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Abstract. Let (.F,) be an increasing family of u-algebras indexed 
by a directed set J .  In this paper* it is shown that every L,-bounded 

- real-valued martingale converges essentially if and only if a weak 
type of maximal inequality holds for all martingales. A new covering 
condition C stated in terms of muItivaIued stopping times is intro- 
duced and characterized in terms of maximal inequalities. C is shown 
to be strictly weaker than the Vitali condition V, than SV (see 
[15]), and aIso sigma-SV. Under C, &-bounded martingales taking 
values in a Banach space with the Radon-Nikodirn property con- 
verge essentially. 

It was shown by Dieudonni [ S ]  that Doob's martingale convergence 
theorem in general fails when the index set is not totally ordered. In 1956, 
Krickeberg introduced the Vitali condition V (also denoted by V, and V,) 
on-the a-algebras, and proved that V was sufficient for essential convergence 
of L,-bounded martingales ([9], or [17], p. 99). In a recent note [15], 
we showed that V was not necessary, replacing it by the condition SV, 
the logical union of conditions SV (m), m = 0,1,2, .. . Informally, V may be 
stated as follows: 

Every adapted 2-valued process can be stopped by a (genuine) stopping 
time z as dose as desired to the essential lim sup. 

The condition SV(m) allows stopping by multivalued stopping times, with 
excess bounded in L ,  by the integer rn. A new condition C introduced 
in the sequel ensures the approximation of ess lim sup up to E ,  the excess 
of the stopping time being bounded in L, by a number depending on E 

(precise definitions are given in Section 1). We show in Section 4 that C 
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is strictly weaker than SV, and also than sigma-SV (the space is a countable 
union of properly measurable sets each of which satisfies SV). In Section 3, 
C is shown to be sufficient for essential convergence of Ll-bounded martin- 
gales taking values in a Banach space with the Radon-Nikodim property. 

As is our wont, at the beginning of the paper, in, Section 1, we 
characterize our new condition by appropriate maximal inequalities. In 
Section 2 we connect maximal inequalities with convergence of real-valued 
martingales. The main result, Theorem 2.2, asserts that every L1-bounded 
martingale converges essentially if and only if every martingale satisfies 
a sbple  maximal inequality. Section 3 proves convergence in the Banach 
valued case and Section 4 compares different covering conditions. 

Martingale theory in part trac&'its origins to the point-derivation theory. 
Thus Krickeberg's condition V was an adaptation of R. de Possel's abstraction 
of the classical Vitali property; similarly, SV is the stochastic version of the 
Besicovitch property (cf. [7] and [XI). We attempt to repay the debt, 
offering in [16] a point-derivation version of condition C, sufficient to obtain 
Lebesgue's theorem. 

In an independent work, Astbury [2] introduced a remarkable new 
sufficient condition A for convergence of real-valued L,-bounded martingales. 
In [16] we show that, in the presence of a countable cofinal subset, A is 
equivalent to C; also other equivalent conditions are given. 

1. ~onditibn C and maximal inequalities. Let J be a directed set filtering 
to  the right, i.e., a set of indices partially ordered by ,<, such that for each 
pair tl, t, of elements of J there exists an element t3 of J such that t ,  < t ,  
and t ,  < t 3 .  Let (a, S, P) be a probability space. Sets and random variables 
are considered equal if they are equal almost surely. All considered sets 
and functions are measurable. Let X = (X,) be a family of random variables 
taking values in B. The stochastic upper limit of X ,  

2 = slim sup X,, 

is the essential infimum of the set of random variables Y such that 
lim P ( Y  <'X,) = 0. The stochastic lower Eimit of X is 

slim inf X ,  = -s lim sup (-X,). . . 

The directed family is said to converge stochasticaliy (or in probability) if 
. . 

* .  s lim sup X, = s lim inf X,. 

The essential upper limit of X, X" = lim sup X,, is defined by , 

X* = ess inf (ess sup X,). 
6 t 2 s 

The essential lower limit of X, X, = lim inf X,, is -1im sup (-X,). 
d 
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The directed family X is said to conumge essentially if X* = X,; this 
common value is called the essential limit of X, lim X,. If A = (A,) is 
a directed family of measurable sets, the stochastic upper limit of A,  

= s lim sup A,, is the set d&ned by 

12 = s lim sup lAl; 
6 

the essential upper limit of A ,  A* = lim sup A,, is the set defined by 

. 1,. = lim sup lAt. 

A stochastic basis (9-i) is an increasing family of sub-a-algebras of d 
. . (i.e., for every s 6 t ,  6, c 6,). A stochastic process X is a family of random 

variabres X,: Q + R such that X, is 9, -measurable for every t .  The process 
is called inteqrabk (positive) if X, is integrable (positive) for every t. A family 
of sets A is adapted if A, E St for every t E J. 

