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Abstract. An exponential inequality for sums of independent
_uniformly bounded B-valued random vectors is proved. It is applied
to obtain results of the form

sup-E {exp (o ISl log 1+18.)} < oo

for uniformly bounded row-wise independent triangular 'arrays and
independent series. A sharp integrability result for Poisson measures
on spaces of cotype 2 follows as a corollary. Some 1ntegrab1hty :
results of the form

sup E {exp (@[IS,17} < 0 (1< p <2

for certain triangular arrays and series are proved, generalizing some
recent work of Kuelbs. As an application some results on convergence
of exponential moments in the central limit theorem are obtained.

1. Introduction. The ‘object of this paper* is to study conditions under
which row-wise independent triangular arrays or independent series of Banach
space valued random vectors have very strong integrability properties:
explicitly, we prove, the finiteness. of certain exponential moments of order
higher than one under various assumptions.

Section 2 contains a generalization of an exponential inequality proved
by Bennett [4] for uniformly bounded real-valued random variables to the
case of uniformly bounded B-valued random vectors. This inequality plays
an essential role in:Section 3.

* The final draft of this work was written while the author was visiting the Department
of Mathematics at Pennsylvania State University during July-August 1979. The author is very
grateful for the hospitality offered him by that institution.
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In Section 3 we prove results of the form

SUPE{GXP (o 1154 log (1 +1S,I0)} < o0

for certain unlformly bounded triangular arrays or series in a general Banach
space. The results in this section refine, in a particular case, several integra-
bility theorems obtained in [1] and [3]. As a corollary we obtain a result on
convergence of exponential moments of the above form in the central limit
theorem.

The integrability- results of Section 3 take a partlcularly satisfactory
aspect in the case of spaces of cotype 2. We have isolated these results in
Section 4 because of their seemingly final form. As a -corollary we obtain
a sharp integrability result for Poisson measures on spaces of cotype 2.
At the end of this section we pose some open quest1ons

Section 5 contains results of the form

sup E {exp (@IS,II")} < o, pe(l,2],

with :
Sn = Z bannjs
j

where {b,;} are real numbers and {X,;} are B-valued random vectors. We
obtain generalizations of several results proved in an interesting recent paper
of Kuelbs [7] for the case of the exponent p = 2. We also prove a result
on convergence of exponential moments in the central limit theorem in the
framework of this section. Let us remark that, so far as we know, the
results in Section 5 are new even for the real-valued case.

Notation. B will denote a separable Banach space, B, = {xeB: ||x|| <r}
(r > 0). For a B-valued random vector (r.v.) X, we write

Xr ,=-XI{XEBT} and - X(t) = X_Xr : .

By a triangular array we shall mean a doubly-indexed, row-wise
independent . family {X,;: j=1,...,k,; ne N} of B-valued r.v’s. In all
sections except Section 5 we write - o

n . . o
Z 'U’ .
in the case of series, we write similarly
.
BX

Also, .
Sn;r = Zanu Sﬁlﬂ = Z XS_:))’
J . i

‘M =sup|S,|, M.=sup|S, ), M =sup|SP|.
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2. An exponential inequality for the sum of independent as. bounded
B-valued r.v.’s.

Lemma 2.1 (Yurlnsku [81). Let {X;: j = 1,..., n} be independent B-valued
r’s, let .

and assume X ; eLl(B) G=1, . ., n). Let Jfk-— a(Xl,.. Xk) for k = 1,:..,n
and let & be the trivial - a'-algebra Then for k = 1,

|E {1801 1# 3 =B {18l |F 1= 1}| < IX I +E1X,] as.

This is proved by an elementary argument with conditional expectations.

