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Abstract. Let () be an increasing family of g-algebras indexed -
. by a directed set J. In this paper* it is shown that every L,-bounded
real-valued martingale converges. essentially if and only if a weak
type of maximal inequality holds for all martingales. A new covering
condition C stated in terms of multivalued stopping times is intro-
duced and characterized in terms of maximal inequalities. C is shown
to be strictly weaker than the Vitali condition V, than SV (see
[15]), and also sigma-SV. Under C, L,- -bounded martmgales taking
values in a Banach space with the Radon leodym property con-
- verge -essentially. : :

It was shown by Dieudonné [5] that Doob’s martingale convergence
theorem in general fails when the index set is not totally ordered. In 1956,
Krickeberg introduced the Vitali condition V (also denoted by V, and V)
on the o-algebras, and proved that V was sufficient for essential convergence
of L,-bounded martingales ([9], or [17], p. 99). In a recent note [15],
we showed that V was not necessary, replacing it by the “condition SV,
the logical union of condltlons SV(m), m = 0, 1, 2, ... Informally, V may be
stated as follows:

Every’ adapted 2-valued process can be stopped by a (genume) stopping
time 7 as close as desired to the essential lim sup. -

The condition SV (m) allows stopping by multivalued stoppmg times, with
excess bounded in L, by the integer m.” A new condition C introduced
in the sequel ensures the approximation of esslimsup up to &, the excess
of the stopping time being bounded in L, by a number depending on &
(precise definitions are given in Section 1). We show in Section 4 that C
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is strictly weaker than SV, and also than sigma-SV (the space is a countable
union of properly measurable sets each of which satisfies SV). In Section 3,
C is shown to be sufficient for essential convergence of L,-bounded martin-
gales taking values in a Banach space with the Radon-Nikodym property.

As is our wont, at the beginning of the paper, in, Section 1, we
characterize our new condition by appropriate maximal inequalities. In
Section 2 we connect maximal inequalities with' convergence of real-valued
martingales. The main result, Theorem 2.2, asserts that every L,-bounded
martingale converges essentially if and only if every martingale satisfies

a simple maximal inequality. Section 3 proves convergence in the Banach

valued case and Section 4 compares different covering conditions.
Martingale theory in part traces its origins to the point-derivation theory. -
Thus Krickeberg’s condition V was an adaptation of R. de Possel’s abstraction

_of the classical Vitali property; similarly, SV is the stochastic version of the -

Besicovitch property (cf. [7] and [8]). We attempt to repay .the debt,
offering in [16] a point-derivation version of condition C, sufficient to obtain
Lebesgue’s theorem. :

In an independent - work, Astbury [2] introduced a remarkable new
sufficient condition A for convergence of real-valued L,-bounded martingales.
In [16] we show that, in the presence of a countable cofinal subset, A is
equivalent to C; also other equivalent conditions are given.

1. Condition C and maximal inequalities. Let J be a directed set filtering
to the right, ie., a set of indices partially ordered by . <, such that for each
pair ¢,,t, of elements of J there exists an element 5 of J such that t; < ¢,
and t, < t3. Let (2, &, P) be a probability space. Sets and random variables
are considered equal if they are equal almost surely. All considered sets
and functions are measurable. Let X =(X) be a family of random variables
taking values in R. The stochastlc upper limit of X,

X = slimsup X,,

is the essentlal mﬁmum of the set of random variables Y such that
11111 P(Y< X,) = 0 The stochastlc lower limit of X is

sllmlan = —shmsup{ X,)

'The dlrected famlly is sa1d to converge stochastzcally (or in probabzlzty) if
| » shmsupX—shmme

._The essentml upper lzmlt of X X* = lim sup X,, is deﬁned by

| X* = ess inf (ess Sup X,)

The essential lower limit of X, X, = lim inf X,, is —lim sup (—X,).
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The directed family X is said to converge essentially if X* = X_; this
common value is called the essential limit of X, imX,. f A = (4,) is
a directed family of measurable sets, the stochastic upper limit of A,
A = slim sup A,, is the set defined by '

N 1 = slimsup 1,,; _
the essennal upper limit of A, A* = lim sup A4,, is the set defined by
, 1,,. = lim sup 1,,.

A stochastic basis (#,)-is an increasing family of sub-g-algebras of %
(ie., forevery s < t, F, = #,). A stochastic process X is a family of random
variables X,: Q — R such that X, is #,-measurable for every t. The process
is called integrable (positive) if X, is integrable (positive) for every t. A family
of sets A is adapted if A,e &, for every teJ.

