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Abstract. For background of this paper* see [Z]. Given a pro- 
bability space ( X ,  d, P), let G, be the Gaussian process with 
mean 0, indexed by 1, and such that 

(1) Let E c d and suppose that, for all probability measures 
. (laws) Q on d, GQ has a version with bounded sample functions 

on W. (For example, suppose is a "universal Donsker class".) 
Then, for some n, no set % of n elements has all its subsets of 
the form C n F, C E?, i.e. % is a Vapnik-Chervonenkis class. An 
example shows that limit theorems for empirical measures need not 
hold uniformly over a Vapnik-Chervonenkis class of measurable sets, 
unless further measurability is assumed. 

(2) For a law P on X = {I ,  2, . . .), the collection 2' of all 
subsets is a Donsker class if and only if .. 

m 

(3) For any probability space (X, 8, P), suppose V is a FDon-  
, sker class, % c 8. Let T, be a Poisson point process with intensity 

measure aP, a > 0. Then, as a + m, ( T . - R P ) / U ' ~ ~  converges in law, 
with respect to uniform convergence on V, to the Gaussian process 
Wp with mean 0 and EWp (A) Wp(B) = P ( A  n B), A, B E % . 

1. Introduction. Let (X, d, P) be any probability space. Let G p  and Wp 
be the Gaussian processes, indexed by d, with mean 0 and such that for 
a11 A, B E &  

1 

E W p ( A ) W p ( B ) = P ( A n B )  and E G , ( A ] G , ( B ) = P ( A n B ) - P ( A ) P ( B ) .  

* This research was partially supported by National Science Foundation Grant 
MCS-7904474. 
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Then for all A . E ~  we can write . . .  

where H:= Wp(X) is a standard Gaussian variable independent of Gp. 
Let XI, X,, . . . be independent and identically distributed with law P, 

and let P, be the random empirical measure n - l  (Sxl + . . . + 6 4 .  Let V c d. 
In [2], %' was called a P-Domker class if the convergence of laws 
3 (n1I2 (P, - P)) -, Y (G,) holds with respect to uniform convergence on W 
in a suitable sense, together with some measurability conditions. Here we 

' will need only the following Skorohod-Plichura form of convergence (see [2], 
p. m-902): 

1.1. If-V is a P-Donsker class, then there is a probability space (a, 3, Pr) 
and for n = 1,2,  . . . there are processes (a, C) + A, (w , C), w E 62, C E V,  such 
that, for each fixed n, the laws of the pracesses nltZ(P,,-P) and A, are the 
same and such that 

lim sup IA,(o, C)- G,(C)(w)l = 0 a.s., 
n+co C& 

where G, is ddned on the probability space P. It follows that 

sup tGp(C) (o)l < oo as. 
Cf% 

Sections 2, 3 and 4 use the above, but are independent of one another. 

2. Universal DaIssker classes are Vspnik-Chervonenkis classes. For any 
set X let 2X be the collection of all its subsets (power set). Let V c 2X.  
Then %' is said to shatter a set F c X if '2' = ( F  n C :  C E ~ ) .  Also, V is 
called a Vapnik-Chervonenkis class if, for some finite n, no set F with n 
elements is shattered by V .  

2.1. THEOREM. For any set X and collection '3 of subsets of X which is 
not a Vapnik-Chervonenkis class, there are a purely atomic probability measure 
P on X and a countable collection 3 c '% such that Gp is almost surely 
unbounded on 9. 

Proof. Since %' shatters sets- of all sizes, for each- n = 1, 2 ,  ... there 
is a set F, with 4" elements, shattered by V. Let 

G, := F,\ (J F j .  
j < n  

Then the G,, are disjoint and have cardinality 
n - l  

card (G,) 2 4" 44' = 4" - (4, - 4)/3 > 2", 
j = l  

with G, shattered by V. Take E, c G, with card (En) = 2". Then E, remain 
disjoint and are shattered by %. 
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m ! 

Let P ((x)) = 6/(z2 n2 - fn) for each x E En, and let P = 0 outside U En. 
Then P is a purely atomic probability measure on X. A = 1 

Let 9 be a countable subset of V which shatters each of the En. 
Let us fix n. Then, for each C E ~ ,  

&(C) = WPICn~n)+wl~IC\En) .  

Thus for any K, 0 < K < co, we have 
-. 

{o: lWp(C) (w)l < K for all C E ~ )  c 8 ,  w b , ,  
?. - 

where . 

b, := {w:  IWp(B)(w)l < 2K for all B c En),  

6, : = (w: -for some B c En, Wp(B) (g)l > 2K, and for all 'such B 
and .C E 9 with C n En = B we have I Wp(C\En) (o)l > K) . 

