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Abstract. An exponential inequality for sums of independent 
uniformly bounded B-valued random vectors is proved. It is applied 
M obtain results of the form 

for uniformly bounded row-wise independent triangular arrays and 
independent series. A sharp integrability result for Poisson measures 
on spaces of cotype 2 folIows as a corollary. Some integrability 
resdts of the form 

sup E {exp (or llS,,/1?} < a, (1 < p < 2) 
, 

" 
for certain triangular arrays and series are proved, generalizing some 
recent work of Kuelbs. As an application some results on convergence 
of exponential moments in the central limit theorem are obtained. 

1. Introduction. The .object of this paper* is to study conditions under 
which row-wise independent triangular arrays or independent series of Banach * 

space valued random vectors have very strong integrability properties: 
explicitly, we prove the finiteness of certain exponelitial moments of order 
higher than one under various assumptions. 

Section 2 contains a generalization of an exponential inequality proved 
by Bennett [4] for uniformly bounded real-valued random variables to the 
case of uniformly bounded B-valued random vectors. This inequality pIays 
an essential roIe in Section 3. 

* The final draft of this work was written while the author was visiting the Department 
of Mathematics at Pennsylvania State University during July-August 1979. The author is very 

. grateful for the hospitality oEered him by that institution. 
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In Section 3 we prove results of the form 

SUP E {exp (K IlSnll log (1 + IIS,~II))) < co 
n 

for certain uniformly bounded triangular arrays or series in a general Banach 
space. The results in this section refine, in a particular case, several integra- 
bility theorems obtained in [l] and [3]. As a corollary we obtain a result on 
convergence of exponential moments of the above form in the central limit 
theorem. 

The integrability- results of Section 3 take a particularly satisfactory 
aspect in the case of spaces of cotype 2. We have isolated these results in 
Section 4 because of their seemingly final form. As a corollary we obtain 
a sharp integrability result for Poisson measures on spaces of cotype 2. 
At the end of this section we pose some open questions. 

Section 5 contains results of the form 

~ ~ P E { ~ ~ P ( ~ I I S , I I ~ ) ) <  a, ~ ~ ( 1 , 2 1 ,  
n 

with 
S ,  = C 5, Xnj, 

j 

where {bWj) are real numbers and ( X n j )  are 3-valued random vectors. We 
obtain generalizations of several results proved in an interesting recent paper 
of Kuelbs [7] for the case of the exponent p = 2. We also prove a result 
on convergence of exponential moments in the central limit theorem in the 
framework of this section. Let us remark that, so far as we know, the 
results in Section 5 are new even for the real-valued case. 

N o t  a t  i o  n. B will denote a separable Banach space, B, = {x E B: llx 11 < r) 
(r  > 0). For a B-valued random vector (r.v.) X, we write 

X, = XIXEB,) and x(') = X - X ,  . 
- By a triangular array we shall mean a doubly-indexed, row-wise 

independent family ( X n j :  j = 1 ,  . . ., k,; n E N )  of B-valued r.v.'s. In all 
sections except Section 5 we write 

kn 

in the case of series, we write similarly 

Also, 

M = SUP 11s. 11 , Mr = sup IS,,,,ll , M"' = sup I(St1ll. 
n n n 
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2. An exponential ilaqlnality for the sum of independent a.s. bounded 
B-vdned a.v.'s. 

LEMMA 2.1 (YurinskiT [XI). Let { X j :  j = 1 ,  . . ., n} be independent B-valued 
r.v.3, let 

and assume X j  E L1 (B) (j = 1 ,  . . . , n). Let Fk = CT (XI, Xk) for k = 1, . . . , n 
and let Fo be the trivial -0-algebra. Then for k = 1, . . . , n 

This is proved by an elementary argument with conditional expectations. 
The next theorem extends a result of Bennett [4j for real-valued r.v.'s 

to the case of B-valued r.v.'s. For c > 0 and I > 0, let q , ( l )  
= c-2  (e"'- 1 -Ac). 

THEOREM 2.1. Let {Xj: j = 1, ..., n )  be independent B-valued r.v.'s, let 

and assume llXjl d c < co a.s. (i = 1 ,  ..., n). Let 

-0. 