~Denote by # the set of ﬁmte subsets of J. An (incomplete) multwalued
stopping time is a map 1 from Q (from a subset of Q called D (7)) to # such -
that R(t) = () 7(w) is finite and such that, for every teJ,

{t =1t} « {a)éQ: te::t(m)}eﬁ,

(cf. [13]). Denote by M (IM) the set of (incomplete) multivalued stopping
times. A simple stopping time is an element © of M such that, for every w,
7(w) is a singleton; the set of simple stoppmg tlmes is denoted by T.
The excess function of ‘ceIM is

= Y lg=g— lbm

Let ¢ and 7 be in IM; we say that ¢ < t if, for every s and every ¢,
{6 = s} n{z =t} # @ implies s < t. For the order- <, M is a directed set .
filtering to the right. Let e IM; if X is a positive stochastic process, we set.

X(T) = sup (L= 1} X0s
if A7is an adapted famlly of sets, we set

A= Um—nn@.

Clearly, Ly = 14(7) for every teIM. The stochastic basis (g ,) satisfies
the covering condition C if for every e > 0 there exists a constant M, > 0
‘such that for every adapted famlly of sets A there exists reIM with

e, < M‘ and P[A*\A('c)]

The following theorem. gives several equxvalent formulations of the
-covermg condition C in terms of maximal inequalities:

- THEOREM 1.1. Let ( #,) be a stochastic baszs The following condztwns

are equivalent: . :
(1) (#,) satisfies the condition C
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-(2) For every ¢ > O there exists a number M, > 0.such that for every
adapted famzly of sets A there exists 1eIM w:th :

e, <M, and P[A*AA(t)]

(3) For every & > 0 there exists M, > 0 such that for every adapted
family of sets A there exists 1€ IM with ; e

e < M, and © P(4%)— PLA(D] <

(4) There exlsts a constant.a >0 such that for euery £>0 there exzsts,
M > O such that Jor every adapted family of sets A there exists ‘CEIM with.

e oM, and P{A*nA(r)] > aP(4%)—s.

“(5) For every ¢> 0 there exists M, > 0 such that for every adapted
Jamily of sets A sattqumg P(A*) > ¢ there extsts 'teIM w:th

1< e < M PLA@].
©6) lim {syp P[4*\slim sup A (9} = 0.

) For every ¢ > 0 there extsts M, >0 such that, for every h > 0 and
every posztwe stochastic process X,

P[X* = A] £+711m sup E[X(t)}
(8) There rexists K> 0 such that for every £>0 there exlsts M, >0

such ‘that, foi every adapted family of sets A,

P(A¥) < e+K 1im ‘sup P[A(r)].

Proof. Obviously, (2) = (1), (1) = (3) and (7) = (8). It is easy to see that,
given any index s, one may require the stopping times given in (1)-(5) to be
larger than s, and in M. Indeed, given 7eIM, there. exists T eM ‘with

Tlpem = 7 and ey = e,.

(3) (7) Fix ¢ > 0; let X be a pos1t1ve stochastlc process and let A > 0'
Fix seJ and 6,0 < 6 < Ayset A, = {X, > A—d} if t > 5, A, = O otherwise,
and let 7€ M be such that e, < M, and P(4*)—P[A(7)] < &. Then

PLX* > ,1] P[A*] < P[A‘(t)___]j+(§: < a-l-'P.[U A nfr=e]"

E[sup (lg=9 X)) < &+

< e+

1 |
3 sip  E[X ('c)]

A—9 s, etS.M
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The maximal inequality follows on letting s - oo and 6 — 0.
~(8)=(4). We may and do assume that K > 1. Fix ¢ > 0 and let 4 be
an adapted family of sets such that P(A*) > 0. Choose seJ such that

P [ess sup A,\A*]

t2s
and choose Te M such that

t2s, e <M, and [P[A(1)]-limsup P[A(c)]] <e

eaSM,
Then
A(1) < ess sup Ay, -
22

and, applying (8) we obtam i ' o ‘ )
P[A* N A,(1:)] P [ess sup A N A(T)] P [ess sup A,\A"‘]

> P [A (1:)] —& 2 11m sup P[A (a)] -2

P(A*)

, K o
(4) = (5). Fix ¢ > 0 and let A be an adapted family of sets such that

P(A*) > &. Applying (4), choose t, € IM such that '

—[P(A*) —&] -2 . —3e. .

€; < Mgy and  PLA* 0 A(1y)] > aP(A%)——

Let s, be an index larger than ‘L'l, and set Al = ,\A(rl) ift > S, and
Al = @ otherwise; then T

lim sup A} = A*\A(Tl).
Let 7, IM satisfy

6>, . € < Muyy -and P[(A*\A(tl))ﬂA(Tz)] aP[A*\A(rl)J——'

" Define by induction an 1ncreasmg sequence of stoppmg times t,€IM
such that e, < M, and ~

P[(A*\ u A(z,))mA(r,,)] ozP[A*\ U A(z,)]———’
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Then, for every. n,

PLA% U A < =) P[4\ U AG) ;ﬁ

j<n

< (- ot)"P(A"‘)+~—[1+(1—0¢)+ CH(1—art]

< (1-ay P(49)+.

