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. Abstract. This .paper* deals with. "a. general discrete-time
stochastic dynamic programming model Under rather general
conditions on the cost functions and the law' of motion it is
shown that there exists a fully- optimal Borel measurable policy,
that is, a policy which is optimal for future at every stage and
every - possible history -of the process up to that stage. For the
stationary dynamic programming model this implies. the exxstence
of a fully optlmal statlonary policy.

1. INTRODUCTION

Stochastic dynamic programming is a problem of sequential-decisions under
uncertainty. The basic elements of such a problem can be described as
follows: We have an observable stochastic process {x,: te T .= {1,2,...}},
x, € X, teT. At each stage t an action g, can be chosen -from the action
space A,. This selection can be based only on the history (x, ai,X,,...

.» Gy—15%;)- of the process {x,,a,: te T} up to time t. Given the history
(x1, a4, X2,+..,8_4,%) and:the action a, at time t, the -state x;;, is
determined by the probability measure " : '

» ql('lxly‘x29 -'--’ X, 4y, a2y '-‘-a at)-.
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Also a cost (x4, X5, ..., X;, 41> 43, --., 4) 18 incurred at time t. For a given
realization {x,,a,: te T} the loss is

Y L Xy Xas s Xy Ay Gy -nes G).
teT . . .

A policy 6 is a measurable rule of selecting actions. For a given initial
state x; and a policy o the risk R(x,,d) is defined to be the expectation
of the loss function under 8. For a given initial measure y and a policy J,
the risk is the expectation of R (x;, §) with respect to u. An x,-optimal policy
is” the .one minimizing R (x,,d) over all policies. ‘A u-optimal policy is
a policy which minimizes R (u, 8) .over _all policies. An optimal policy
minimizes R(x,,d) over all policies for all x,. Finally,a policy that is
optimal at each stage of the process will be called fully optimal.

Under appropriate assumptions we show that there exists a fully optimal
policy. This of course implies that for ‘each “initial measure p there exists
a p-optimal policy, a result which was previously proved by Schdl [13]
under assumptions similar to ours. _ '

When the state and action spaces are independent of time and the
one-step cost function I, is independent of t up to a multiple o, the
resulting problem is called stationary dynamic programming. Stationary
dynamic programming was extensively studied by Blackwell [2], [3] and
Strauch [16]. One of their main concerns was to establish conditions
under which a stationary optimal policy exists. Both gave examples in

- which a Borel measurable stationary optimal policy does not exist. Under

our assumptions on the action space and the one-step cost function this
difficulty does not arise and we can show the existence of a stationary
fully optimal policy.

For the stationary dynamic programming Freedman [7], Furukawa [§]
and Schil [14] also give sufficient conditions for the existence of a Borel
measurable -stationary optimal policy. Freedman [7] (condition (3))° and
Schil [14] (condition (W)) assume continuity of g and lower semi-continuity

:of 1.in both: the :state. and action variables: Furukawa [8] -and Schil [14],
(S), assume continuity of g and lower semi-continuity of /.in the action only.
" Their conditions on [ are similar, but less explicit - than ours. Thus, in the
special case of stationary dynamic programming, Schil’s Theorem 15.2 is
- similar to our Theorem 5.1. (It is better in the sense that his regularity

condition (S2) or (S2)' is weaker than our corresponding Assumption 2.12
when applied to the stationary case.) Under the assumptions of Freedman [7]
and Schil [14], (W), it is possible to convert the general non-stationary model
into a stationary one by considering the entire history up to any stage as
the state variable 'at that stage. Thus their results give the existence of
a fully optimal Borel measurable pplicy in the non-stationary case under the
appropriate regularity conditions on ! and g. However, these conditions do
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not hold in our model. Such a conversion is not possible in (S) of [14] or
in.[8] because conditions (S2) and (S2) of Schil [14] will be violated in
the resulting stationary model. In our model; Assumption 2.12 would not
hold if we were to attempt such a conversion. This necessitates an explicit
treatment of a non-stationary model. Such an explicit treatment of a non-
stationary model may be found in Hinderer [9], Kertz and-Nachman [10]
and Schdl [15] among which only Kertz and Nachman [10] prove the
existence of a fully optlmal policy. However, their assumptions. do ‘not 1mp1y,
nor are implied by ours.