Then for all t > 0  

Pro of. We first establish the following inequality: 
n 

(2.1) ~ { ~ ~ P ( ~ ( I I S ~ I I - E I I S ~ ~ ~ ) ) )  e x p ( ( ~ ~ ( 2 I )  .) CElxjl12) for all A > 0 .  
j =  1 

Put q j  = E{IISnl~IFj)-E(IISnllI~j-l} (j = 1 ,  ..., n). Then 

and 



136 A. d e  Acosta 

Now 

in the first step we have used E{q,19,-,) = 0 and"in the second 

which follows from Lemma 2.1 and from the boundedness assumption. 
By (2.2) and (2.3), 

n - 1  

E j e x ~  (A ~ j ) }  < ( ~ c ( 2 ~  E IIX~II') E   ex^ ( A  a 

j -  1 j = l  . 

Iterating the same procedure yields (2.1). 
By (2.1) and Markoy's inequality, for all 1, > 0 and , t > 0 we have 

For fixed t 0, let g, (A) = : I t  + arp, (21). By elementary calculus, g, has 
a minimum at 

Since obviously P {IISnII - E ]ISn 1 1  > t7 < exp (g, (A,)), one may complete 
the proof by elementary computations. 

/ 

Remark. The inequality in Theorem 2.1 is slightly weaker'than Bennett's 
[4] one-dimensional inequality in two respects: in the inequality in [4] the 

- term E IIS,I on the left-hand side is absent, and the factor 1/2 multiplying 
-t/c in the exponent on the right-hand side does not appear. However, 
Theorem 2.1 'together with a somewhat delicate truncation argument will 
produce sharp integrability results in Theorems 3.2, 3.3 and 4.2-4.4. 

3. Integrability of as. bounded B-valued series and triangular arrays. The 
first result refines in a particular case - namely, under the special assump- 
tion (c) - Theorems 3.1 and 3.2 of [ l j  and Theorem 2.1 of [3]. 

In Sections 3 and 4, we shall write 

The following obvious properties of the functions f ,  will be useful: 
(i) ,f, is strictly increasing and convex, 
(ii) if aj3 < y,' then f, (j3t)jJ; (t) -r 0 as t + CO. 
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I 
THEOREM 3.1. Let ( X n j )  be a triangular array of B-valued r.v.'s. Assumr 
(a) llXnjll G c < oo a.s. for all n, j, 
(b) {S,) is stochastically bounded, 

SUP 2 E IIXnj-Ex,ll2 < CO. 
j 

Then 
sup Ef,(IlS,II) < c~ for euery a < (4c)-'. 

n 

Proof.  Let 
Yn,=Xnj-EXnj .. - and T,,=CY,j=Sn-ES, .  

i 

By well-known results (see, e.g, Theorem 3.1 of [I]), (a) and (b) imply I 
h = sup E llS.Il < a. I 

n 

Now E IIKll d 2h; also, by (a), {lxjll < 2c for all n, j. Let 

Since. llSnll < ilT,,ll - E  1 1  T,ll f 3h, Thebrem 2.1 gives 

The assertion follows at once from this inequality and from the formula 

Remark. It is clear that the integrability statement holds for every 
a ( 2 ~ ) ~ '  if one replaces (c) by' the stronger assumption: 

LEMMA 3.1. Let l {Xi: j~ N )  be independent B-valued r.v.'s. Assume 
(a) llXjll < c < ~ c ,  a.s. for all j E N ,  

m 

(b) P{IIXjI! > 23 < oo for some z > 0 .  
j= 1 

Then Ef, (M")) < ao for all a < c- l .  

Proof.  We use an idea in [l j ,  .Theorem 3.2. Let 

Thk q;s are independent; also IISf)I! 4 c q  for all n, which implies ., 

M"' < crp. 
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F Q ~  all > 0, 

{exp (AM"')] < E {exp (Actp)] = n E (exp (Acqj)) 
I 

By Markov's inequality, 

P { M ( ' ] >  t )  <expi-Ar+d(eh-11))  for all 1 > O ,  t > 0 .  

Fix t z 0 and let gt (1) = - I t  +d(e" - 1). Than g, has a minimum at 

1 t 
I, = -log --. 

c dc 

at follows that 

t -  
I' {M(" > t }  < exp (g, (A,)) = exp (+-T~og ($1 - d ) .  