The next.theorem extends a result of Bennett [4] for real-valued r.v.’s
to the case "of B-valued rwv’s. For ¢>0 and 4> 0, let  ¢.(4)
= ¢ 2(e*=1~c). :

-THEOREM 2.1. Let {X;: j=1,...,n} ‘be independent ‘B-valued r.ns, let

S" = Z XJ,
and assume I|XJ|| c< o as (j= 1 ., n). Let
a = Z E | X%
i=1 }

Then for all t >0

t (¢ |
- P{IS,—E|S t —_— = I 14—
MII um>} ew(k (k+c>cg<+2))“
Proof We ﬁrst establlsh the followmg 1nequa11ty

anE@wmumwmemmwzwm)ﬁmm;m

Put y; = E{|IS, ||| #~E{IS:lll#;-1} G = 1,....n). Then

AR ||Snu‘= Zln,- |

and
2) Efewp ((ISI-EIS,D)} = E(E{exp (2 3, 1)|7-1})

in—1:

(exp (4 Z n;) E {exp (1,) |-/’n )

j=1
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Now
(2.3)

o 1kE (k| k k-2 2
A E{ng| F -1} <14+ A (2c)" “4E || X, |
k! k=2 ! k!-

< 1+9. Q) E|X,|* < exp (9. 2A) E 1X,0%);

8

in the first step.we have used E {n,/%#,-,} = 0 and in the second
E{n| o i} < QP2 E{n}|F, 1} < 20F24E|X,|%
wtiich follows from Lemma 2.1 and from the boundedness assumption.
By (2.2) and (2.3),
R ! n - ‘ ’ n-1
Elexp (2 3, 1)} < exp (0.1 ENX,|1*) E{exp (2 T n))}
J= : = .

Iterating the same procedure yields (2.1).
"By (2.1) and Markovs inequality, for all A >0 and ¢t > 0 .we have

P{|S,|—E|S,| >t} < exp(—lt+a¢c(22)).

For fixed t > 0, let g,(A) = —it+agp (22). By elementary calculus, g, has
a minimum at ' '
‘ 1 tc \
Ay = — — .
A= log (1 + % )

Since obviously P {||S,|—E|S,| > F < eip (9.(4,)), ome may complete
the proof by elementary computations. ’ :

Remark. The inequality in Theorem 2.1 is slightly weaker than Bennett’s
[4] one-dimensional inequality in two respects: in the inequality in [4] the

“term E||S,| on the left-hand side is absent, and the factor 1/2 multiplying

—t/c in the exponent on the right-hand side does not appear. However,
Theorem 2.1 ‘together with a somewhat delicate truncation argument will
produce sharp integrability results in Theorems 3.2, 3.3 and 4.2-44.

3. Integrability of a.s. bounded B-valued series and triangular arrays. The
first result refines in a particular case — namely, under the special assump-
tion (¢) — Theorems 3.1 and 3.2 of [1] and Theorem 2.1 of [3]. .

In Sections 3 and 4, we shall write ' '

() = exp (axlog (1+x) (x€R, x > 0).

The following obvious properties of the functions f, will be useful:
(i) f is strictly increasing and convex,
(i) if af <y, then f,(Bt)/f,(t) - 0 as t — co.
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TueoreM 3.1. Let {X,;} be a triangular array of B-valued rp.’s. Assume -
@) Xl < c < oo as. for all n, j,
(b) {S,} is stochastically bounded,
(c) sup Y E|X,,—EX,l* < co.

n J

Then : '
- sup E£(IS,I) < 0 for every o < (4c)™*.
Proof. Let _
Y= X,~EX,, and T,=YY,=S5,-ES,

nj
| By well-known results (see, e.g., Theorem 3.1 of [1]), (a) and (b) iﬁlply -
' h—supE||s,,||<oo -
Now E|T,|| < 2h; also, by (2), Yl < 2c for all n, j. Let
| ca=spYEILI%
Since ||S,|| < |T.| —E | T,| +3h, Theorem 2.1 gives
PiNS I >t < P{TI-EITI > t—3h}

-3 - —3h
< exp (t 4c-h—— t 4:h log (,1 +—(%C—)) fo.r every t > 3h.