Our results and proofs rely heavily on a general dec1s10n problem studied
" by Brown [4] and the measurable selections of extrema 1nvest1gated by
Brown- and Purves [5] - -

2. CHARACTERISTICS AND FORMULATION

We now characterize a (stochastlc) dynamic programmmg problem and
specify assumptions on its various components.
Let T, = {k,k+1,...} and T = T,.

2.1. State space. For each t e T, the state space X, at stage t is assumed
‘to be a Borel subset of a complete separable metric space. Let X, be
endowed with the usual topology and let 4, denote the Borel c-algebra on X,.

2.2, Sample space. The sample space is

x=Xux,

teT

Let : .
X(t) = X‘Xs’ . gg(t) = X -@, and .@ X '@ @(CD)

s<1 s<t ’ teT
23. Action space. The set of available actions at stage ¢t is an action
space A,, which is assumed to be a compact subset of a complete separable
metric space. Let 7, and ./, denote the- usual topology and the Borel
o-algebra on A,, respectively. Let
A= XA,

teT

with the product s-algebra . For te T, let

s<t sst

We will use w, and =, to denote the natural prOJecnon maps on
X, A, etc.
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2.4. Law of motion. The-law of motion is a sequence q = {q,} such that g,

. is a measurable conditional distribution (Markov kernel) on 4,,, given

By x A . Formally, - .

(i) g,(-|x,a) is a version of the cond1t10na1 probablhty distribution on
QZ,H given Q(,,xﬂm

(i)) q,(B]|-,-)-1s (Q(,, xd(,))-measurable for all Bee@,+1

The interpretation is that, given x, = my(x) and ay, = 7y (@), X4y is

“selected according to the measure g¢,(-|x,a). (Note that g,(-|x, a) depends

on x and a only -through x, and a. We w111 adopt sumlar notatlonal
‘conventions later in the paper.) : : : x

" For any probability measure g on the initial state x;, the law of motion g
will then define a conditional distribution F, on (X;:#) given & according
to the natural formula

= j fq,. 1(dx Ix, a)qu z(dx _1|x a) . qy(dx; | x, a) pldx,).
B1 Bn 1 B, . . e

Let u,, denote the distribution degenerate at x;eX,;. We will write
F, =F

1 “xl

2.5. Policies. A (sequentlal) policy is a measurable non- ant1c1pat1ve rule

of selecting actions. Formally, § = {§,} is a policy if C
(i) ,(-Ix, a) is a probability measure on <, for all xe X and ac A, t = 2;

(ii) 8,(C|-,-) is (B x o _;))-measurable for each Cest,, t = 2;

(iii) 6,(-|x) is a probability measure on &, for all xe X;

(iv) 6,(C|-) is #,-measurable for all Ce ;. ‘

The interpretation, is that, if x,,ay,...,a_y, X, is the observed history
up to stage t, then g, is chosen according to the measure §,(-|x, a). Let
@ = {5} denote the set of all policies.

© 2.6. Observed process.. The preceding suffices to. guarantee the existence
of a well-defined stochastic process of the observed states and action when

~the -initial measure is x and-a policy & is used. This process is defined on

X x A with the corresponding c-algebra. The probability of a cylinder set
(B19 Cl) X(BZ: CZ) X oo X (Bm Cn) X (Xn+15 An+ 1) X (Xn+25 An+2)

is given by

n

(X (B, C)x X (X,, 4)

t=1 it>n

S EACAE 0) gy 1 (@%,|%, @) ... 8, (day | ) p(dx,).