The proof is completed by using the formula 

m 

Ef, (M"') = 1 + 1 f: ( t )  P {M"' > t }  d t -  
I 

0 

The following result for series refines Theorems 2.3 and 2.5 of [I] in 
a particular case. - 

THEOREM 3.2. Let { X j :  j E N )  be independent B-valued r.v.'s. Assume 

(a )  llXjll d c < co a.s. for all j E N ,  
3D 

(b) C E I I X ~ - E X ~ ( ~ ~  < CO. 
- j = 1  

Then 
(1) {&) is stochastically bounded, then Ef, ( M )  < oo for all a < (8c)-'; 
(2) Sn converges a.s. in B, then Ef,(M) < co for all a < c - I .  

Proof.  (1) Let 
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Choose to  so that sup P{IISkli > to /2 )  < 1/2. By the Livy-Ottaviani ine- 
quality, k 

6 2P{[12SnI/ > t }  for t 2 to. 

Now 
00 

E f, (M,)  f ,  ( to )  + f f,' ( t )  P ( M ,  > t )  dt 
.t,, - 

4, 

G L ( t o ) + 2  { f,'(t)f'(112Snll > t ) d t  fm(to)+2Ef,(II2SnII). 
to 

By monotone convergence and Theorem 3.1 we obtain Ef,(M) < m 
for a  < (8c) - l .  

(2) First fix .t > 0, and observe that 
03 

(3.1) C P{lIXjll > TI < a 
j =  I 

by the Borel-Cantelli lemma. 
We claim next that 

In fact, 

Thus (3.2) follows by (b). 
Assertion (3.1) and Lemma 3.1 imply that (Sf)} is stochastically bounded; 

since S,,, = Sn - St) and {S,} is stochastically bounded, it folIows that 
- (*) {S,,*} is stochasticaIIy bounded. 
. Now assume that u < c-'  is given. Choose /I E ( a ,  c-l)  and 6 E (a/#, 1). 

Next select z > 0 so that z < ( 1 - 6 )  (8a)- l .  By statement (I), taking into 
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I 
account (3.2) and I*), we have 

I (3.3) EJl(M,)< a, where a ( l - S ) - I  < y  ST)-^ 

I .--- On the other hand, Lemma 3.1 and (3.1) give 

(3.4) E& (M")) < cg . 
t 
I 

Finally, since M < M,+M('),  we have 

ff ( M )  G f, ( M ,  + M"') d (1 - S) f, ( ( 1  - 6)- M,) -I- 6f, (8- M(')) 

< (1- 6 )  co fr (M,) + Sc & (M(,)) 

by properties (i) and {ii) of the functions f,. Therefore 

Ef, (M) < (1 - S) C, E& (M,) + 6c1 E& (M1") < 

by (3.3) and (3.4). 
The following example is a slight modification of one presented in El]. 

It shows that even on the real line Theorem 3.2 (2) is sharp in the following 
sense : 

Ex ample 3.1. For every c > 0, there exists an independent sequence of 
rmbvalued r.v.'s i t j}  such that 

(a) ltjl < c for all j, - 
(b) S = t j  exists a.s., 

but EJ;(ISI) = oo for all u > c-I. 

Proof. It is clear that it is enough to prove the assertion for c = 1. 
Choose f l  > 1. Let {t,) be independent r.v.'s with 2' (ti) = ( I  -pi) 6, +pisl, 
where pj = j - l  (log j ) -@.  It is easily verified that (a)-(c) are satisfied. 

Let 
n 

Sn= C t j=  
j =  1 

Then, as n -+ ao we have 

Ef, (S,) 2 exp (an log n) P {S, = n )  
n 

= exp (an log n) (n!) - ' (  n log j ) -8  2 .exp (an log n)n-"(log n)-nB 
j=1 

=exp( (u-1)n logn-n~~log( logn) )+m i f c r > l .  