The assertion follows at once from this inequality and from the formula
-~ EAAIS.]) = 1+§ﬂ(t)P{”Sn” > t}dt.

Remark. It is clear that the integrability statement holds for every
o < (2¢)~! if one replaces (c) by the stronger assumption: -
| sup'ZE”X,,szk 0.

LemMA 3.1. Let {X;: je N} be independent B:valued ruv.s.  Assume

(a) ]|X,l| ¢ < o as. for all jeN,

(b) Z P{IX;]l >} < o for some T > 0.

Then Efa( ) < o for all @ <c™t.
Proof. We use an idea in [1], Theorem 3.2. Let

@; = Lxy>q, @ = Z ;-
The ¢;s are independent; also IIS")M co- for all n, Wthh 1mp11es .
M < co.
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For all 2 > 0,
E {exp (AM"Y)} < E {exp (dcg)} = [] E {exp (Acyp;)}
. i ) )

= [1*P{p; = }+P{g; =0}) |
=T+ E—)P{X;| > t}) <exp(le*—1)d),
)

where

d= Z P{HXJII > r}
By Markov’s mequahty,

P{MY > ) < exp(~At+d(€—1) for all >0, > 0, -
Fix t > 0 and let g,(4) = —At—l—d(e“‘c—l). Then g, ‘has a minimum at

i t
A ——1 o
Y ¢ 108 dc

It follows that
P{M® > t} exp (g,(4)) = exp (~————10g ( dtc ) —d)..
The proof is completed by using the formula '
Ef, (M) = 1+ °f f;(t)P{le > de. .

The followmg result for series refines Theorems 2.3 and 2.5 of [1] in

a particular case. -

THEOREM 3.2. Let {X;: je N} be mdependent B-valued r.v.’s. Assume
(@) |X;l € ¢ < o as. for all jeN,. .

b .Zl EHX,-—EXJ-HZ < .

Then
(1) if {S,} is stochastically bounded, then Ef,(M) < o0 for all a < (Sc) 1
(2) if S, converges as. in B, then Ef,(M) < oo for all a <'¢™".

Proof. (1) Let

M, = sup HSk”

k\n
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Choose t, so that sup P{lIS]| > to/2} < 1/2. By the Lévy-Ottaviani ine-

quality, .
-1
P{M, > 1) < (1—1;‘133( P{uskuv> é—}) 1_3{||S,,u > %}

<2P{25, > £} for t > 1,
Now ' '

E fu(M,) < falto)+ f fa(t)P{M > t}dt

<fa(ro)+2m(r)P{nzs,n > t}dt < ﬁ.(ro)+2Eﬁ(uzs"||)._.

By monotone convergence and Theorem 3.1 we obtam Efa(M) < w
for « < (8¢)~ L.

(2) First fix = > 0, and observe that
(3.1) 4 Z P{|[XJ-|| >1} < w

by the Borel Cantelh lemma.
We claim next that

oo

(3-2) Z I1X ;o — EX )i

j=1

In fact,

2 [BIX,—EX;|*~B | X ~EX,’|

s -21 E|(I1X;—EXll + |1 X ;. — X)) (1%, — EXjll = |1 X ;. — EX |}
=

4c _/;1 E[(X;—X;)—EX;— X))l

c? i P{X > <@ by ()

Thus’ (3.2) follows by (b)
Assertion (3.1) and Lemma 3.1 imply that {S®} is stochastically bounded;
since S,, = S,—S® and {S,} is stochastically bounded, it follows that
.. (%) {S,.} is stochastically bounded.
Now assume that « < ¢~! is given. Choose fe(x,c™!) and. de(a/B, 1).
Next select T > 0 so that 7 < (1—-6) (82)~!. By statement (1), taking into
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account (3:2) and (x), we have

(3.3) Ef,(M) < 0, where a(1—0)"' <y < (87)"".
On the other hand, Lemma 3.1 and (3.1) give
(34 ' Efy (M?) < 0.