B Cl By Cy
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Similarly, if u is a probablhty measure on By x A _yy, ke T, then
define 4% ; by

a(

=

(st Cr >< X (Xn A:))

1 t>n .
| [ 8ulday|x, a)gpoy (dxy 1%, @) ... Selday | X, a) 1 (d (e, - 1)-
By Cl B’l C" ’
.b Note that A}, = 4,; and also that Ak 5 depends.',on,,ﬂé fonl,y»‘ thrpugh
{0t = k}. - ) _ :
2.7. Costs. The cost incurred at stage t is l(x(,), a(,)) if the observed
history is (x,,a;, ..., a_1,X,) and a, is chosen at stage t.

M:

.|

=

2.8. Assumption. For te T :

@) L(-,-) is (B x & y)-measurable;

(i) 4 (-,-) is non-negative extended real valued;

© (iii) %, (x, -) is lower semi-continuous for each Xy € X

In most of what follows the non-negativity of L(-,-) can be replaced
by the weaker assumption that I(-,-) is bounded from below or by the
even weaker assumption that {/,(-,-)} is uniformly integrable.

2.9. Loss function. The loss function L: X x A - R* is defined by
* L(x,d) = Z 1(xg), ag) - (x€X, ac A).

Also define I}: X xA —- R* by~

Lk(x,a) Z L (X ) (1 <k<n< oo, k< o).

" Let L,, = L{® and L" = L] (1 k <n< o)

: 210 Risk functlon Let 1<k< ‘ n< oo as above For. a measure p on
ﬂ(k,xﬂ(k 1y and a policy 669 the condmonal risk R% is defined to be the
expectation of the loss function L (-, ") computed under the measure 4% ;

R:(p, d) = (L” (x,a) = _f L (x, a)A",;(dx da)

- Let R, = R®, R" = R’{ and R = R;. Then R(y,-) is called the risk for
the initial measure p (on #,). In particular, if p,., is the probability measure
degenerate at x,€ X, then let R(x,,9) = R(,u,,l,é) v

Given y on %, define 4, ;) to be the projection of 4, ; on .@mxﬂ(,‘ 1)-
It will be of special interest to consider Ry(4,sx.d), for this can be
interpreted as the conditional risk from stage k (inclusive) onward, given
that the initial measure was p, the decision rules &;,0d;,...,8,-, have
already been )1sed .and that the rules Jy, 6“1, ... will be used from
stage k onward
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2.11. Optimal policies. Let ke T and let u be a probability measure on
By x A - y- If

Ry (4, 8) = inf Ry (4, ),

then &' is called p-optimal at stage k. If p = Hesgpage -1y then &' is called
(X e n)-optimal at stage k. A policy o is called optimal at stage k
if it is optimal for (xg,, ay-1y) at stage k for all (xg), ay-1))€ Xy X Ag-1y-
A policy is called fully optimal if it is optimal at stage k for all keT.

For (x4, ag-1)€ Xy x Ag-1) let

Ri(xgy; ag-y)) = ge%f R, (ﬂ(x(k),a(k_ 1y? 9).

Define R"( -} similarly relative to the loss function L.

2.12. Assumption. (a) The law of motlon q={q} is dommated That is,

there exists a law of motion v = {v,} which is independent of aeA and
such that g, < v,. Let

da,(-]x, a)
T (19

We also assume that o, (-] ;, ) is (Bysq x‘ga(,)xd(,,)-measufable.
(b) Assume also that for each te T, xe X, the thap

(pt('lxya)___ (aEA, tGT)-

A - LI(X!+1, By V:('Ix)) :

defined by a — ¢,(-|x, a) is continuous. Note that this map depends on a
only through ay = my(a). '

Let u denote a probability measure on %, %y and let i denote its
projection (marginal measure) on By,. Let V} denote the measure on %

generated by i through stage k followed by v.- Let cp#( ja) denote the

conditional measure on % deﬁned by

(p(B(k,x X B, x X Xla)

+1 t=n+1

= I j I _‘. q"—l(dxnlxsa);"‘Zk(dxk-(-llxaa)p'(d(x(k)aa(k—l)))'
Ak—1) Bky Bx+1  Bn v - A : : :

Note that @k(-|a) depends on a only through a;,a;44,... Assump-

tion 2.12 (a) guarantees that @f(:|a) < V¥(-) for all aed, keT, u on

By xS —1y- (It also guarantees that the projection of 4%, on # is
dominated by V") Let

dgk(-1a)
v

fEla) =
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Then Assumption 2.12 (b) implies that for each ke T thé map
| No@: A-L(X, 8.V |

defined by a — ff(-|a) is continuous for each ke T and u on By x .
. Note that qo,i = F,, and so, in particular, the map

dF,

Ny a = = 1

is continuous for each initial measure u on #;. .