The next pr~position~sharpens Theorem 3.1 for an important class of 
triangular arrays. We shall need the following lemma, which is similar to 
Lemma 3.1. 
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LEMMA 3.2. Let ( X n j )  be a triangular array of &valued rr.v.'s. Assume 

(a) IIXnjI1 < c < a-s. for all n, j, 

(b) sup P {llXnjlJ > t) < m for some r > 0. 
n j 

Then 
sup. Ef, (llSflII) < 4: for every a < c-l'. 

n 

The proof is very similar to that of Lemma 3.1 and is therefore. omitted. 
THEOREM 3.3. Let ( X n j )  be an iprfinitesiml triangular array of B-valued 

. . 

r.v.'s. Assume 
. I 

(a) llXnjll < e < co a.s. for all' n, j, 
(b) (9 (S,,)} is relatively compact, 

Than 
supEf,(llS,,II)< m for all or<c- l .  

n 

Proof.  It is similar to that of Theorem 3.2. We will indicate the main 
steps. 

Fix T > 0. By [2], Theorem 2.2, 

Arguing as in the proof of (3.2) in Theorem 3.2, we obtain 

By Lemma 3.2, { S t ) )  is stochastically bounded ; since S,,, = S, -$I, we 
may conclude that (S,,,) is stochastically bounded. 

Given a < c-I, choose E (a, C-I) and 6 E (a/b, 1). Next A -  select T > 0 so 
that T < (1 - S) (44-'. By ~6eorem 3.1, (3.6) and (*), 

sup Efy ,(JIS,,,Il) < a, where a (1 -S)-l < y < (42)-'. 
n 

By Lemma 3.2 and (3.9, 

We may now complete the proof by writing 

and proceeding as in Theorem 3.2. 
In the following corollary we obtain a convergence result for a case not 

covered by the theorems on convergence of moments in the general central 
limit theorem in [3]. 
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COROLLARY 3.1. Let {x,~) be an infinitesimal triangular array of B-valued 
r.v.'s such that P(S,) v.  Assume 

(a) HXnjll d c < ~o a.s. for all n, j, 

(b) sup E IIXnj- Exnj/[' < m. 
j 

Let rp: B 4 Rf be a continuous function such that q ( x )  6 bS, (llxll) for all 
x E B ,  for some b > 0 and a < c-'. 

- Then - - 

1 rpdv < GO and lim Erp (S,) = j rpdv. 
n 

Proof. The uniform integrability of (cp(Sn)) follows easily from 
Theorem 3.3. . . 

4. Trisngolar arrays, series and Poisson measures in spaces of cotype 2. The 
special assumption in Theorems 3.1-3.3 and in Corollary 3.1 may be drbpped 
if B is a Banach space of cotype 2. Let us recall that if B is of cotype 2, 
then there exists A > 0 such that 

n n 

for all finite independent sequences { Y,, . . . , Y,) of B-valued r.v.'s such that 
E IJYjJ12 < oo and E = 0 0' = 1 ,  ..., n). 

THEOREM 4.1. Let B be a separable Banach space of cotype 2 and let 
(Xnj) be a triangular array of B-valued r.v.'s. Assume 

(a) liXnjll < c < ao a.s. for all n ,  j ,  

(b) (S,) is stochastically bounded. 
Then 

sup EL (llSnll) < co ' for every a < (4c)-l. 
n 

Proof. Let 

Y,.=Xnj-EXnj and T , = C x j = S n - E S , .  
j 

Then 

C E Il $ 1 1 2  G AE IIT,1l2 < 4AE IISn1I2. 
.i 

Since 

by well-known results (see, e.g., [I], Theorem 3.1), the assertion 'follows 
from Theorem 3.1. 
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THEOREM 4.2. Let B be a separable Banach space of cotype 2 and let 
( X j  : j E N )  be independent B-valued r.v.'s. Assume that llXjll d c c co u.s. 

for all j E N .  Then 
( 1 )  if {s,) is stochastically bounded, then Ef,(M) < m for all a < (8c)-', 
(2)  if S,  converges a s .  in B, then Ef,(M) < oo fop all x < c - l .  