Denote by $ the set of h i t e  subsets of J. An (incomplete) multivalued 
stopping time is a map z from IR (from a subset of B called D ( z n  to d such 
that R(z) = U z(w) is finite and such that, for every t~ J ,  

I (cf. Cf31). Denote by M ( I M )  the set of (incomplete) multivalued stopping 
i times. A simple stopping time is an element z of M such that, for every a, 
i z(o) is a singleton; the set of simple stopping times is denoted by T. 

The excess function of z E I M  is 

er = C 1 1 r = ~ - l ~ ( r ) -  

Let a and z be in ZM; we say that a < r if, for every s and every t, 
(a  = s )  n ( r  = t )  # 0 implies s < t .  For the order <, M is a directed set 
filtering to the right. Let z E I M ;  if X is a positive stochastic process, we set 

if A -is an adapted family of sets, we set 

A(z) = U ({z = t )  n A,). 
t 

Clearly, lA(r) = lA (z) for every z E IM. The stochastic basis (P*) satisfies 
the covering condition C if for every E > 0 there exists a constant ME > 0 
such that for every adapted family of sets A there exists z EIM with 

e , < M ,  and P[A*\A(z)] G E .  

The following theorem gives several equivalent formulations of the 
covering condition C in terms of maxima1 inequalities: 

THEOREM 1.1. Let (9,) be a stochastic basis. The following conditions 
are equivalent : 

(1) (gt) satiSfies the condition C. 
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I (2)  For every B > 0 there exists a number M, > 0 such that for every 

I adapted family of sets A there exists t E IM with 

1 e, < M, and F [A* d A (z)]  < E . 

~ (3) For every E > 0 there exists ME > 0 such that for every adapted 
family of sets A there exists t E I M  with 

e , d M ,  and P ( A * ) - P [ A ( T ) ] < E .  -. 
.- -- 

- (4) There exists n constant or > 0 suck that for every E > 0 there exists 
M, > 0 such that for every adapted family of sets A there exists t E IM with 

-- - 
e, $ Me and P[A*& ~ ( t ) ]  3 aP(A9)-E. 

(5)  For euery E > 0 there exists M, > 0 such that for msry adapted 
family of sets A satisfying P ( A * )  > E there exists z E IM with 

(6)  lim (syp P [A*\s lim sup A ( a }  = 0. 
n+m e,dn 

(7)  For every E > 0 there exists M, > 0 such that, for every A > 0 and 
every positive stochastic process X, 

1 
PCX* 2 A] < e+-lim sup E [ X ( T ) ] .  

A e , s M ,  

(8) There exists K > 0 such that for every E > 0 there exists ME > 0 
such that, foi. every adapted family of sets A ,  

Proo f .  Obviously, (2) => ( I ) ,  (1) - (3)  and (7) =s. (8). It is easy to see that, 
given any index s, one may require the stopping times given in (I)+) t o  be 
larger than s, and in M .  Indeed, given TEIM, there exists Z ' E  M with 
t' = z and e,, = e, . 

(3) (7). Fix e > 0; let X be a positive stochastic process and let L > 0. 
F i x s ~ J a n d 6 , O  < S < A; set A, = { X ,  > A-S) i f t  3 s, A, = 0 otherwise, 
and let T E M  be such that e, d ME and P(A*) -P[A( t ) ]  < s. Then 

P[X* > A] < PLA*] .<*P[A(T)]+E < E + P [ U  (A, n ( T  = t))] 



Convergence of martinaoles 155 

The maximal inequality follows on letting s + co and S + 0. 
(8) * (4). We may and do assume that K > 1. Fix E > 0 and let A be 

an adapted family of sets such that P(A*)  > 0. Choose s E J such that 

P[ess sup At\A*] d E, 
1 3 s  . ,  . 

and choose T E M such that 

T ~ S ,  M and IP[A(z)]-limsupPIA(c)]l G e .  
.. - " e, S M, 

A IT) c ess sup A, , 
r3s 

and, applying (S), we obtain 

P [A* n A(T)] 2 P [ess sup A, n A (211 - P [ess sup A,\A'] 
1 3 s  1 3 s  

3 P [A(z)] - E  2 lim sup P [A (cT)] - 2~ 
e, d M, 

(4) * (5). Fix E > 0 and let A be an adapted family of sets such that 
P(A*) 3 E .  Applying (4), choose z ,  E I M  such that 

OLE 
erl Ma814 and P[A*nA(z1)]2orP(A*)--. 4 

Let s, be an index larger than z,, and set A: = A,\A(z,) if t 2 s, and 
A: = 0 otherwise; then 

lim sup A: = A*\ A (2 ,). 
- -. . 