€hoose N such that (1—a)¥ < 1/12; define te IM by
ft=t={y=tn4 m(kUjA(rk))c for every teR(z), j=1,...,N.
e < [ ;

Then e, < M,,4, and since A(t) = | A(rj) we have

. : CJEN
P[A@R) N 4*] > 2P (4%)- 3-1,

Let t be an mdex larger than 7; similarly ‘define a multlvalued stopping
tir_ne o =t such that

e < My, and P[A(a)nA*] 2P(A*) 371,

The multivalued stopping time ¢ defined by {o=s}={0c= s} {r=s}
satlsﬁes :

1< llegllm 2[Mae/4+1] 2[Maa/4+1]P(A*)8_1
< 3[Muyet11e"* PLA(Q)].
5 =Q).F ix‘ ¢>0 and liev't .A be an ‘adaptéd fam'ily" of sets such that’

" P(A*) 2 ¢. Choose an index s, such that

P[ess sup A,\A*] i
l/sl 2
and let 7, e IM satisfy

©y 25 and 1< e, llo < My PIAGY].

" Then e, < M,; and P[A(t,)] = 1/M,,. i P[A*\A(z,)] = ¢/2, let s, be
an index larger than t,, and apply (5) to- the adapted family of sets defined
by ANA(z) if t > 5, and by_ 0] otherwise; there" exists 7,€IM such that

T, 2 s, and He,zllw M, P[A(1)\A(T()].

If zq,..,7 have been deﬁned and -if

P [A*\ U A(»c,)]
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let 5,., be an index larger than t,, and apply (5) to the adapted family
of sets defined by A\ U A(z) if ¢ = 5.+, and by @ otherwise; there exists

T,+1€IM such that =¥ , |

Teey = Seer and 1< ey, o S Myp PLA(T4 1)\ .gkA(Tj)]“
i<

Let N be the first 1nteger such that

P[A*\ U A(*rj)] <=5 o

 define & IM by _
{r=1}= {5, =t} .U A(z)  for every teR(w), k=1,..,N.

Clearly, e, < M,;, and P [A*\A(r)] < 6/2 therefore
P[A*4A(7)] < P [ess sup A \A*¥]+ P[A*\A(7)] <

If P(A*) < ¢, then the proof of the exlstence of a multlvalued Stoppmg
time t such that e, < ME/z and P[A*A4A(7)] < & is trivial.
{1) = (6). For every 1nteger n and every adapted family of sets 4, put

Z = slim sup A(7);

e,\n ) ;
A, is an increasing sequence of subsets of 4*. By the definition

clearly, A
of slim sup, A4, is the smallest set C such that

‘lim P[A()\C] = 0. .
Hel’l.Cé fl()l'.ﬂéVCry n. : S . i ‘ '
lim P[A(c) N (A*\A,)] = lim P[A(t)mA ]— lim P[A('c)r\A*°] = 0.

er\n

Fix ¢ > 0, and let seJ there ex1sts TEM such that e,
ki [(A*\AM ) F\ A('f)] P[A*\AM 1—e.

ME, 7 = s and

Hence : 4
0 = lim sup P[(4*\ Ay,) N A(‘L’)] PLA*\ Ay, ]—¢

e <M,
holds for every adapted family of sets 4. It follows that
sup P[A*\ZME] <e
A
(6) = (3). The proof depends on the following lemma [14], which may
be interpreted to mean that the stochastic version of the condltlon SV(N)

is always true:
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LeEMMA 1.1. Let A be an adapted family of sets and let N be an integer.
Then for every ¢ > O and every index s there exists e M with

t2s, e<N and P[s lim sup A(a)\A(r)] < &.

d‘

Now suppose that (6) holds, and for every adapted famlly of sets A put

A, = slim sup A(o).

egSn

Fix ¢ > 0, let N be such that

sup P[A*\AN] < g,

and fix a family A. Applymg Lemma 1. 1, we may choose reM w1th e, <N
and P[ANA(D)] < &, whlch 1mp11es

PA* < PAy+e < P[A (1:)] +2¢.