Proof  is similar to that of the previous theorem, but using ~ h e o r i m  3.2. 
THEOREM 4.3. Let B be a separable Banach space of cotype 2 and let 

{ X n j }  be an ininitesimal t r iangul~r  array of 3-valued r.a.'s. Assume 
(a) Ilxnjll G c c co g.s,for all n,  j ,  
(b) (2 (3,)) is relatively compact. 
Then 

- - -  sup Ef,(IS,]I) < cc for all a < c- l .  
n 

Proof. As in Theorems 4.1 and 4.2, but using Theorem 3.3. 
Analogously, Corollary 3.1 is true without assumption (b) if B is a space 

of cotype 2. 
The next result refines Corollary 3.3 of [I] for Poisson measures in 

spaces of cotype 2 (for definitions and basic facts on Poisson measures, 
see [2]). Theorem 4.4 is sharp in that we prove the finiteness of the 
integral {fa (Ilx 11) (cT P0is-p) (dx)  for the maximum possible range of a's. 
(In fact, if ,u = 6 ,  on R1 and v = Pois p = e-I exp (dl), then j&dv = m 
for a 2 1.) When applied to the case of Poisson measures on Hilbert 
space, Theorem 4.4 improves a result of Kruglov [6] in which the precise 
range of admissible d s  is not specified. 

THEOREM 4.4. Let B be a separable Banach space of cotype 2. Let p be 
a L ivy  measure on B such that p(B5) = 0 for some r > 0. Then for all 
a: < r-I  and all z > 0 

{fa (llxll) (cT Pois PI (dx) < a. 

Proof. Just as in [I], Corollary 3.3, but using Theorem 4.3. 
The results of Sections 3 and 4 lead to the following question: is it 

possible to eliminate assumption (c) .in Theorems 3.1 and 3.3 (assumy- 
tion (b) in Theorem 3.2)? Or, better, one may pose 

PROBLEM I. Determine for what Banach spaces it is true that any 
triangular array satisfying assumptions (a) and (b) of Theorem 3.1 also 
satisfies its conclusion (a similar problem may be posed for the statements 
of Theorems 3.2 and 3.3). 

Theorem 4.4 suggests the following very closely related 

PROBLEM 11. Determine for what Banach spaces it is true that any 
Poisson measure whose Livy measure has bounded support satisfies the 
conclusion of Theorem 4.4. Also, is Corollary 3.3 of [I] the best possible 
result in a general Banach space? 
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5. Expneeitial ~ o m n t s  of -order p E (1,2]. Let ( X n j } '  be a triangular 
,array of 3-valued r.v.'s, (bn j }  a triangular array of real numbers, and let 

* 

Let p E (1 ,23.  In this section we give conditions under which 

s u p E { e x p ( ~ ~ ~ S , ~ / ~ ) )  < cc for some a > 0 .  
n 

(Let us remark, although the results in this section are stated for Banach 
spaces, all of them except Theorem 5.4 carry over to the case of linear 
measurable spaces considered in [7] .) 

The key to the integrability results in this section is the exponential 
inequality given in Theorem 5.1; it is anaiogous to inequality (2.1). 

By elementary calculus we get 

LEMMA 5.1. Let a > 0 and a > 0. Then f l  > max (mu, 1 + a )  irnplies 

1 +aueau < g "  for all u > 0. -. 

LEMMA 5.2. Let fl > 0 and p > 1. Then there exist a > 0 and c > 0 
suck that 

al 

teu* exp (-fltp)dt S c exp (auq) for oil ; > 0, 
0 

where p-'+q-l = 1.- 

P r o  of. By convexity, for every R > 0, u > 0, t > 0 we have 

Let u > l/Ggp)qtpq and take L = (aq)-'Iq. Then 6 = fl-P/p > 0 and 
from (5.1) we have for every u > 0, t > 0 the inequality 

It follows that 
m m 

1 t exp (ut-ptp)dt d 1 t exp (-dtp+auq)dt = c exp (mu?, 
0 0 

where 
m 

c = S t  exp(-6tp)dt. 
0 
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THEOREM 5.1 .  For every p >, 1 and every fl > 0, L > 0 ,  there exists 
y > 0 such that, for every finite independent sequence {Xj : j .= 1, . . ., n) of 
B-valued r.u.'s with E {exp (fi 11 Xj lip)) < L = 1 ,  . . . , n), the inequality 

holds fur every finite real sequence (b j  : j = 1,  .. . , n )  and for eoery il > 0; here 
n 

- S,  =--Fbjxj and p - l + q - '  = 1 .  
j =  1 

Proof. As in the proof of Theorem 2.1, we may write 

and 
n - 1  

Obviously, we may assume bj 3 D', j = 1, . . ., n .  By Lemma 2.1, ]qjl < bj q, 
where Ij = llXjll + E IIXjH ('j = 1 ,  . , . , n). It is clear that we may choose 6 > 0 
and M > 0, both depending only on p ,  /3 and L, such that E {exp (ST')} 6 A4 
(j = 1, ..., n). 