Let z ,  E IM satisfy 

OlE 
T 3 s , . e < M and . P [(A*\A (rl)) n A (q)] 2 UP [A*\A (TI)] -qm 

Define by induction an increasing sequence of stopping times z , e I M  
such that ern < ME,/, and 
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Then, for every n, 

& 
(1-m)"P(A*)+--. 

.. 
4 .  

, I Choose N such that (1 - u ) ~  < 1/12; define .t E IM by 

( ~ = t }  = { z j = . t ) n A , n ( U  A ( T , ) ~  for every t € R ( t j ) ,  j =  1 ,..., N .  
kc j 

Then e, 6 Ma,,,, and since A(z)  = U A(z j ) ,  we have 
j C N  

P [ A ( z ) n A * ]  2 2P(A*) .3 - I .  

Let t be an index larger than T ;  similarly define a *multival&d stopping 
I 

I time cr 2 t such that 
I 

e n  arid P [ A ( a ) n A * ] > 2 P ( A * ) - 3 - '  

The muftivalued stopping time Q defined by (Q = s) = (a = s) u { T  = s )  
satisfies 

1 < Ileell < 2 [MaEI4 + 11 < 2 [MnEr4 + 11 P (A*)&-' 

( 5 )  * (2). Fix E > 0 and let A be an adapted family of sets such that' 
P(A*) 2 E.  Choose an index sl such that 

. - , - 
E 

P [ess sup A,\ A*] < . . 
i 2 s 1  ' T y  

and let z1  E IM satisfy 

7 1  2 sl and 1 G lie,, Il G MElz P [ A  ( z l ) l .  

Then e,, < Me,; and P [A( z l )J  2 1/M,,, . If P [A* \A(T,)] 2 ~ / 2 ,  let sz be 
an index larger than z , ,  and apply ( 5 )  to the adapted family of sets defined 

, by A,\A(zl) if t 2 s,  and by 0 otherwise; there exists T , , E I M  such that 

I f  21, ..., z ,  have been defined and if 
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let s k + ,  be an index larger than z,, and apply ( 5 )  to the adapted family 
of sets defined by A,\ (j A(T,) if t 3 sk , ,  and by 0 otherwise; there exists 
z, , ,  E ZM such that j S k  

I 

Let N be the first integer such that . 

define z i iM by 

{ T =  t )  = { z A =  t)\u A ( T ~ )  for every ~ E R ( T ~ ) ,  k = 1 ,  ..., N. 
jck 

Clearly, e, G ME,, and P [A*\A(z)] < ~ / 2 ;  therefore 

P [ A * d A ( z ) ]  < P ~ ~ s ~ s u ~ A , \ A * ] + P [ A * \ A ( z ) ]  4 s .  
t B s l  

If P ( A * )  < E ,  then the proof of the kxistence of a multivalued stopping 
time z such that e, 4 ME,2 and P [A* AACz)] 6 E is trivial. 

(1) - (6). For every integer n and every adapted family of sets A, put 

2, = s lim sup A(z ) ;  
e,<n 

clearly, an is an increasing sequence of subsets of A*. By the definition 
of slim sup, 2, is the smallest set C such that 

-1im P [ A ( z ) \ q  = 0. 
e,<n 

Hence, for every n, , 

lim P [ A  ( z )  n (A* \A)] = lim P [ A  (a) n hn] - lim P [ A  (a) n A"] = 0 .  
e,Cn . . e,Cn e,<n 

Fix E > 0, and let se J; there exists Z E  M such that e, < M,, z 2 s and 

P [(A*\&,) n A (TI] 2 P [A* \AM,] - E . 
Hence 

0 = lim sup P [(A*\&,) n A(z)]  2 P [A*\&,] -& 
e,< ME 

holds for every adapted family of sets A. It follows that 

sup P [ A * \ A ~ ~ ]  < &. 
A 

(6)  - (3). The proof depends on the following lemma [14], which may 
be interpreted to mean that the stochastic version of the condition SV(N) 
is always true: 
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LEMMA 1.1. Let A be an adapted family of sets and let N be an in t e~m.  

Then for every E > 0 and every index s there exists s E M with 

z a s ,  e,< N and P[slimsupA(a)\A(z)] < E .  
ebSN 

Now suppose that (6) holds, and for every adapted family of sets A put 

2, = s lim sup A(cI}. 
e,dn 

Fix e > 0, let N be such that 
. " 

and fix a family A.  Applying Lemma 1.1, we may choose 7 E M  with e, < N 
and P [AN\ ~ ( z ) ]  < E, which implies 

PA* < P A N + &  < ~ [ A ( T ) ] + ~ E .  

Thus the proof of the theorem is completed. 
The following proposition states that C implies a maximal inequality for 

positive submartingales: 
PROPOSITION 1.1. Let (6,) be a stochastic basis satisfying .the condition C.  

For every & > 0 there exists a number Me > 0 such that for every positive 
submartingale X and R > 0 we have 

ME P(lim sup X, a A} ,< (Tlim E x t )  v E .  