The assumption above is a significant restriction on the family gq.
However, the necessity of some assumptlon similar to 2.12 (b) 18 demonstrated
in Example -3.4: : :

2.13. Topologizing the policies. Corresponding to each policy 6 = {6,}eZ
there is a _conditional measure on A, given %, defined by .

0(CyxCyx...xC, xA,H,...lx)
| = [ [ § a(Clx 6 (a1, a- 5y(dag|%).

€163 C_:—l

For each ke T and U on g&'mx&i(,, 1y define the topology tk(u) on 2

as the weak topology generated by the functlons

0 [8(dalx) f(x)c(@) Vi (dx)

for feL,(X, H A, V,,") and ceC(n A,), where C(]] 4,) denotes the

teTy, 1Ty teTy,

set of continuous functlons on [] 4,. Note that 7, (p) really depends only
teTy

on the projection measure fi on ,@(,‘). Let (g) = 7,(4) and t(x;) = (),
x,€X;.

These topologies are not Hausdorff For an intensive study of 2 with
these topologies it is useful to define the. space 2,(u) of equivalence
classes of 2 with the topology t,(u). This is done in [4]. It may help
the reader to visualize 2, 7(u), etc., in this manner but we will not
explicitly need this terminology in the sequel.

The following important results may be directly deduced from Theorems 3.6
and 3.14 of [4].

2.14. THEOREM, For each keT, p on Q(k)x&f(k 1>
(a) the spaces 2, 7, (1) are compact,

T ().

(b) the maps Rk(u, ): @ - [0, 0] are lower semi-continuous relative to
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It is implicit in Theorem 2.14 (b) that R, (u,d) depends only on the
7,(#) equivalence class of de 2. F or k=1 thlS latter fact follows from

the expression
~ R(u,9d) = jL(x,a)f_,, (x|a)é(dalx) V, (dx)

and from Theorem 3.10 in [4]. This expreséion is derived in [4], Proposi-
tion 2.2. Similar expressions are valid for R,(u,d) but are not explicitly
needed in the sequel. (The above result is comparable to results in [13])

3. POLICIES OPTIMAL FOR y

3.1. THEOREM. For each ke T and each u .on By x A -1y there exists
an optimal policy for p at stage k. In particular, for each x,€ X, there
is an x-optimal policy at stage 1.

Proof. The theorem follows dlrectly from Theorem 2.14 since any lower
semi-continuous function on a compact set achieves its infimum.

This theorem leaves many questions unanswered. For example, if p is
a given initial measure on #, and § is pu-optimal at stage 1, then is § an
x,-optimal policy at stage 1 for p-almost every x,? We have been able
to adapt methods developed in Eaton [6] to answer this question (and
other similar ones) in the afﬁrmatxve when the measures {V 1xy € X4}
form a dominated family. However, thé optimality results proved in the
next section by a different method are stronger than- the results we can
prove using Eaton’s methods, and so we will omit the detalled argument

The following technical result will later be useful

3.2. LEMMa. R(x;) = llm R"*(x,).

* Proof. ‘R"(x,, d) is the rlsk in the problem with the loss function
L’l (x, a) - Zl lt (X(t), a(,)).'
t=

By Theorem 3.1 there exists an optimal policy §, for each such problem.
Since 9, t(x,) is compact, there exists a “convergent” subnet &, — §.
(Actually 6 s determined only up to its t(x,) equivalence class and J, — &
only in this sense.) By Theorem 2.14 (b) we have :

lim inf R" (x4, 3y) > R"(xy,8)  for cach meT.
{n'}

Also '
R(xy) = R"(x4,6,) = R™(x1,0,) (n>m).
_ Hence L : -
R(x,) > lim lim sup R"'(xl, d,) = lim R™(x,,6) = R(x,, 8} = R(x,).