Thus the proof of the theorem is completed

" The following proposition states that C implies a ‘maximal mequahty for
positive submartingales:

ProrosiTiON 1.1, Let (%)) be a stochastic basis satisfying the condition C.
For every & > 0 there exists a number M, > O such that for every positive
submartzngale X and 4 > 0 we have

,) Ve

Proof. Fix ¢ >0, A >0 and let ;X be ‘.a positive submartingale. If

.'Mz‘ N
P(lim sup X, 2 ) < ( g

"P(X* 2 1)>e¢ fix M >0, let teIM satisfy e, < M, and let' v be an index

larger than 7; then ' 5
E[X (] < E[Zl{f 0X] < E[L1e-0X.]
<E[le.+1X,] < (M+1) hm EX
Hence applying Theorem 1.1 (7) we have, lettmg M M,

M, +1 .
P(X* > 1) < 7 ;_;Jr—hmEX,_
1 |
<27tpixe >l]+—%+——lim EX,

Therefore, .
. PX*> )< [2Mp+DiTtEmEBX]vs,

which completes the proof.
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2. Maximal inequalities and essential convergence of martingales: Real case.
Recall that an ordered stopping time is a simple stopping time 7 such that

~ the elements ¢, t5, ..., t, in the range of 7 are linearly ordered. Denote by T

the set of ordered stopping times. The forthcoming lemma states that the
stochastic Vitali condition holds for every stochastic basis. The proof, being
similar to that of (6)=> (3) in Theorem 11 is omitted. The lemma is
completely proved in [14]. o o

- LEMMA 2.1. Let A be an adapted famlly of sets. Then for_ every & >0
and seJ there exists 1€ T’ such that

T2 and P(slim sup 4, AA(r)) <e.
- The followmg theorem gives the - stochastlc maximal 1nequahty part (M)
appears in [14]." : :
THEOREM 2.1. Let X be a posmve stochastic process

(i) For every 4> 0, -

“

‘P(s lim sup X, 2 1) < TIim spp EX(1:).

(i) If, in addition, (X (z),t€T) is umformly mtegrable then for every
A >0, letting A = {slimsup X, > A} we have

P(4) < — hm sup j' X (7)dP.

Remark. For a positive uniformly mtegrable submartlngale X (X (‘L‘), T€ T)
is always uniformly integrable.

Proof. Fix a positive process X and 1> 0. For a number o w1th
0<a<d,set 4 ={X,>i- a}; then .

{slim sup X, > 2} < s lim sup 4,.

Giyen, e >0, choose seJ and 'c:e T such that r‘} s and, letting
A = slimsup 4,, P(A4A(z)) < &. Then we have

PO < PLA@]+¢ < -1

The max1mal mequalxty in (i) follows on letting s = o0, « = 0 and & - 0.
If (X (1), 7€ T’) is unjformly integrable, then given 6 > 0 choose ¢ < 5 such
that P(B) < 2¢ 1mp11es
L S E[1,X (1] <

JteT’
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Let o < A/2 be such that P(4\{X > i}) < e, and given an index seJ
choose e T’ such that © > s and P(44A4(1)) < &. Then

1 ' Y 1 '
P(A) —_— E [1{X>1)X(17)]+———+ "m E [1{)};;.) X(‘C)] +36.

. The maximal inequality in (it) follows on letting s - o, — 0 and 6 - 0.

We now characterize the convergence of L,-bounded martingales in terms
" of maximal inequalities for martingales. A non-negative, finitely additive set
function on an algebra &/ is called a charge. A pure charge on &/ is
a charge which does not dominate any non-trivial measure. Two charges A
and u are said to be nearly orthogonal if for every & > 0 and every 6 > 0
there-exists ‘4 € & such that 4(4) < ¢ and . u(4°) < 8. The following known
variant of the Yosida-Hewitt theorem [4] gives the decomposition.of a charge
into a measure and a pure charge nearly orthogonal to this measure.

PROPOSITION 2.1. Let A be a charge defined on an algebra /. Then )
admits a unique decomposition A = Aw+A., where A, is a ‘measure and A, is
a pure charge. Moreover, A, is nearly orthogonal to every measure.

LEmMMA 2.2, Let (#,) be a stochastic basis such that there exists a Sfunction
M: R*xR* - R* whwh for every A>0 sausﬁes

(1) lim M (2, &) = 0; { .
()] for every positive martingale X, lim EX, < ¢ implies
P(lim sup'X- A< M(Q,e).

Let Z be a posxtwe submartmgale such that the charge 4 deﬁned on

g = F by :

n(A4) = lim jZ,dP

R . B 4 .

is nearly orthogonal to P. :
Then Z, converges essentially to zero.

Proof. Fix é > 0, and using the near orthogonahty of P and =, choose
a sequence (4;) of sets m of such that

YP(4)<d and lim M(k L n(4) = 0;

v

here each set A, is measurable with respect to some F . say #,. For
every k, the process (Z,1 Ac)"'k is a positive L;-bounded submartmgale
such that -

lim E[1,¢ z,] = n(A)

This process can be extended to a submartingale S with respect to (%)
by setting S, = 0 if ¢, < s fails. Denote by T the subset of M composed
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of single-valued stopping times, ie., © such that e, = 0. Let X be the Snell
supermartingale corresponding to S ie.,
‘X, = ess sup E” ‘S(r);
o1 Stel v .
we prové that X is a martingale which dominates S. (The use of X, was
suggested to us by C. Stegall; see also [18].) Fix indices s <'t; let 6T
be larger than s, and let u be an 1ndex such that u > o and u > t.