Finally, sincé M < M.+ MY, we have 7
M) < f;(M+M®) < (1-8) £((1- 5) JlM)+5ﬁz( 1 M)
< (1-9)c, £ (M) + ey £ (M)
by properties (i) and (ii) of the functions f,. Therefore '
' Ef,(M) < (1— 6)c0Ej;(M)+5c1Eﬁ (M%) < 0

by (3.3) and (3.4). :

The following example is a shght modlﬁcatlon of one presented in [1]
It shows that even on the real line Theorem 3.2 (2) is sharp in the following
sense:

Example 3.1. For everjz ¢ > 0, there exists an independent sequence of
real-valued r.v.’s {&;} such that : :

@) &l < ¢ for all j,
(b) S = Z &; exists a.s.,

(c) Z E&Z < o0,

but Eﬁ(lSl) oo for all a > c” L _
Proof. It is clear that it is enough to prove the assertion for ¢ = 1.
Choose f > 1. Let {{;} be independent r.v.’s with £ ({;) = (1—p;)do+p;01,

where p; = j~!(log j)7E. 1t is easily verified that (a)<(c) are satisfied.

Let

n
= 2 &
) Ld=1
Then, as n — c© we have

Ef,(S,) = exp (anlog n) P {S, =.n}

It

exp (an log n) (n)~*( [] log j)~# = .exp (am log n)n~"(log n)~™
j=1 ’ o S
= exp ((a%l)nldgn—nﬂlog(ldgn))—> oo if > 1.

The next proposition sharpens Theorem 3.1 for an important class of
triangular arrays. We shall need the following lemma, which is similar to
Lemma 3.1. ' - :
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LemmA 3.2, Ler {X,;} be a triangular array of B-valued r.v.’s. Assume
(@) | Xl < ¢ < oo as. for all n, j,
(b) sup ¥ P{|X,;| > 1} < co for some © > 0.

n .

Then : .
sup EL(ISPN) < o for every a<cl

The proof is very snmlar to that of Lemma 3.1 and is therefore omitted.

‘ THEOREM 3.3. Let {X,,J} be an mﬁmteszmal trlangular array of B-valued
rvs. Assume '

@) |1 Xl € ¢ < o0 as. for all'n, j,
(b) {L(Sp)} is relatively compact,
(¢) sup Y E|X,;—EX,l* < 0.

. n i .

"« Then , _ : :
sup Ef, (IS,l) < 0 for all.a < ¢

Proof. It is similar to that of Theorem 3.2. We will indicate the main

steps.
Fix 7 > 0. By [2], Theorem 2.2,
. (35) ' supZP{llX,,jll > 1} < o0.
. w5 .

Arguing es in the proof of (3.2) in Theorem 3.2, we;'obtain_
(36) sup Y E [ Xy~ EX 2 < 00
. n i
By Lemma 3.2, {S®} is stochastically bounded; since S,, = S,—SP, we
may conclude that {S,.} is stochastically bounded. '

Given a < ¢!, choose fe(x,c™ ") and de(x/B,1). Next select T > 0 so
that 7 < (1—6) (40)~ 1. By T]ieo_rem 3.1, (3.6) and (x),

sup Efy(]|S,,,t||) < o0, where a(l—8)"! <y < @)L -

By Lemma 3.2 and (3.5),
Sup Efp(llS“’ll) < o0.