I 

Proof.  Fix e > 0, 1 > 0 and let x be a positive submartingale. If 
* P(X* 2 A) > E ,  fix M > 0, let z E I M  satisfy e, < M, and let v be an index 

larger than s; then 

E CX ( ~ 1 1  < E [C 41 = ,, Xt] G E [C 1 {, = t, Xu] 

< E[(e,+l)X,] < (Mf1)lim EX,. 
. - -  

Hence applying Theorem 1.1 (7) we have, letting M = M,,,, 

< 2 - I  P[x* 2 R ] +  + lim EX, . 
1 

Therefore, 

P(X* > A) < [2(1WEl2+1)A-'limE~,] v ~ ,  

which completes the proof. 



. Contiergence of martingales 159 

2. Maximal imqualities sand essential cbnvergemce sf martingales: Real case. 
Recall that an ordered stoppii~g time is a simple stopping time z such that 
the elements t ,  , t 2 ,  . . ., t,, in the range of T are linearly ordered. Denote by T' 
the set of ordered stopping times. The forthcoming lemma states that the 
stochastic Vitali condition holds for every stochastic basis. The proof, being 
similar to that of (6) =E- (3) in Theorem 1.1, is omittd. The lemma is 
completely proved in [14]. 

LEMMA 2.1. Let A be an adapted family of sets. Then fur. every E > 0 -- 
and s f  J there exists t ~-Tl_such that 

~ 2 s  and ~ ( s l i r n s u p ~ , d ~ ( z ) ) < ~ .  

The following theorem gives the stochastic maximal inequality; part (i) 
appears in [14]. ' 

. . 
THEOREM 2.1. Let X be a positive stochastic process. 
(i) For every R > 0,  

.. 1 .  
P(s lim sup X, 3 A) < -1lm sup E X ( r ) .  1 TET', 

(ii) If, in addition, (X(z), T E  T') is un$orrnly integrable, then for every 
i > 0, letting A = (s lim sup X, 2 A) ,  we have 

1 
P (A) < - Iim sup j X (z) dP. 

- I ZET A 

Remark. For a positive uniformly integrable submartingale X, (X(z), T E  T) 
is always uniformly integrable. 

Proof. Fix a positive process X and A > 0. For a number a with 
0 < a < I, set A, = (X, > A-a); then 

- 

(s lim sup X, 2 R }  c s lim sup A,. 

Given E > 0, choose s E J  and z E T such that z 2 s and, letting 
2 = slim sup A,, P ( ; ~ A A ( T ) )  < E. Then we have 

The maximal inequality in (i) follows on letting s -r a, a -r 0 and E 4 0. 
If (X(z), z E T') is uniformly integrable, then given S > 0 choose E < S such 
that P(B) < 2.z implies 
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Let u < 1/2 be such that P(A\(X 3 A ) )  < E ,  and given an index s E J 
choose z E T' such that t 2 s and P(;~AA(T)) < E. Then 

1 6I  
P (2) < - 1 

E C l i i a q X ( ~ ) l + ~  S E  4 - E [I1:,, X(~)]+36.  A-a A-a 

The maximal inequality in (ii) follows on letting s -+ a, u + 0 and 6 0. 
We now characterize the convergence of L,-bounded martingales in terms 

of maximal inequalities for martingales. A non-negative, finitely additive set 
function on an algebra d is called a charge. A pure charge on d is 
a'charge which does not dominate any non-trivial measure. Two charges 1 
and p are said to be nearly orthogonal if for every e > 0 and every S > 0 
there exists A E &  such that A(A) < E and p ( k )  < S. The following known 
variant of the Yosida-Hewitt theorem [4] gives the decomposition of a charge 
into a measure and a pure charge nearly orthogonal to this measure. 

PROPO~ITION 2.1. Let 3, be a charge de$ned on an algebra d. Then A 
admits a unique d~composition R = &+A,, where 1, is a measure and At is 
a pure charge. Moreober, ;l, is nearly orthogonal to every masure. 

LEMMA 2.2. Let (F,) be a stochastic busis such that there exists a function 
M: R+ x Ri 4 R" which for every ;1 > 0 sati$es: 

(1) lirn M(A7 E) = 0; I' 
E-+O 

(2) for every positive martingale X, lim E X ,  < E implies 

P (lim sup X,  2 A) d M ( I ,  E) . 

Let Z be a positive submartingale such that the charge n defined on 
a2 = u Pt by 

K (A)  = lim j 2, dP 
A 

is nearly orthogonal to P. 
Then Z, converges essentially to zero. 
Proof. Fix 6 > 0 ,  and using the near orthogonality of P and x ,  choose 

a sequence (Ak) of sets in d such that 

C P ( A & < ~  and l im~(k- l ,n (A" , )=O;  

here each set A, is measurable with respect to some gt7 say 9*,. For 
every k, the process (2, is a positive L,-bounded submartingale 
such that 

lim E[l<Zt] = n:(A",). . . 