By the submartingale property, S (o) < "S Therefore, .
X, = ess sup E” 5S(o) = ess sup E” *8(7)
© s<oeT <teT
= esssupE”® [E’fS(z)] < E *[ess sup B * S (4)],
. T ot€weT t<7eT

which shows that X is a submartingale, and hence a martingale. Furthermore
~ since for every index t there exrsts a sequence 7, eT such that

= llmTE ‘S(r,,),

we have
' EX, < sup ES(‘E) = supES, = n(A)

<teT T uzt

Applying (2) to X with 2 = k! and & = ="m(A}), we obtain
P[limsup1 . Z >k = P[hm sup S, > k1] < P{limsup X, > k1]
< Mk, m(43). /
Set 4 = () 4,; then PA <6 and for every k,
P[A m{hm sup Z, > k~1}] < P[Akn{hmfsupZ >k ] < Mk~ m(4y),

which implies that lim supZ, = 0 ae. on A° Since 5 is arbitrary, Z,
converges essentially to zero.

THEOREM 2.2, Let (ﬁ,) be a stochastlc basis. The followmg propertles
are equivalent: o
(1) For every martingale X and for every A>0,

_ P(lim sup |X,| =A< TIim E|X,|.

' (ii) There exists a function M: R, xR, — R, such that, for every A > 0,
(1) lim M(,l s) = 0; '

(2) for every posztwe martlngale X 11m EX, <e¢ lmplles
P(X* M (,1 e)

~(iii) Every L1 bounded martlngale conuerges essentlally
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Proof. Obviously, (i) = (i).

(ii) = (iil). Let X be an L,-bounded martingale. By Krickeberg’s de-
composition, (X,) is the difference of two positive L,-bounded martingales
(see, e.g, [17], p. 99); hence we may and do assume that X is positive.
Let o = )%, and let %, = o(&) be the a-algebra generated by .
Define a charge Aon &/ by A{A)=1limE[1,X,], and let A = A,+4, be
the decomposition of 1 given by Proposition 2.1. Still denote by 4, the
(unique) extension of A, to %, and let A, = X - P+v be.the Lebesgue
decomposition of 4, w1th respect to P: XelL{ (J* oo) X P F,—> R is
defined by

(X -P)(4) = j'XdP
and v is a measure smgular with respect to P. Since i, and v are both
nearly orthogonal to P on &7, so is their sum n = 4. +v. Set ¥, = E" X,
and write X, = Y,+Z,; then Y is a positive uniformly integrable martingale,
and Z is a positive martingale such that lim E[1, Z,] = n(4) for every

Aeof Fix ¢ > 0 and A > 0, and choose «, 0 < o < £4/2, such that M (4/2, )
< e Let Yely L(#) satisfy IIX—YIII < a; then

P{hm sup |Y,— X| > 4},
. < P{lim sup [|E X- Y)I+|E Y-Y|+IX-Y]]>2}
< P{limsup B X —Y|+|X Y| > 4}

| - | i
P {lim supE ' |X - Y| > %}+P{|X— Y| > ?}

A 2
<M 7,a += IX =Yl < 2

‘Therefo"re" Y, converges essentially to X and, by Lemma 22 Z, con-

‘verges essentially to zero.

(iii) = (). Let X be an L,- -bounded martmgale, since X, . converges
essentlally, we have :

11m sup X, =s hm sup |X|

Applymg Theorem 2.1 (1) to the L,- bounded submartmgalc IX,I for
every 4 > 0 we obtaln

. 1
P(hm sup | X,| =2 ) < — Ilm sup E|X (t)| = —11m E|X,|
RO "{' . 1eT! A

3. Convergence of vector-valued martlngales;;r _Inf_thls section we characterize
convergence of Banach-valued martingales E ' X in terms of maximal ine-
qualities. We also show that if a Banach space E has the Radon-Nikodym
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property, and if (¥ ) satisfies C, then every E-valued L,-bounded martingale
converges essentially.-An application to derivation of Banach-valued finitely
additive measures is given in [16]. For notation and definitions, see [17].