We may now complete the proof by writing

Ef, (IS]) < Ef (IS,qll + 1S1)

and proceeding as in Theorem 3.2. , Lo

In the following corollary we obtain a convergence result for a case not
covered by the theorems on convergence of moments in the general central
limit theorem in [3]. . -
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CoroLLARY * 3.1 Let {X,;} be an mﬁmteszmal triangular array of B-ualued_

r.v’s such that ¥ (S,) - v. Assume

@) | Xyl € c < oo as. for all n, j,
(b) sup ) E||X,;—EX,;|* < 0.
n

Let @: B> R" be a coritmuoas function such that ¢ (x) < bfy(|x|} for all
x€B, for some b >0 and @ < c -1

_f~q3dv’"<' 0 - .and llm Eo (S,,) = _[qodv;

Proof. The uniform 1ntegrab111ty of {qo (S,,)} follows easﬂy from
Theorem 3.3. :

4. Triangular arrays, series and Poisson measures in spaces of cotype 2. The
special assumption in Theorems 3.1-3.3 and in Corollary 3.1 may be dropped
if B is a Banach space of cotype 2. Let us recall that if B is of cotype 2,
then there ex1sts A >0 such that

Z DA AEH; v

for all finite independent sequences {Y,,..., ¥,} -of B-valued r.v.’s such that
E|Y|? < and EY; =0 (j = 1,...,n). -

THEOREM 4.1. Lét B be a separable Banach space of cotype 2 and let
{X,;} be a triangular array of B-valued r.v’s. Assume

(@) | Xpll < ¢ < o as. for all n A

. (b) {8,} is stochastlcally bounded

Then
Vs’up Ej;(||S,,||) <o | for every. o _‘<.(42:)".1.
Proof. Let
Ynj = an—'EX”j and.‘ Z Y,‘J = S".
J

Then

Y E|Y,* < AE|T,|* < 44E|S,|*

J
Since

sup E||S [ <

by well known results “(see; e.g., [1] Theorem 3. 1) the assertlon follows
from Theorem 3.1.
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THEOREM 4.2. Let B be a separable Banach space of cotype .2 and let
{X;:je N} be independent B-valued r.v.’s. Assume that |X;| € ¢ < o0 as.
for all je N. Then

(1) if {S,} is stochastically bounded, then Ef,(M) < co for all & < (8¢)7 %,

(2) if S, converges as. in B, then Ef,(M) < o for all « < ¢ 1.

Proof is similar to that. of the previous. theorem, but using Theorem 3.2.

THEOREM 4.3. Let B be a separable Banach space of cotype 2 and let
{X,;} be an infinitesimal triangular array of B-valued r.v. ’s. Assume

(a) 1 Xl € ¢ < o0 as. for all n ],

(b) (S} is relatlvely compact

"Then N
sup Ej;(IIS I < o for all « <c 1‘-.

Proof As in Theorems 4.1 and 42 but using Theorem 3 3.

Analogously, Corollary 3.1 is true without ‘assumption (b) if B is a space
of cotype.2. : : . S

The next result reﬁnes Corollary 3.3 of [1] for Po1sson measures in
spaces of cotype 2 (for definitions and basic facts on Poisson measures,
see [2]). Theorem 4.4 is sharp in that we prove the finiteness of the
integral | f; (Ix) (c, Pois p) (dx) for the maximum possible range of os.
(In fact, if u = 5, on R! and v = Pois p = e”! exp (,), then [f,dv = oo
for « > 1) When -applied to "the case of Poisson measures on Hilbert
space, Theorem 4.4 improves a result of Kruglov [6] in which the precise
range of admissible o’s is not- specified.

THEOREM 4.4. Let B be a separable Banach space of cotype 2. Let u be
a Lévy measure on B such that u(BY) = 0 for some r > 0. Then for all
a<rtand al >0

A (e Pois 1) (dx) < o0

_ Proof. Just as in [1], Corollary 3.3, but using Theorem 4.3.

The results: of Sections 3 and 4 lead to the following question: is it
possible to eliminate assumption (c) .in Theorems 3.1 and 33 (assump-
tion (b) in Theorem 3.2)? Or, better, one may pose

PROBLEM 1.~ Determine for what Banach spaces it is true that any
triangular array satisfying assumptions (a) ‘and (b) of Theorem 3.1 also .
satisfies its conclusion (a similar problem may be posed for ‘the statements
of Theorems 3.2 and 3.3).