This process can be extended to a submartingale S with respect to (9,) 
by setting S, = 0 if t, G s fails. Denote by T the subset of M composed 
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of single-valued stopping times, i.e., z such that e, = 0 .  Let X be the Snell 
I 

supermartingale corresponding to S, i.e., i 
F 

, X ,  = ess sup E 'S(T); 
tQreT . 1 

we prove that X is a martingale which dominates S. (The use of X, was 
suggested to us by C. Stegall; see also [18].) Fix indices s 6 t ;  let a €  T 
be larger than s, and let u be an in* such that la 3 a and u 3 t .  
By the submartingale property, S(D) < E "S, .  Therefore, -- 

d 
X, = ess sup E ~ S S S ( U )  = ess sup E '~(7) 

s< SET t C a T  

= ess sup E*S CE@~ s (TI ]  < E ~ S  Less sup E ~ C  S{Z)I, 
t < r6T t<rrT 

which shows that rr' is a submartinga1e;and hence a martingale. Furthermore, 
since for every index t there exists a sequence Z, E T such that . I 

%= 
X, = limTE 'S(T,), 

n 

we have 
E X, d sup E S (TI = sup E S, = n (A:). 

tS  ZET it> t 

Applying (2) to  X with A = k- and E = n (A:), we obtain 

P [lim sup 1 , 2, > k- l ]  = P [lim sup St > k-'1 < P Dim sup X, > k-'1 
Ak 

d M{k-l, ~(iii)). 
Set A = (J A,; then PA < S and, for every k, 

P [A" n {lim sup Z, > k-l)] < P [AX n {lim sup 2, > k-I)] < M (k-l, n (A:)), 

which implies that lim sup Z, = 0 a.e. on A'. Since S is arbitrary, Z, 
converges essentially to zero. 

THEOREM 2.2, Let (9,) be a stochastic basis. The foIIowing properties 
are equivalent: 

(i) -For every martingale X and for every IZ > 0, 

1 

(ii) There exists a'function M :  R+ x R, + R+ such that, for every 1 > 0 ,  

I (1) lirn M(A, E )  = 0 ;  
E'O 

(2)  for every positive martingale X ,  lirn E X ,  d E implies 

P ( X *  2 A) 6 M(1,c). 
. . 

(iii) Every L,-bounded martingaie converges essentiaIly. 
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Proof. t3rbviously, (i) =- {ii). 
(ii) =. (iil). Let X be an El-bounded martingale. By Krickkeberg's de- 

compss~tion, (X,) is the difference of two positive L, -bounded martingales 
(see, e.g., [17], p. 99); hence we may and do assume that X is positive. 
Let d = U St and let 9, = 0 (d) be the a-algebra generated by d. 
~ e f i ~ i e  a charge i. on a2 by I ( &  = 11m E [l, X,] , and let 1 = Am + Ac be 
the decomposition of ,I, given by Proposition 2.1. Still denote by 3, the 
(ynique) extension of A, to F,, and let A,,, = X - P+v be the Lebesgue 
decomposition of A, with respect to P: X E L: (F,), X . P :  9, + R f  is 
ddned by 

(X P) (A) = 1 XdP, 
A 

and v is a measure singular with respect to P Since Ac and v are !ath 
near& orthogonal to P on d, so is their sum n = At+v. Set = E * X, 
and write X, = x + Z , ;  then Y is a positive uniformly integrable inartingale, 
and Z is a positive martingale such that lim E[lA Z,] = n ( A )  for every 
A EL&'. Fix E > 0 and 2 > 0, and choose a, 0 < a < ~ 4 ' 2 ,  such that M ( w 2 ,  or) 
< E. Let YE U L1 (9,) satisfy (IX - Y 1 1 ,  4 a; then 

P (lim sup I : - XI > 1) 
< P {lim sup [IE~' (x- Y)I + Y - YI + IX- Y I ~  > 1) 

< P { I ~ ~ ~ ~ ~ E " I X - Y I + I X - Y I  > A )  

Therefore, Y; converges essentially ' t o  X and, by ~ e k m a  2.2, Z, con- 
verges essentially to zero. 

(iii) =s- (i). Let X be an L,-bounded martingale; since X, converges 
essentially, we have 

lim sup (X,I = s lim sup JXJ. 

Applying Theorem 2.1 (i) to the L,-bounded submartingale IXJ, for 
every 1, > 0 we obtain 

1 1 
P(1im sup /Y,I 2 A) < lim sup E IX (r)l = - lim E IXJ. 