m=w - {n} : m—+w

This proves the lemma.
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3.3. Remark. The assumption that 4 be compact may be relaxed.: For
example, it suffices for 4 to be locally compact with :

lim L(x, a)

a—*w

and for certain other techmcal cond1t1ons to “be satlsﬁed Detarls may be
deduced from Section 4 of [4] together with the above theorems. A s1m_11ar
remark is also valid for later theorems in this paper.

The forthcoming example demonstrates the important role of Assump-

tion 2.12. (b) concerning_the continuity. of the maps a— (p,( [x;a). The

example demonstrates that Theorem 3.1 is false under the weaker assumption
that for fixed u the map
' dF,(-|a)
avi(-)

is contmuous as a map from A 'to L, (X, &, V‘) with the weak topology

3.4 Example. Let § denote the tr1v1al space consrstmg of one point. Let

1
X, =S8, A1={?:m=1,2,.} {0}

X, = [0, 1], A2_{0 1}_X3, A,,_S—X,,+1,k—34
and let :
' 0 if a, = x3,

L, =0 for k # 3.

' ‘ I3 (xm, a(sn) = {1 1f a, # x

In standard statlstlcal termmology, x5 -~is the unknown parameter and
the problem is one of testing the simple hypothesis, x; = 0, versus the
simple alternative, x; = 1, based .on the observation of x,e X,. The prior
distribution of x; and the distribution of x,, grven X3, are determmed by
the choice of a, as specified in the sequel.

For ye[0, 1], let b,(y) denote the k-th digit in the bmary expans1on
of y. (Adopt any convention to define b, (y) uniquely when y has a ‘ter-
minating binary expansion.) Let 4 denote the Lebesgue measure on [0, 1]
and let - :

L dgy(xa]x,0). {(2/3—(11)-' 2b‘l’1_1(x2)+1/3—i-a1, 2if a; > 0,
T 1R e g, =0,
' 20Ba)

“5A_a. ‘if b () =1, a15'>' 0,
53—a, o
42 ({0}|x,a) = < /3: a

o 1fb_1(x2)—0 a1>0
25 1fa1—0
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The choice of {v,} w1th v; = 4 and. v, = v*, where v*({D}] = v*{{l})
= 1/2, yields :

vl = tx;lxv XTXTXTX .oy

where 7 denotes the unique probability measure on S. Then it can easily
be checked that the map a — dF, (- Ia)/dV‘( -) is continuous as a map from
A to L, (X,#,V})) with the weak topology It is also true that the map
a—q(-|x,a) has a s1m11ar conttnutty property, but note that the map‘
a = q,(|x, a) does not. - :

’ Constder the sequenoe “of pohc]es {o™:m =1, 2,. } deﬁned by L

8 (fm=1}|x) =

) s 1 if b,,,(xz)=.1!
5(2 )({0}|a) = {0 if b, (x,) = 0.

~Then a simple .computation yields R (u, ™) = 1/6+1/2m. Hence R(u)
1/6 but it can be readily seen that there 1s no pohcy Wthh satisfies
R(u, ) < 1/6. So there is no optlmal policy. -

4. EXISTENCE OF FULLY OPTIMAL POLICIES

Now we state the main theorem of the paper.

4.1. THEOREM, Let the assumptions of Section 2. be satza;ﬁed (). Then there
exists a fully optimal policy.

Proof. Forl k < n < oo define S ( s )mductlvely (backwards on k) by
| } S (a,,,x(,,,,a(,, v =1 (x(,.,,(a(,. 1)@ ..))
(1) Sk l(ak 15 Xg-1)s Q- 2))-" b l(x{k 1)’(a(k 2)s Oy — 1))

+ j{ mj Sk(at,(x(k 1),xk) (a(k 2)9ak 1))} Q- 1(xk|x a}"k 1(dxk1x},
= medy ’

where j denotes the lower mtegral Wrtte S" (al 3 Xy) mstead of 51 (a1 ; x( 1) a(o,)

The following ‘claims ‘will now be proved for 1 <k <'n' < 0’

(A) S3(-;-,-) is (X Bgy X Ay 1))-measurable.

