,, et (IP umformly on % almost surely So

(n(w, A)P,.(m a,—AP)/J”2 :
= (n(@, D/ Voo 1y +(n (0, ) —2) P/AY? — Gp+HP = W,

~ uniformly on % almost surely as A = co, which completes thé proof.
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Added in proof. Theorem 4.1 extends a result known in the classical
one-dimensional case: cf. P. Gaenssler and W. Stute, Ann. Probability 7 (1979),
p. 193-243, Theorem 2.6.2 on p. 230-231.
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