' TET' A 

3. Convergence af vector-valued msrtimgales;In this section we characterize 
convergence of Banach-valued martingales E X in terms of maximal ine- 
qualities. We also show that if a Banach space E has the Radon-Nikodfm 
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property, and if (9,) satisfies C, then every E-valued L,-b~unded martingale 
converges essentially. An application to derivation of Banach-valued finitely 
additive measures is given in [16]. For notation and definitions, see [17]. 

THEOREM 3.1. Let (PI) be a stochastic basis. The following properties 
are equivalent : 

(i) For every Bamch q u c e  (E, 1 I), for euery Bochner integmbg E-valued 
random variable X ,  and for every IZ > 0 ,  letting A = {lim sup IE 'XI 3 A ) ,  
we have 

---- 
t 

(ii) There exists a function M :  R, x R+ + W, such that, for every L > 0, 
(I) lim M ( 1 ,  E )  = 0 ;  

a-0 

(2) for every positive integrable random variable X ,  EX 6 E implies 

(iii) For every Banach space E and for every Bochner integrable E-valued 
random ~uriable X ,  the martingale g t X  converges essentially. 

Proof. Obviously, (i) =. (ii). 

(ii) (iii). Let X E L ~ ;  fix a > 0, A > 0, choose E < 'uA/2 such that 
M (IZ/2, s) c a, and choose YE U L: (9,) such that E IX - YI c s. Then, 
if Fm = m(U Ft), we have 

which proves the essential convergence of E4rf X to fm X. 
(iii) * (i). Let X EL:; since * converges essentially, we have 

s lim sup IE@' XI = lim sup ~ f l  XI. 

Applying Theorem 2.1 (ii) and the Remark which follows it to the 
uniformly integrable positive submartingale E; = ~ f l  XI, and letting A = 
(lim sup 1fl XI 2 A),  for every 1 > 0 we obtain 

1 
P (lim sup lfl XI 2 I )  6 - lim sup J Y. I1P 

1 ,T' A  

1 1 c - l i r n s u p ~ f l ~ x ~ d ~  6 -jIX]dp. . 
TET' A A A  

The following theorem shows that the maximal inequality of Proposi- 
tion 1.1 insures essential convergence of Lidbounded E-valued martingales: 



164 k Millet  and L. Sucheston 

THEOREM 3.2. Let (.F,) be a stochastic basis such that there exists 
a function M: R+ x R +  + R ,  which for every 1 > 0 satisfies: 

(1) lim M(1, E) = 0; 
c - 0  

(2) for every posi~ive martingale X, lirn EX, G E impiies 

If the Banach space E has the Radon-Nikodjm property, then every 
k-valued L:-bounded martingale converges essentially. 

.Proof. Set d-= U F,, F, = ~(d), and let X be an .L:-bounded 
martingale. Define a jinitely additive E-valued measure 1 on d by I (A)  
= Iim E [lA X,]. We write p 4 P if @r every E > 0 there exists S > 0 
such that P ( A )  < 6 implies p a r  p) (A) < E .  Since Var I = lim E IX,I < a, 
A can be decomposed as A = p+z, where p is a a-additive measure on d,, 
p < P, Var p < c a b  and n is. a finitely additive measure on d such that 
the positive charges Var z and P are nearly orthogonal (for this result due 
to Chatterji and Uhl, see, e.g., 1443, p. 30-31). Since E has the Radon-Niko- 
dfm property, there exists X E L: such that p(A)  = E [IA XI for each A ~ d .  
The martingale E?' X converges by Theorem 3.1. Set 2, = x,-EP" X; 
Lemma 2.2 applied to the submartingale JZ,J shows that Z, converges 
essentially to zero. 

From Proposition 1.3 and Theorem 3.2 we derive 
THEOREM 3.3. Let (9,) be a stochastic basis satisfying the condition C 

and let E be a Banach space with the Radon-Nikodjm property. Then every 
L: -bounded martingaie converges essentially. 

4. Conditions C and sigma-SV. In a previous paper [15] we introduced 
a condition SV defined as follows: 

For every integer rn, (St) satisfies the condition SV(m) if for every E > 0 
and for every adapted family of sets A there exists an incomplete multivalued 
stopping time .s such that P(A*\A(T)) < E and E, 6 m; SV is the logical 
union of the conditions SV(m). 

Let E be a Banach space with the Radon-Nikodfm property. We showed 
that the condition SV implies the essential convergence of L:-bounded 
martingales. Therefore, the following condition sigma-SV also implies essential 
convergence of L!-bounded martingales: 

There exists a sequence of sets 9, in the algebra d = (J F, such that 
SZ = u S1, and, for every n, the restriction of (F*) to S2, satisfies SV. 