(B) Si(-; x> a—1)) is -lower. semi-continuous on Ay for all x4y, ag- ).
(C) There exists a measurable map hy,: Xy X Ag—1) = Ay such that

2 1n£ Sk (aka x(k), a(k 1)) = Sk (hk n(x(k): Gy - 1)), Xays G~ 1))
- apedy

= Ry (xgy; - 1})

(*) For the proof of thts theorem the most 1mportant arc the assumptions stated in
Sections 2.3, 2.8, 2.12 and 3.3
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For k = n, claims (A) and (B) follow from Assumption 2.8. In view
of the assumptions on A, stated in Section 2.3, the existence of h,,
satisfying the first part of (2) follows from the selection theorem of Brown
and Purves [5]. It is clear that

S (Ban Oty Gia— 1) Xy Gia- 1) < RE Gt G- 1))
On the other hand, |
Rn (”x(n)’"(n— 1)? %) =S, (h"-" (x(ﬁ)’ An - 1)); x(n); d(n— 1)) oo
for the policy 6 with -- == ' :
i 6"(.|.x(")’ a(""‘lv)) = u"m,n(x(n)-“(n—l))‘

' Hehce ‘the second equality of (2) is also satisfied for k = n.
c Let2€m<n. Suppose that (A) (B) and (C) are satlsﬁed for m<k<n
Then ,

(3) Sm— l(am lsx(m 1)9a(m 2))— I l(x(m l)’(a(m 2)s Om _—1))+  

'+ _f Ry, ((x(in-n, Xm)s (Agn - 2)5 O~ 1)) Pm-1 (xmlx, ) Vpy_ 1 (dX,] X)-

By (A) and (C), Ry, (+; ) is (Bmy X A gn— 1)~ -measurable. Hence S;.-4 satxsﬁes

(A) by standard Fubini-type theorems (see, e.g., [12], p 74)

Let o; be any convergent sequence in A4,.,, say o; — a. Let o® be
a policy satisfying . :

(l) 5(')( Ix a) ,‘hk"( )(-"(k) »a(f — 1)) (m k< n),

() 69, ({a}l- ) =1 = '

Then, by (2) and (3),

(4) . m 1(“1’ x(m 1)» a(m 2)) = m l(”(x(m 1)“(m 2))! 5“)

Let 6 be any 7,- 1(u(,,m 1y 9m—2) ,) accumulation point- of the sequence
{6D) (& exists by Theorem 2.14 (a)) Note that every accumulation point

of {69} is equivalent to & relative to this topology. By (4) and Theorem 2.14 (b),

S-1(a; X (m — 1)9a(m 2))_ m-= l(M("(m 1)%m - z)),é)
- < lim mfR,.. 1(#(::(,, 1%~ 2)’"s )

l-’w

Hence S;-; satisfies::(B). The existence of hp-; . satlsfymg the first
equality of (2) then follows from the selection  theorem of Brown and
Purves [5]. The second equality of (2) then follows from the first equality
and the definitions of S%., and R%_, by the. same reasoning as in the
case k = n. This completes the proof of (A), (B) and (C) for I‘< k<n< oo
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Clearly, S} is non-decreasing i »n for fixed k. Let

R0

Then S, satisfies (A) and (B). So there exist measurable functions h,
satisfying the first equality in (2) for S,. By Lemma 3.2,

&) Ry ((x(k,, aa;—n)) = lim Ri (X, a(k—l)) ‘

= lim mf Sh(ay; x(k,,a(k 1,)
n—aw ﬂke k

o= lnf Sk(ab b a(k )

a kE

since A, is compact and {Si(-; x(k), a(k_l,): n=1, 2.,»...} is-a non-decreasing
sequence of lower semi-continuous functions. Thus S, and R, also satisfy, the
second equality in (2). It follows from the above and from the deﬁnmon (1
that, furthermore, !