Now 

Since 

formuia (5.3) implies 

" "n 
(5.4) E { ~ X P  (h,) 19, - 11  < 1 + C - 1 ktk-' M exp ( -6 tP)d t  

k = *  k! ,, 

m 

= l + M ( L b n ) j  [exp ( lbn t ) -11  exp ( - 6 t P ) d t  
0 

m 

< 1 + M(Abn)' 5 t exp ((IZb,)t) exp ( -S tP)d t ;  
0 
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in the last step we have used the obvious inequality u(eU'-1) 6 u2teut 
(u 2 0, t 2 0). By Lemma 5.2, (5.4) yields 

(5.5) E (exp jibq,) 19,- ,) $ 1 + M C ( A ~ , ) ~  exp (a 

for certain constants c > 0 and a > 0. By Lemma 5.1, putting u = i bn ,  we get 

1 +MCuZ exp (auq) < 1 + MC max (u2, uq) exp (a max {u" vq)) 

B exp ( y  max (u2 ,  uq) )  ,< exp  (y lu2 + uq))  

for a certain constant y. Thus from (5.5) we obtain 

E (exp (Aqn) I s,, - 1 < exp (y (A2 b: -t 12' b:)) 

and from (5.2) we get g 

The proof is completed by iterating the same procedure. 
From Theorem 5.1 we obtain an integrability result for triangular arrays. 
THEOREM 5.2. Let {Xn,) be o triangular array of B-valued r.v.5, (b,} 

a triangular array of real numbers, and 

S, = C bnjXnj. 
j 

Let 1 < p < 2 .  Assume 

la) SUP E { ~ X P  ( p  I l  xnjllp)) < .3 for some P > 0, 
n . i  

(b) SUP C bij < a, 
n j 

(c) {S, )  is stochastically bounded. 
Then, for some a > 0, 

Proof .  By well-known arguments, 

b  = sup E JIS,,JI < co 
-. n 

(see, e.g., PI, Lemma 3.1). By Markov's inequality and Theorem 5.1, for 
all t > 0 and A > 0 we obtain 

(5.6) P{lISnIl > t - t  bl  G P{lIS,II--E /IS,II > t )  
B 

I 
~ X P  i - i t )  E { ~ X P  (A (1is.11- E I IS~I I ) ) )  

$ exp ( - A t  + y c i 2  + ydA4), 
where 

I c = sup b:j < m and d = sup b;j; 
j n j 



Sums of independent random uectors* 147 

observe that dZtQ G c < a by ((b) and the fact that q 2 2. Fix t > 0 and 
*let g, (4 = -At+ ycL2 + ydAq. Let L = 6tP-I  with S to be determined in the 
sequel. We have 

If p < 2, choose 6 > O so that t = S-ydSg > 0; if p = 2, we further 
require that t -ycS2 > 0. Then from (5.6) we get- 

P(IISnll-> t + b }  < inf exp(g,(A)) d e x p ( - z t * + ( y ~ 6 ~ ) t ~ p ~ ~ )  for a11 t >0. 
a > 0 

The result follows at once from this inequality, as in Theorem 3.1. 

, We consider next the case of series of the form b, Xi. Theorem 5.3 
- - -  j 

generalizes a result of Kuelbs ([?I, Theorem 3.2) for the exponent p = 2 
to any exponent p E (1, 21 (our result for p = 2 improves slightly Theorem 3.2 
of [7], where it is assumed that the X i s  have mean zero). 