THEOREM 3.1. Let (¥#,) be a stochastic basis. The following properties
are equivalent: '

(i) For every Banach space (E,|-|), for every Bochner mtegrable E-valued
random variable X and Jor every 1 >0, lettmg A = {Ilm sup |E X| = A}
we have

TTRW S < f1x1ap.
| N Rl

(ii) There exists a functlon M: R, xR+ — R, such that, for every A > 0
M llmM(l g) = 0

(2) for every posztwe mtegrable randam variable X, EX & implies
- P(lim sup Eg‘ < M@ e).

(m) For every Banach space E and for every Bochner mtegrable E-valued
random variable X, the martingale E'X converges essentlally

Proof. Obviou'sly," (i) = (ii). .

(i) = (ii). Let XeLf; fix « >0, A >0, choose &< oz}./2 such that

M(,l/2 g) < «, and choose Yel{JLE (37",) such that EIX Y| < &. Then,
if #,=0(U#,), we have

P(llmSllp|E¢tX E¢°°X| > 1)

. A '
< P(llm sup B |X~Y| > %)+P (E’w IX-Y| > 7) < a+% < 2,

: which proves the essential convergence of E'X to E°X

- (idi) = (1) Let X eLlf; smce Etx converges essentlally, we have
s lim sup [E™ X| = lim sup E™ X|. -

Applyiﬁg Theorem 2.1 (ii) and the ‘Remark which follows it to the
uniformly integrable positive submartmgale Y, = IEy‘ X|, and letting A4 =
{tim sup |E”* X| > A}, for every 4 > 0 we obtam S et

' 1
P(lim sup [E** X| > A < <71 lim sup _[ Y dpP
1

—_lim sup j i |X| P < —,'j [X)dP.
}. T A ‘ i H

The following ‘theorem .shows that the max1ma1 1nequality of 'Proposi-

- tion 1.1 insures essential convergence of L;-bounded E-valued martingales:
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TueoreM 3.2. Let (¥, be a stochastic basis such that there exists
a function M: R, xR, — R, which for every A > 0 satzsﬁes

48] 11m M@, s) =0;
2) for every posmve martingale X, lim E X, < ¢ implies

P(hmsupX =A< M@A,¢€. -

If the Banach space E has the Radon- leodym property, then every
E-valued LE- bounded martingale converges essentially. -

Proof. Set & = U#,, F,=o0(H), and let X be an ‘Li-bounded
martingale. Define ' a finitely additive E-valued measure A on &/ by A(4)
=limE[l, X,]. We write u < P if for every & >0 there exists § >0
such that P(4) < & implies (Var p)(4) < &. Since Var 1 = lim E|X,| < oo,

A can be decomposed as A = u+n, where u is a g-additive measure on <,

u < P, Varu < o0, and 7 is-a finitely additive measure on & such that
the positive charges Var = and P are nearly orthogonal (for this result due
to Chatterji and Uh, see, e.g,, [4], p. 30-31). Since E has the Radon-Niko-
dym property, there exists X € LY such that u(4) = E[14 X] for each Ae .
The martingale‘Eg *X converges by Theorem -3.1. Set Z, = X, -E 'X;
Lemma 2.2 applied to the submartmgale |Z,| shows ‘that Z, converges
essentlally to zero. . ‘ :

From Proposition 1.3 and Theorem 3.2 we derlve o

THEOREM 3.3. Let (#,) be a stochastic basis satisfying the condltzon C
and let E be a Banach space with the Radon-Nikodym property. Then every
LE-bounded martingale converges essentially.

4. Condltlons C and sigma-SV. Ina prevmus paper [15] we 1ntr0duced
a condition SV defined as follows:
For every integer m, (¥,) satisfies the condition SV (m) if for every ¢ > 0

- and for every adapted family of sets A there exists an. mcomplete multlvalued

stopping time 7 such that P(A*\A(r)) <e and & <m; SV is the logical
union of the conditions SV (m).
Let E be a Banach space with the Radon- leodym property. We showed

,that the -condition SV implies the . essential convergence of LE-bounded

martingales. Therefore, the following ‘condition sigma-SV also implies essentlal
convergence of L5-bounded martingales:

There exists a sequence of sets Q, in the algebra A = Y&, such that
Q = (JQ, and, for every n, the restriction of (%)) to @, satisfies SV.