Theorem 4.4 suggests the followmg very closely related

ProBLEM II. Determine for what Banach spaces it is true that any
Poisson measure whose Lévy measure has bounded support satisfies - the
conclusion of Theorem 4.4. Also, is Corollary 3.3 of [1] the best possible
“result in a general Banach space? o
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5. Exponeritial moments of -order pe(l,2]. Let {X,;}" be a triangular
~array of B-valued r.v.’s, {b,;} a triangular array of real numbers, and let

.Sn = ananj'

Let pe(l 2]. In this section we give condltlons under which
. sup E {exp(a. ||S,,||”)} < oo for some a >0.

(Let us remark, althqugh the results in this section are stated for Banach
spaces, all of them except Theorem ‘5.4 carry over to the case of linear
measurable spaces considered in [7].)

The key to the integrability results in this sectlon is the exponential
inequality given in Theorem 5.1; it is analogous to inequality (2.1).

By elementary calculus we get :

Lemma 5.1. Let a > 0 and a > 0. Then B > max {ae 1+a} lmplzes

1+aue™ < €  for all u > 0.

LEMMA 52. Let f >0 and p > 1. Then there exiSt_ >0 and ¢c>0
such that

| te" exp (— BP)dt < cexp (aud) for all u > 0,
0 PRI .

where p~l4q ! =1

APvroof. By conveXity, for every A > 0,u > 0,t > 0 we have
(51)  —BrPrur = —BeP+(Ar) (%)

= PPyt ir 1
< —pr? = —t?(f——~— —
per+ p +l“q <ﬁ P>+i"q .

" Let o> 1/(8p)¥"q and take A = (xgq)~Y%. Then & = f—4%/p >0 and
from (5.1) we have for every u > 0,7 > 0 the inequality '

—ptP+ut < —ot? 4ol
It follows that
f texp (ut—prP)dt < _[ texp (— 5t"+o¢u“) dt = cexp (auf),
0 : : 0 _
where

o

= [texp (—dtP)dt.

-
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Tueorem S5.1. For every p > 1 and every B >0, L >0, there exists

9 > 0 such that, for every finite independent sequence {X;:j=1,..,n} of
B-valued r.v’s with E{exp (B X;|")} < L (j = 1,...,n), the inequality

B {exp (151 ~EIS.)} < exp (27 3 B3+47 %, i)
holds for every finite féal sequence {b;:j = 1, , n} and for every A > 0; here
-8, ="z":":bef and pl4q ' =1. |
= ‘
Proof. As in. the 'proof of Theorem 2.1, we may wrlte
' Is-EIS) = 3, 1
and
(5:2) E {exp (A(IS,| —E|IS.I))} = E (exp (/1 :'g 1;) E {exp ()| # - 1})-
Obviously, we may assutﬁe b; >0,j=1, ...., n. By Lemma 2.1, n)] < b,Y,,

where Y, = | X;| +EX;] G = 1, ..., n). It is clear that we may choose § > 0
and-M > 0, both depending only on p, § and L, such that E {exp 8Y7)} < M

G=1,...,n).
‘Now ‘ 7 |
& FB{nHF.- © JBEEY
63 Elexpn)lF. ) =14+ 5 LEWIFud g 5 ABEY
. k=2 k! . k=2 k!
Since

EY’,: = jktk—IP{Y; > t} dt < jktk_lMexp‘(_étP)dt’
0 0

formula. (5.3) implies

kpk o
A I‘)" | kt*~!' M exp (—dtP)dt
o .

rel llk bk k—1
(;; _(k——tlT) exp (—317)ds

(5.4)'”."E{eva(l.n,,)jl.?",,_l} < 1+ i

=

Il

+

=
Ot 8 N

1+ M (Ab,) | [exp (Ab, )~ 1] exp (.—lét") dt -
g !