Let , 
Sn:= c lWP(l~)) l .  

XGE, 

Then since sup ( 1  Wp (B)J: B c En) 3 S,/2, we have 8,  E (S, d 4K).  For 
each x E En, Wp ((x)) is a normal random variable with mean O and variance 
g: : = 6/(n2 nZ -2"). Thus 

E I Wp ((x))l = (2/n)lt2 6, and var ( I  w ~ ( { x ) ) ( )  = 4: (1 - 2/n). 

Then 

E S, = 2" (2/n)'/' G, and var (S,) = (6/(n2 n2)) (1 - 2/n), 

since 'w, has independent values on disjoint sets. Hence, by Chebyshev's 
inequality, for large n we get 

Pr (S, < 4 K )  < Pr {IS,-ESnI 2 ESn-4K)  < n-'/(4K-E2Q2 
< 1/(4~n-2"/ '  (1  2/n3)1/2)2 : = f (n,  K )  + 0 as n -, c~ 

for any fixed K. 
NOW we consider the event 8, .  Let t t ( n ) : =  22". Enumerate 2 E n  by 

B ( l ) ,  ..., B(tt(n)) ,  and let 

Mi := (o: I wp(3( l ) ) (w) l  > 2 ~ ) ,  

m- 1 

Mm:=(w$ U M j :  I ~ ~ ( ~ ( n a ) ) ( w ) l > 2 K ) ,  m 2 2 ,  
j= 1 

Dj := ( w € M j :  for all C E ~  such that C n E ,  = BU),  lWp(C\EA)(w)J > K). 
By the independence of Wp on disjoint sets, we have 

Pr (Dj) = Pr (Mi) Pr {for all C E 9 such that C n En = BlJ, 

IWp(C\Efi) (all > K) Pr (Mi) 2Q (-K), 
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where .@ is the standard normal distribution function, since, for any fixed , 
I set A, Wp(A) is normal with mean 0 and variance less than 1. Now, , 

so that 

Pr(6,) < Pr(Mj).2Qs(-K) 
! 

1 d j 4  rt(n) 

= 2@ ( - K )  Pr (1 W, (B)I > 2K for some B r E,) < 2@ ( - K ) .  

It follows that - -  - - 1 

Pr(IW,(C)I < K for all C E ~ )  < f ( n 7 K ) + 2 c P ( - K ) .  
I 

Making K large enough, and then n large enough, completes the proof. ! 

It foIIows that if W is a universal Donsker class, i.e. it is a P-Donsker 
class for all P on the o-algebra d.1 V, then V is a VapnikChervonenkis 
class. In [2], Section 7 and Correction, it is shown that every Vapnik-Chervu: ' 

nenkis class satisfying some measurability conditions is a universal Donsker 
class. The remaining problem is to find what measurability conditions are 
needed. The fofIowing exam.pIe shows that some further measurability is 
necessary. 

2.2. PROPOSITION. There exist a set X and a class '3 of countable 
subsets of X ,  which shatters no ?-element set, and a probhbility measure P 
such that almost surely 

sup (Pn - P) (A)  = 1 for all n .  
A€% 

Assuming the continuum hypothesis, rve can take X = LO, 11 and P to  be 
Lebesgue measure. 

Proof. Let (X, <) be an uncountable well-ordered set such that all its 
initial segments (x: x < y ) ,  y E X ,  are countable. Let % be the collection 
of all these initial segments. Then % does not shatter any set with two 
elements. Let P be any probabi~ity measure on X which is 0 on countable 
sets and 1 on their complements. Given any finite set ( X I ,  . . ., X,,) c X ,  
there is a se: A in V contair~ing all the Xi, so ( P , - P ) ( A )  = 1, which 
completes the >roof. 

Steele [3] assumes that all sets in $9 are measurable and that 
sup I(P,-P) (A)! is measurable. These conditions are both satisfied in the 
A& 

exampIe above. Thus it appears that further measurability conditions need 
to be added to some of the statements and proofs in [3]. - 

3. When is 2' P-Donsker for X countable? Let X be a countable set, 
say X = (1,2, ...}, and let P be a law on X with P { m }  := p,, rn = 1.2, ... 
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3.1. THEOREM. The col/ection 2X of all subsets of X is a P-Donsker 
class if and only 

Prooi.  Suppose (*) holds. We have E(v, { n ~ } ) ~  = pm-pi for all a and rn, 
where v, : = n1I2 (P, - P ) .  Thus E Iv, { m ) ]  < pz2, and 

So, for any E > 0, - -  - 

- sup Pr { C Iv, {j) l  > E )  + 0 as tn + CQ . 
n j B  m 

Thus condition (b) in Theorem 1.2 of [2 ]  holds; as the other conditions 
also hold for %? = 2X, X countable, it is a P-Donsker class. 