Since all the conditions SV(m), m = 0,1,2,..., are different [15],
sigma-SV is properly weaker than SV. The following example shows that
C is strictly weaker than sigma SV: ‘

THEOREM 4.1. There exists ‘a stochastic basis whzch satisfies the condi-
tion C, but not the condition sigma-SV. -
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Proof. Set (@, #, P) = [0, 1) with Lebesgue measure; all the intervals
considered are of the form [a, b). Given a subinterval [a, b) of Q, an
integer m, and a number 6 > 0, a family of sets A,,..., A, = [a, b) is an
(m, 8)-family of [a, b) according to the partition {D, I} if {D, I} is a partition
of [a, b) into intervals such that

(1) {4;nD:i=1,. ., k}is a partltlon of D into 1nterva1s of equal length ’

@) 1, Z 1.4 =m,
3) for any subfamlly {B3} (1<i<k)of {4}, 13

i<k

P(I)+P(Uk) P([a, b)).

l\

m= 1 1mp11es

We now show that for any interval [a, b), any integer m and any é > 0,
there exists an (m, )-family of [a, b) (see also [24]). Indeed, let I be the
extreme left interval of [a, b) such that P(I) < 6(b—a)/3, and fix k > m.
Divide. the interval D = [a,b)\I into k disjoint intervals of equal length
D(i), 1 < i < k, and divide I into k!(m!(k—m)!)~* disjoint intervals. of equal
length I(sq,...,5,), 1 <81 < ... <5, < ko For every i with 1 <i <k, set

4, —D(I)U{I(sl,'... ) 3q,5, = i}.

The constructlon is such that any subfamily {B;}, 1 <i <k, satisfjring
. Z lBl' = '—1,
i<k

contains at most m—1 setS' 'hence

P(U B) < P(D+(m— 1)(b afk < 25(b a3 if k> 3(m—1).

Given a sequence of integers (n,.), which “will be determined by induc-
tlon let

J = {(i19"'9 ir): r_? 1,1 < lj < nJ}

ordered by the relation (iy,..., i,) < ({},..., 1) iff r < k. We construct (?,)
by induction as follows:

Step 1. Fix a number p, (2) satisfying 0 < p;(2) < 1, and let L be. the
extreme left interval of @, of measure p,(2). Set m; = 3(3—1)-2% and
n, = 2m,. Define a (2, 2‘2)-fami1y of sets A(i)) (1 <i < m,) of the interval
L according to a partition {D’, I'}. Define a (3, 27?)-family of sets A (i),
my+1 < i< ny, of the remaining interval Q\L, according to a partmon
{D", I"}. For every i set

oy - [AOND if 1<i<m,
|A@GND" i m+1<i<n,.
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- For every i with 1'< nl, let & (i) be the o- algebra generated by
A(). Let %, be the a-algebra generated by al] ‘the 1ntervals lntroduced
in the first step. ~

Step 2. Fix two numbers P,(j) with 0 < Pz(]) <1 for j=2, 3 Let A(i,)
be a fixed interval obtained in the first step; A (i;) belongs to a (j, 2~ %)-family,
where j = 2 or 3. Let L(i,) be the extreme left interval of D (i;) with P[L(i,)]

= P, () P[D(iy)]-Set m, = 3(4—1)- 23 and n, = 2m,. Define a (j, 27 3)-family

of sets A(iy, ) (1 < i < my) of L(i,) according to a partition {D'(i;), I'(i1)}-
Define a (j+1, 2~%):family of sets A(i,, i) (m2+1 i < n,) of the interval
D(i,)\L (i;) according to a partition {D"(i;), I"(i;)}. Set

A, )nD'(y) flsism,,
Ay, i)hD” (AN otherw1se ‘

D(ini)=,{

For every i with 1 <i<n,, let F (11, :) be the o-algebra generated
by %, and A(i,, i). Let ?2 be the o- algebra generated by all the" mtervals
introduced in the two first steps. '

Step k+1. Fix k+1 numbers P () with 0 < Py () < 1forj=2,.

. k+2. Let A(i;,...,5) be a fixed interval obtained at the -step k
A(i1,~..., i,) belongs to a (i, 2~ ®*D)_family, where j = 2 or 3 or... or k+2.
Let L(i,,..., i) be the extreme left interval of D(i,, ..., i) with

P[L(iy, ey i] = Pes1 () PID (s, ...r i)

Set m+q = 3(k+2)-2¥*2 and ne,; = 2m;, (. Define a (j, 27 **?)-family
of sets A(iy,..., i, i) (1 < i< my,) of L(i;,..., i) according to a partition
{D' iy, .., i), I' (iy, ..., ip)}. Define a (j+ 1, 27%**2)-family of sets A(if, ..., i, )
(mk+1+1 i< "k+1) of D(iy,..., i)\L(iy,..., i) according to a partition
{D" (iyy s i)y I" (igs .. zk)} Set .

A(ll,.. lk,l)ﬁD(ll,...,fk) 1f1 <myyq,
Ay eees By, )N D" (i, ..oy i) otherw1se.

D(il, seey ik’ l) - {

“For every i with 1 <i < myy, let F(iy,...,i,i be the g-algebra

"'generated by ¢, and A(i,,...,4%,i). Let 4., be the g-algebra generated

by all the intervals 1ntroduced in the prevxous steps.
Suppose that B
-l k1

LY [i"‘ p(i] < co.