©) .. }1_{?0 Sk (hk,n (Xg)s Bge—1))5 Xry» Qi 1)) = Sk (hk (X ﬂ(k'—' 1)) Xgys Q- 1,)

since A, is compact and {S§(-; Xp, dg—-1): B =1,2,...} s a oon-decreasing
sequence -of lower semi-continuous functions. So {Sk} satlsﬁes the recursion (1)
for all k = 2, (xg-1), Qu-2)) € Xg—1) X Ag= 2. ‘

Let 6* be the policy defined by

5;:: ({hk(x(k)a a(k_l))} | X, a) = 1 (k € T).
Then, by (1), '
Ry (l‘a 0%) = (Z L (x(,, “m)) Si (e (> G-1); Xr» Qp-1)

e

where U= Hence

”(x(k) e 1)"

) Rk(.u(x(k) L — 1))55) Sk(hk(x(k),a(k ) x(k)aa(k 1)-

- By Lemma 32 and formulas (5) and (6)

Rk (x(k)s a(k 1)) = Sk (hk (x(k), a(k s x(k)a g - 1))
Rk(ﬂ(x(k, a(k 1)),5) Rk(x(k)aa(k 1))=‘ :

It follows that Rk(u(x(k) = 1)) 6 ) —.Rk(x(k), a(k 1)) and hence 6* is
opt1ma1 at stage k for-all-keT. This proves.the theorem.. . Sy
- Note that: the fully optimal policy 6*; derived above, is non-random1zed
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5. STATIONARY CASE

In this section we consider an irrlportant special case of the general
problem. Assume that the state and action spaces, the law of motlon and
the cost structure are: tlme 1nvar1ant (statlonary) that 1s

X, = Xl, A»— Al,
‘I:(Bz+1lx a)'— q,(B,Hlx,,a,)—q, 1(B|x, 1> Ge—1) (t -2)

1fB,+1 = B e,ﬂl,x, = x, 1 and O = G- Moreover for someoc 0 <a< 1,

l (x(t)a a(t)) = OC l(xn at)

where I(-, ) is a (931 x&i 1)-measurable non-negatlve functlon whlch is’ lower
semi-continuous ‘with respect to. the ‘action variable. '

When a =1, this corresponds to the negative dynamic programming
of Strauch [16], and when « < 1-and I (-,-) is bounded. (not necessarily
non-negative), this corresponds to the discounted dynamic programming of
Blackwell [2]. One of their main concerns was to determine whether
a statlonary optlmal pohcy necessarlly exists, that is, whether there always
exists a €2 such that § is optimal in 2 and

8,(Clx,a) = 8,(C|x) = 8,1 (Clx;- ) (=22

for all Ce A, and x,—x, 1€X4. ' ,
" Blackwell [2] gave a counterexample showing that this is not the case.

Howeyver, in his example, depending on the interpretation, either A, is not

compact or-I(x,-) is not lower semi-continuous.. With our assumptions,

which include' compactness of A, (but see.Remark 3.3), lower semi-continuity
of I(x,-)"and assumptions on g; we can' show that a fully optimal stationary -

policy does exist. . _
' The desired result follows almost immediately from Theorem 4.1. (It could
also be proved independently of Theorem 4.1 by spemahzmg the proof of
that theorem to the stationary case.) As noted in the Introduction the
following result is similar to the regularity condition (S) of Schil [14]:

5.1. THEOREM., Let the assumptions of Theoremn 4.1 and also the stationarity
assumptlons above be satzsﬁed Then there exists a stattonary Sfully optimal
policy.

Proof. Let 6* be the fully optlmal policy of Theorem 4.1. Note that §*
need not be stationary. However, define 6** by

5¢* (Blx, a) = 6}* (Bl xi—1) = 6f(B|xi-1)

for Be.@k = B, X,_1€X,. Then 6** is stationary. It can readily be shown
that R(-,6**) = - R(-,6%), thus implying that the stationary policy o** is
fully optimal.
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