On the other hand, if &Ai2 = a, then 
m 

by Proposition 6.6 of [I], letting b, := 4, = lL,,l/pA'2, and recalling 
the relations L ( l A )  = Wp (A)  = Gp (A) + P (A) Wp ( X ) .  Thus Gp has sample 
functions almost surely unbounded on 2X (it is enough to consider the 
countable collection of finite sets). Consequently, 2' is not a Donsker class, 
which completes the proof. 

4. A limit theorem for Poisson processes. Let (X, d, p) be a a-finite 
measure space. Then the Poisson process T, with intensity measure p is 
indexed by the measurable sets A with p (A) < oo ; T, (A)  is a Poisson 
variable with parameter p(A), and T, has independent values on disjoint 
sets, being additive for (finitely many) disjoint sets. These conditions, as is 
known, consistently define a stochastic process. 

For 0 < p(X) < CO, let T ( X )  = n be a Poisson variable with parameter 
p [X). Then let 

where the Xi are independent and identically distributed with law p/p(X), 
and independent of a. It is easily seen that this T is a Poisson process T,. 

Now let P be a probability measure and 0 < 1 < CQ. Then, as R + co, 
(G,-AP)/A~/~ converges in law to W,, at Ieast on any finite collection of 
measurable sets. For +? c -sZ, we say that this convergence in law holds 
with respect to uni$orm convergence on $7 if there exists a probability space 
(a, Pr) carrying a process Wp and processes Sj., 0 < 1 < a, such that for 
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each R the process Si has the same law (as a process on 9?) as 
(&, - AP)/I~I~, and such that 

lim sup J(SI - W,) (C)I = 0 as.  
A-P, C66 

The following result was proposed by E. 8. Dynkin in a discussion in 
Oberwolfach, March 1979. 

4.1. THEOREM. FOP any probability measure P and P-Donsker class g, 
(zp- A~)/dl/' conviiges in law t o  Wp with respect to uniform convergence on W. 

P r o  of. Take XI, X,, . . ., independent with distribution P. For each R, 
- O < h c oo , Iet n = n(w , A) be a Poisson variable with parameter 1, inde- 
. pendent of the X i .  Then we can write TAP = n(w, 1) Pnlw,~)  (in law). 

Now (n (w , A) - A)/IL1'2 converges in law to a standard Gaussian variable 
as A + CQ. To replace this convergence by almost sure convergence of real 
random variables, we use the following standard procedure. For any prob- 
ability distribution function P on R and for 0 < y < 1, Iet 

F - I  (y) := inf {x: F(x )  2 y ) .  

Suppose laws p,,, on R with distribution functions F ,  converge to 
a law po. Then Fi l (y)  -, ~; ' (y)  whenever the interval F i l ( y )  contains 
at most one point. Thus FG1(y) -, Fgl(y) for all y, 0 < y < 1, if F, has 
an everywhere positive density, e.g. if it is a nondegenerate normal 
distribution function. Thus if p1 + p, as A 7, a, where pA has distribution. 
function F A  and p, has an everywhere strictly positive density, then, for 
0 < y < 1 ,  FT1 (y) -, F i l  (y) as 1 + m (continuously). 

Now, taking a new probability space if necessary, we may assume that, 
for all o, 

where H is a standard normal variable. Also, by 1.1, we can take = 

nl/'(P,-Pj := v, 4 Gp uniformly on %? almost surely as n -r a ,  where the 
n (o, A) and H  are independent of P,  and G,. 

Now (n(o, A)-R)/1 -, 0 as., so n(w, A)/A 4 1 as. and n(w, A) + CQ a.s. 
Thus v,,(,,~, Gp uniformly on %? almost surely. So 

(n (a, A) P,(,,A, -RP)/Jwlt2 

= (TI (CO, a)/l)l/Z v , ( , , ~ ~  + (n (a, 2) -1)  all^ -, Gp + H P  = wp 

uniformly on % almost surety as A + a ,  which completes the proof. 
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Added ir proof. Theorem 4.1 extends a result h o w n  in the classical 
one-dimensional case: cf. P. Gaenssler and W. Stute, Ann. Probability 7 (1979), 
p. 193-243, Theorem 2.6.2 on p. 230-231. 
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