Since all the conditions SV(m), m = 0,1,2, .. . , are different 1151, 
sigma-SV is properly weaker than SV. The following example shows that 
C is strictly weaker than sigma-SV: 

THEOREM 4.1. There exists ' a  stochastic basis which satisfies the condi- 
tion C, but not the condition sigma- SV. 
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Proof. Set (a, 9, P)  = [0, 1) with Lebesgue measure; all the intervals 
considered are of the form [a, b)- Given a subinterval [a ,  b) of 62, an 
integer rn, and a number 6 > 0, a family of sets A,, ..., A, c [a, b) is an 
(m, 6)-family of [a, b) according to the partition (D, I) if {D, I }  is a partition 
of [a, b) into intervals such that 

(1) (Ai n D: i = 1,  . . . , k )  is a partition of D into intervals of equal length; 

(2) 1~ C lAi = rn; 
ib k 

(3) for any subfamily {B,] (1 5 i Q k') of ( A ! ) ,  1% 9' m--1 implies 
-. . - iSk'  

P ( I ) + P (  U Bi) < 6 P ( [ a ,  b)) .  
iSk'  

We now show that for any interval [a, b), any integer m and any 6 > 0, 
there exists an (m, &family of [a, b) (see also [24]). Indeed, let I be the 
extreme left interval of [a, b) such that P (I) < 5 (b- 4 3 ,  and fix k > m. 
Divide the interval D = [a, b)\I into k disjoint intervals of equal length 
D(i), 1 < i G k, and divide I into k! (m!(k-m)!) - I  disjoint intervals of equal 
length I(s,, ..., s,), 1 < s, < ... < s, 6 k. For every i with 1 d i G k, set 

A, = ~ ( i ) u { I ( s , ,  ..., s,): 3q , s ,  = i). 

The construction is such that any subfamily {I$], 1 $ i d k', satisfying 

contains at most m - 1  sets; hence , 

Given a sequence of integers (n,), which will be determined by induc- 
tion, let 

ordered by the relation (i,, ..., i,) i (i;, ..., ii) iff r < k. We construct (P,) 
by induction as foIlows: 

S tep  1. Fix a number p, (2) satisfying 0 < p, (2) 1< 1, and let L be the 
extreme left interval of 8, of measure p ,  (2). Set m, = 3 (3- 1 )  - 22 and 
n, = 2 4 .  Define a (2, 2-')-family of sets A(i) (1 $ i < m , )  of the interval 
L according to a partition (Dl, 1'). Define a (3, 2-2)-family of sets A(i), 
m, + 1  < i < n,  , of the remaining interval a\L, according to a partition 
(D", I"). For every i set 

A(i)nDf if l < i $ m l ,  
D (i) = 

A(i)nD" if m , + 1  $ i  $ n , .  
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For every i with 1 < i G n,, let F(i) be the @-algebra generated by 
A@). Let 9, be the n-algebra generated by all the intervals introduced 
in the first step. 

Step 2. Fix two numbers P,u)  with 0 < P,Q) < 1 for j = 2,3 .  Let A(i,) 
be a fixed interval obtained in the first step; A(il) belongs to a (j, 2-')-family, 
where j = 2 or 3. Let L(i,) be the extreme left interval of D(il) with P [L(il)] 
= Pa (i) P [D ( i l ) ] .  Set m, = 3 (4 - 1) . z3 and n, = 2m2. Define a 0,2- 3)-family 
of sets A (il , i) (1 ,< i < m,) of L(il) according to a partition (D' (i,), I' ( i , ) ) .  
Define a (j+ 1, 2'3)-farnily of sets A(il, i) (m2 + 1 d i < n2) of the interval 
D ( i , ) \ ~  (i,) according to a partition ID" (i,), I" (i,)) . Set 

A(i1,i)nD(il) 8 1 G i < m 2 ,  
D(il ,  i) = 

A ( , i n D' ( i  otherwise. 

For every i with 1 < i < n,, let F (i,, i) be the a-algebra generated 
by g, and A (i, , i). Let 9, be the q-algebra generated by all the intervals 
introduced in the two first steps. 

S t e p k + l .  Fix k i - 1  numbers Pk+llj) with 0 < PkflCj) < 1 for j =  2, ... 
. . . , k+ 2. Let A(il, . .. , i,) be a fixed interval obtained at the step k ;  
A (il , . . ., i3 belongs to a V, 2-('+")-farnily, where j = 2 or 3 or . . . or k + 2. 
Let L (il, . .'. , i,) be the extreme left interval of D (i, , . .. , i,) with 

Set mk+, = 3(k+2).2k+Z and nk+l = Define a G,2-(k+2')-family 
of sets A(i, , . .., i,, i) (1 < i < mk+ ,) of L(i,, ..., i,) according to a partition 
{D' (i,, ..., i,), If(il, ..., iJ}. Define a u+  1, 2-(k+'))-family of sets A(i;, ..., i,, i) 
(mk+ + 1 < i < nk+ ,) of D (4, . . . , ik)\L (i, , . . . , id according to a partition 
{D" (i, , . . . , i3, I" (i, , .. . , id). Set 

A ( i 1 ,  i k , i ) n 1 ( i 1 ,  . i )  i f l < i < m k + , ,  
D(il, ..., in, i) = 

A ,  . . , i ) n D ( . . . , i )  otherwise. 