- < 14 M (Ab,)? }ot exp ((Ab,)t) exp (—ot¥)dt;
0
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in the last step we have used the obvious inequality u'(e—1) < u?te®
(u >0,t = 0). By Lemma 5.2, (54) yields gt

(5.5) " E{exp ()| 7 ,—1} < 1+MC(4b,)exp ( (/lb,,)'?)
for ceftain constante ¢ > 0and o > 0. By Lemma 5.1, putting 4 = Ab,, we get
1+ MCu? exp (au?) < 14+ MC max {u? u?} exp (« max {u?, u?})
N < exp (y max {u?, u?}) < exp (v (u +u“))
for a certain constant.y.- Thus: from (5.5) we obtain
E {exp (in)| 7, - 1} < exp (1 (25 +45)
and from (5.2) we get T

Efoxp (1%, m)) < exp (076 + MOV E fexp (1 S ).

The proof is completed by iterating the same procedure.
From Theorem 5.1 we obtain an integrability result for triangular arrays.

THeoreM 5.2. Let {X,;} be a triangular array of B-valued r.v’s, {b,;}
a tr:angular array of real numbers, and :

| 8o = Y by Xoy.
Let 1 < p‘ 2. Assume J
(a) sup E {exp (B ]IX,UH”)} < w for some ﬁ > 0,
(b) sup z b

() {S,,} lS stochastzcally bounded.

Then, for some « > 0,

sup E {exp (« |IS,]1?)} < oo.

Proof. By well-known arguments,

b-supEllS | < o0

(see e.g., [7'!, Lemma 3 1) By Markov’s inequality and Theorem 5.1, for
all t >0 and 4 > 0 we obtain

(5.6) P{IS,l > t+b} < P{IS,| ~E IS, > 1} .
< exp (—At) E {exp (A(IS,| — E IS, )}

< exp (= At+7ycA?+ydA9),
where :
c=supY b} <o and d= supz b,.J;
. n
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observe that d%? € ¢ < oo by (b) and the fact that ¢ > 2. Fix ¢ > 0 and

let g,(A) = -lt+yc;tz+ydl‘1 Let 4 = 6t" k w1th 0 to be determined in the

sequel. We have
g6 = (6 V)L + (ye8%) 202,
If p<2, choose 6> 0 so that © = §—ydé? > 0; if p—-2 we further
require that 1:-yc¢52 > 0. Then from (5.6) we get:- ' :

P{|S,]-> t+b} < mf exp. (g,(A)) exp (—ttf +(yed*)t>#2)  for all t > 0.

The result follows at once from this inequality, as in Theorem 3.1.
We consider next the.case of series of the form Z ij Theorem 53
generallzes a result of Kuelbs a7, 'Theorem 3. 2) for the exponent p=2

to any exponent p e (1, 2] (our result for p = 2 improves slrghtly Theorem 3.2
of [7], where it is assumed that the X;s have mean zero).

TueoreM 5.3. Let {X;:je N} be mdependent B-valued rv.’s, {b ]EN}
a sequence of real numbers and : .

Z bX; M= supls,).*

Let 1 < p < 2. Assume
(@) sup E {exp (B X;I")} < oo for some B > 0,

(b)Zb2<oo

(c) {S} is stochastically bounded,

Then
(1) E{exp (aM?)} < oo for some a > 0;
(2) if (a) holds for all B > 0, then E{exp (xM?)} < oo far all &> 0.

Proof. (1) follows from Theorem 5.2 by proceedmg- as in the proof of -
Theorem 3.2 (1).

(2)- The proof is a variant of the argument in Theorem 5.2. We prove
the statement for p < 2; a trivial modification of the argument glves a proof
for p = 2. Given ¢ > 0,:choose. m so that IR

do= Y by <@-20Y) %
~ For fixed t > 0, let

gi(d) = —At+ycoA2+9dg At with co = ¥ b2
Aok with 6o = ),




148 | - A. de Acosta

Then ;
9207 = — (20— 7do (20) P+ 720 (20) 1772 < —ot?+(dyce @) t?P72

Arguing as in Theorem 5.2, for all n > m and all ¢ > 0 we obtain
cn . P{IIS,—S,;II > t+2b} < e);p (—atP+{@dyco @) 1777 2).