THEOREM 5.3. Let (Xj : j E N) be independent 'B-valued r.v.'s, {bj : j E N) 
a sequence of real numbers, and 

Let 1 < p < 2. Assume 
(a) sup E {exp (B IIXjllP)} < CQ for some > 0, 

(c) {S,] is stochastically bounded. + 

Then 
(1) E (exp (olMP)) < a for some a > 0 ;  
(2) iS (a) holds for all B > 0, then E {exp (aMP)) < CQ for ail u > 0. 
P r o  of. (1) follows from Theorem 5.2 by proceeding- as in the proof of 

Theorem 3.2 (1). 
(2) The proof is a variant of the argument in Theorem 5.2. We prove 

the statement for p < 2; a trivia1 modification of the argument gives a proof 
for p = 2. Given Q > 0, choose m so that I S  

. j = m  

For fixed t > 0, let . 

m 

g , ( L ) =  -It+ycoi2+ydoR4 with co = bf. 
j = m  
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Then 

Arguing as in Theorem 5.2, for all n 2 m and all t > 0 we obtain 

Now (5.7) and the assumption that (a) holds for all f l  > 0 imply 

+ sup E {exp (a llSn1J3) c CQ for all ' a  > 0. 
. n . .  

Arguing as in (1) again yields (2). 
It is possible to obtain, as corollaries to Theorem 5.3,' generalizations 

of CoroIIaries 3.4 and 3.5 of [7] for series of the form Txj, { Z ; - : j € N )  
J 

being an independent sequence of real-valued r.v.'s and {xi : j E N) a sequence 
of points in 3. We omit the statements, which are obvious modifications 
of those in [7] (the mean zero assumption should be deIeted), . 

From Theorem 5.2 one may obtain results on the convergence of 
exponential moments in the central limit theorem covered neither by [3] 
nor by our CorolIary 3.1. The single most interesting case is 

THEOREM 5.4. Let (Xj : j E N} be a sequence of independent identically 
distributed 8-valued r.u.'s, and 

Let 1 < p < 2. Assume 
la) E (exp (B 11x1 113) < for some B > 0, , . 
(b) 9 ( n - 1 / 2 S , )  2 y .  
Then 
(1) if p < 2 ,  then for every a > 0 there exists r n ~  N such that 

. sup E (exp (a 1 1  n  - S, 1 1  P)) < m 
ngrn 

pnd 
lim E {exp (a lln- ' I 2  Sn IIP)) = J exp (a Ilxllp) y (dx) < co; - 

II 

(2) if p = 2 ,  then there exists 6 > 0 swch that for all u < 6 

lim E (exp (a Iln-'l2 S,1I2)] = 1 exp (a Ilxl12) y(dx) < co. 
n 

Proof. (2) follows at once from Theorem 5.2. In order to prove (1) 
we use again the method of proof of Theorem 5.2. Given Q > 0, choose 
m so that c (y - 2 q ~ q - 1 ) - 1 .  For n 2 rn and a fixed t > 0, let 

g, (A) = -At + yR2 + yn1-qt2 Aq. 
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Then 

Arguing as in Theorem 5.2, for all rr 2 rn and all t > 0 we get 

P {IJn-1/2 S,II > t + b )  < exp ( - Q ~ P + ( ~ ~ Q ~ )  t2p-2). 

The statement follows easily by the standard formula used already in 
Theorem 3.1. 

R e mar k. Since the limiting measure y is necessarily ~aussiah,  it is always 
integrable in the stronger sense stated in (2) by Fernique's [5]  theorem. 
It may be of interest to point out that Fernique's result can be obtained from 
Theorem 5.4 (2). This may be proved as follows. Let j be a centered 
Gaussian measure on B, and @, its covariance. We claim 

(**) there exist c > 0 and z > 0 such that 

@ , ( f , f ) < c  j f 2 d y  for all ~ E B ' .  
4 

In fact, choose r so that y (3:) < E < 1/2. Then 

Let 

By (5.8), there exist 6 > 0 and M > 0 such that !F( f, f )  d S implies 
Su(f, f )  < M. Claim (**) follows by homogeneity. 

.Let (Xj : j E N )  be independent B-valued r.v.'s with Y (Xi) = y, and put 

Then Y (n- 'I2 T,) -;;, p,  a Gaussian measure on B (to see that (9 (n- l I 2  T,)) 
is tight, use, e.g., Lemma 2.6 of [I]). By Theorem 5.4 (2) we have 
j exp (u llxl12) p(dx) < cr, for sufficiently small u > 0. But QI, (f, f) d @, (f, f )  
for all f~ B'; by a well-known result, this implies that y is a convolution 
factor of p, and hence 

by convexity (of course, this proof could be simpl5ed if one could exhibit 
at once a bounded r.v. belonging to the domain of normal attraction of y). 
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