.For every i with 1 < i < n,,,, let F ( i l ,  ..., i,, i) be the cr-algebra 
generated by 8, and A(i,, ..., i,, i). Let $,+, be the a-algebra generated 
by all the intervals introduced in the previous steps. 

Suppose that 
k+ 1 

C1-pkm < Oo. 
k j = 2  

I 
I For any E > 0, choose M such that 
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and 
m k + l  

For every i denote by 1, the union of all sets A(s,, ..., SJ which are 
elements of a (j, 2-''+'))-family for some j with 2 < j G M +  1. The sequence 
2, is decreasing, and for every i 3 M we have 

i k + l  

.. - 
therefore P (n ;ii) 2 1 - E .  . . 

Let B be an adapted family of sets; define an adapted family of sets C by 
- 

C(sl ,..., si)=B(sl  ,..., s i )nAi - l , -  . .- 
and for every number i put 

Ci = U{C(s, ,..,, si): 1 < sj < n j ,  1 < j < i). 
We show that for any fixed i there exists a stopping time si E I M  

I 

such that 

and r i  only takes on values among the subsets *of {(s,, . .;, 4: 1 4 sj < nj, I 
I 

1 < j 4 i). Fix i ;  for any (s,, . .., si) set I 

where G(s,, ..., si) is the largest subset of C(sl, ..., st) which is Qi-,-meas- 
urable. Since 9,- c 9 (s, , . . . , q), we can assume that sets G (s, , . . ., si) to be 
disjoint; if G(s,, ..., si) # 0, put zi = (s,, ..., si) on this set. Let 

ci = (J {G(sl, ... ,si): 1 < sj < nj, 1 < j < i); 

each set of the form C (s, , . .. , si)\ci is either @, or A(sl , . . ., si), or 
D (sl , . . . , s, - ,)\A ( s ~ ,  . . . , sJ.  Fix s1 , . . . , st - ; if one of the sets C (s, , . . . , si)\ Gi 
is D(sl, ..., $,)\A(s,, ..., si), then put q = (s,, ..., s,) on this set. If all i 
non-empty sets C(s, , ..., si)\Gi are of the form A@,, ..., s,), then let 
(s,, .. . , si)€ r i  (w) ,  o belonging to one of the above sets A(sl, ... , s,). Since 
Ci c we have e,, < M. Furthermore, I 

For i, < i l l  set 
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For a fixed i, >, M, by a suitable choice of i, we have 

' t Hence (9,) satisfies C. 
We now show that (5,) does not satisfy sigma-SV. Let A ESI = IJ 9,; 

there exists k such that A E 3,. Suppose that A is not included in 

= U {I1(s1, ..., si) u I"(sl, ..., si): 1 < sj < nj, j 2 11, 

and notice that F* = lim sup F, = A\I for the adapted family F defined by 

{$(s ,,..., s i )nA i f i > k ,  
F(si ,  ..., si) = 

otherwise. 

We show that, given any fixed M > 0, there exist E > 0 and S E  3 such 
that for every ~ E I M  the relations z > s and e, < M imply P(F*\F(z)) 2 E; 
this shows that none of the conditions SV(M) holds on A. Indeed, fix M > 0; 
by definition of the family A, there exists k > 0 such that if F, is the union 
of sets F(sl ,  .... s,) = A(s,, ..., s 3  n A such that A(s,, ..., sk) belongs to an 
(M+ 1,2- k-l)-family, then P (F*\F~) > 0. Then for every i > k all the sets 
A(sl , . . . , si) included in A\& belong to Cj, 2-'-')-families for some j 2 M + 2 .  
Fix E < P(F*\F~) /~  and fix m > k such that 2-" < 8 .  By definition of A ,  
the optimal way to cover F*\F, by means of multivalued stopping times .r 
such that e, < M and z > (n,, ..., n,) is to set {z  = (s,, ..., si)) = F(sl, ..., si) 
at each level i > m and in each set D (s,, . . . , si- for M + 1 distinct values 
of si with 1 < si < ni.  heref fore; if e ,  < M and z > (n,, ..., n,), we have 

p[(~*\F,)nF(z)]  < 2-"-l < 2-" $ E $ p(F*\Fk)-2-l ,  
i r m  

! which implies 
! 

I If (9,) were satisfying the condition sigma-SV, then since P(T) < 1/2, at 

i 
least one set A , E ~  such that SV(k) holds on A,, say A,EB,,, would have 
to intersect F, which would contradict the result above. 

I 

I -  
I 
I 
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