Now (5.7) and the assumption that (a) holds for all § > 0 imply

sup E{exp (@ |S,[)} < oo for all'a > 0.

" Arguing as in (1) again yields (2).
"It is possible to obtain, as corollaries to Theorem 5.3, generalizations
of Corollaries 3.4 and 3.5 of [7] for series of the form Y Y;x;, {Y;:je N}

being an independent sequence of real-valued r.v.’s and {x;:je N} a sequence
of points in B. We omit the statements, which are obvious modifications
of those in [7] (the mean zero assumption should be deleted). .

From Theorem 5.2 one may obtain results on the convergence of
exponential moments in the central limit theorem covered neither by [3]
nor by our Corollary 3.1. The single most interesting case is

THEOREM 54. Let {X ]eN} be a sequence of independent zdenttcally
distributed B-valued r.v.’s, and

Let 1 < p < 2. Assume

(@) E{exp (B X,|?)} < oo for some B >0,

(b) L(n~128,) 2 7.

Then

MW ifp< 2 then for every o. > 0 there exists meN such that

sup E{exp (@fn 25,7} < 0

and :
lim E{exp (x [n~*75,17} = [ exp (@ Ix17)y (@) < o;

(2) lf p = 2, then there exists 6 > 0 such that for all a & 5
lim E {exp (« [~ 28,3} = [ exp («[x]%)y(dx) < oo.
‘Proof. (2) follows af once from Theorém 5.2. In order to prove (1)

we use again the method of proof of Theorem 5.2. Given ¢ > 0, choose
m so that m' %% < (y-21¢*"")"!. For n > m and a fixed t > 0, let

g.(A) = —At+yA2+ynt=92 28,
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" Then _
92017 ") < —ot? +(dye?) 2P 2.
. Arguing as.in Theorem 5.2, for all n. > m and all t > 0 we get

- P{|In"128,| > t+b} exp( tP+(4yg )t2” 2) :

The statement follows easﬂy by the standard formula used already in

Theorem 3.1.

Remark. Since the limiting measure y is neeessarlly Gaussmn it is. always '

integrable in the stronger sense.stated in (2) by Fernique’s [5] theorem.
It may be of interest to point out that Fernique’s result can be obtained from

 Theorem 5.4(2). This may be proved as follows. Let y be a centered

Gaussian measure on B, and &, its covariance. We claim

(**) there exist ¢ > 0 and 7 > 0 such that

D,(f,f) < cffzdy forallfeB’

In fact, choose 7 so that y(B) < ¢ < 1/2. Then

e

(5.8) 1—wp(4§¢aﬁﬁ)=fu.cmfu» ' l tﬁ%%f

Let
Y(f,9) = gfgdy (f,g€B).

By (5.8), there exist 6 > 0 and M > 0 such that ¥(f.f) < implies
@,(f,f) < M. Claim (**) follows by homogeneity. ‘

Let {X;:je N} be independent B-valued r.v.’s with £ (X J;) =, and put
Y, =X, T,= 3 Y
. j=1

- Then £ (n"'?T)) - 11, a Gaussian measure on B (to see that {ZL@n Y1)}

is tight, use, e.g, Lemma 2.6 of [1]). By Theorem 54 (2) we have
J exp (x[|1x]|?) p(dx) < oo for sufficiently small « > 0. But &,(f,f) < &,(f,f)
for all fe B'; by a well-known result, this 1mpl1es that y is a- convolut1on
factor of u, and hence

§ exp (@ x1?)7(dx) < [ exp (¢ ]x]|?) p(dx) <

by convexity (of course, this proof could be simplified if one could exhibit
at once a bounded r.v. belonging to the domain of normal attraction of 7).
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