For any ¢ > 0, choose M such that

; ® k+1
-‘2_M < g, z LY 1-p())] <e
k=M =2
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and
o k+1

H [H Pk(l)] > 1_8

For every i denote by A; the union of all sets A(sy,...,s;) which are
elements of a (j, 2~%*)-family for some j with 2 < j < M +1 The sequence

A; is decreasing, and for every i > M we have
i k+1

P(Zs) H [H Pk(l)] 1—e;

therefore P()4;) > 1—e.
Let B be an adapted family of sets; define an aclapted family of sets C by

C(Sls'_ ’Sl)_ B(Sl,..., l)nAl—l, . e e
and for e»ery number i put’ ' o N
U{C(S1,-- S)' 1<s;<ny, 1 <j<il.

We show that for any ﬁxed i there exists a stoppmg tlme 1,€IM

such that
i+1

ey <M, P(E\CE) S 3, U= p.(;)]+——~—2»

and T; only takes on values among the subsets of {(sl, 8 1 <5 < n;,

1 <] i}. le i; for: any (sl,.f s;) set _ _
o C(Sl,.«. l) = G(Sl, e ')+H(Sl,.;., S,-), o

where' G(sqs--., 5) is the Iargest subset of C(sy, ... , 5;) which ‘is gi;l-mea'é-
urable. Since %;,_, < F (5, ..., S ) we can assume that sets G(sy, ..., 5;) to be
disjoint; if G(sl,... s) # @, put 7; = (s, ..., s;) on this set. Let

= U{G(sy, .y s s 1<s < 1<) <l

each set of the form C(sy,.. ,s,)\G is elther @, or “A(sy,...,s), or
D(sy, .oy Si-t\A(S3, ..., ). Fix sy,..., 5_y; if one of the sets C(sy,.., s s\G;
is D(sq,-es Si- NA(s1; 05 s;), then put 7, = (sy,...,s) on this set. If all
non-empty sets C(sq,...,s)\G; are of the form Af(sy,...,s;), then let
($1,.--, 5)€7;(w), w belonging to one of the above sets A(Sl,---,si)- Since
C; < Al 1, we have e; <M. Furthermore, '

i+1

PEACE) < 3, (1-n011+27" ‘+i

For iy < i;, set

1=1, on C;

ig Ligs C 7= T10+1 on Clo+1\C!07 cedy
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For a fixed i, > M, by a suitable choice of i; we have

P(B*\B(1)) < P[U B\B(n] < P[ U B\B(1)]+¢

l/lo 10\1\11

P[ U {B L\B(r))ﬁA[ 1}]+'zs

1051\!1

w i+1

<) Y- P.(})]+ Z 271 T+

lMJZ

+371 Y [+t 2742 < S
‘ Ci=M

Hence ( ,) satisfies C. o

We now show that (#,) does not satlsfy sigma-SV. Let Aes/ = |J F
there exists k such that 4e%,. Suppose that A is not included 1n

I - U {If(sl,-.., i)UI"(Sl’"" ,-). 1< ES J. < j, = 1}, .
and notice that F* = lim sup F, = A\T for the adapted family F defined by

P 5 - Alsy,...,s)n A if i >k,
St Si) = g otherwise.

We show that, given any fixed M > 0, there exist ¢ > 0 and seJ such
that for every ve IM the relations t > s and e, < M imply P(F*\F(2)) > s;
this shows that none of the conditions SV (M) holds on A. Indeed, fix M > 0;
by definition of the family 4, there exists k > 0 such that if F, is the union
of sets F(sy,...,8) = A(sy,..., ) N A4 such that A(s,,...,s,) belongs to an
. (M+1,27% ") family, then P(F*\F,) > 0. Then for every i > k all the sets

A(Sq, ..., s;) included in A\F, belong to (j, 2™ '~ 1)-families for some j > M+2.
Fix ¢ < P(F*\F,)/2 and fix m > k such that 2™ < ¢ By definition of 4,
the optimal way to cover F *\F, by means of multivalued stopping times 7
such that e, < M and 1 > (ny, ..., n,) is to set {t = (51, ..., s)} = F(sy, ..., 5)
at each level i > m and in each set D(sg; ..., 5;—1) for M +1 distinct values
of S; w1th 1< s5; < n,. -Therefore, if e, < M and 1 >(n1,..., m); W€ have

CPIFA\FYNF@] < ¥ 27" 27" <& S P(FNFY-277,

i>m.-

which implies
P[F*\F(7)] > 'P(F*\F,‘)-z"1 > e

If (#,) were satisfying the condition sigma-SV, then since P(I) < 1/2, at _
least one set A, €.9/ such that SV (k) holds on 4,, say A%, , would have
to intersect I°, which would contradlct the result above.
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