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Abstract. This paper* deals with a general discrete-time 
stochastic dynamic programming model. Under rather general " 

conditions on the cost functions and the law of motion it is 
shown that there exists a fully optimal Bore1 measurable pdicy, 
that is, a policy which is optimal for future at every stage and 
every possible history of the process up to that stage. For the 
stationary dynamic programming model this implies the existence 
of a fully optimal stationary policy. 

Stochastic dynamic programming is a problem of sequential -decisions under 
uncertainty. The basic elements of such a problem can be described as 
follows: We have an observable stochastic process {x , :  t  c T = {1,2, . . .)I, 
xt E X t ,  t E T. ,At each stage t an action a, can be chosen from the action 
space A,. This selection can be based only on the history (x,, a , , x , ,  ... 
.. ., 4- l r - ~ t )  of the process (x , ,  a,: t E T) up to time t. Given the history 
( x l ,  a l Y x 2 ,  ..., a ,-,, x,) and the action a, at time t ,  the -state x,,, is 
determined by the probabiIity measure 
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Also a cost E, (x,, x,, ..., x,, a,, a,, .. ., 4) is incurred at time t. For a given 
realization (x,, a,: t E.T)  th/e loss is 

A policy d is a measurable rule of selecting actions. For a given initial 
state xl and a policy 6 the risk R ( x , ,  8) is defined to be the expectation 
of the loss function under b. For a given initial measure p and a policy 6, 
the risk is the expectation of R ( x , ,  6) with respect to p. An x,-optimal policy 
is' the one minimizing R (x,, 6) over all policies. A p-optimal policy is 
a policy which minimizes R ( p ,  6 )  over all policies. An optimal policy 
minimizes R(x,, S) over all policies for all x,. Finally, a policy that is 
optimal at each stage of the process will be called fully optimal. 

Under appropriate assumptions we show that there exists a fully optimal 
policy. This of course implies that for each !nitid measure p there exists 
a p-optimal policy, a result which was previously proved by Schil [13] 
under assumptions similar to ours. 

When the state and action spaces are independent of time and the 
one-step cost function 1, is independent of t up to a multiple ctL, the 
resulting problem is callqd stationary dynamic prog~.arnming. Stationary 
dynamic programming was extensively studied by Blackwell [2], [3] and 
Strauch [16]. One of their main concerns was to establish conditions 
under which a stationary optimal policy exists. Both gave examples in 
which a Borel measurable stationary optimal policy does not exist. Under 
our assumptions on the action space and the one-step cost function this 
difficulty does not arise and we can show the existence of a stationary 
fully optimal policy. 

For the stationary dynamic programming Freedman [7], Furukawa [8] 
and Schil [I41 also give sufficient conditions for the existence of a Borel 
measurable stationary optimal policy. Freedman [7] (condition (3)) and 
Schd ;ill41 (condition (W)) assume continuity of q and lower semi-continuity 
of 1 in both the state and action variables. Furukawa [S] and Schll [14], 
(S), assume continuity of q and lower semi-continuity of E in the action only. 
Their conditions on I are similar, but less explicit than ours. Thus, in the 
special case of stationary dynamic programming, Schi's Theorem 15.2 is 
similar to our Theorem 5.1. (It is better in the sense that his regularity 
condition (S2) or (S2)' is weaker than our corresponding Assumption 2.12 
when applied to the stationary case.) Under the assumptions of Freedman [7] 
and SchM [14], (W), it is possible to convert the general non-stationary model 
into a stationary one by considering the entire history up to any stage as 
the state variable a t  that stage. Thus their results give the existence of 
a fully optimal Borel measurable policy in the non-stationary case under the 
appropriate regularity conditions on 1 and q. However, these conditions do 



Optimal policies 173 

not hold in our model. Such a conversion is not, possible in (S) of C14] or 
in [8] because conditions (S2) and (S2)' of Schal [14] will be violated in 
the resulting stationary model. In our model; Assumption 2.12 would not 
hold if we were to attempt such a conversion. This necessitates an expIicit 
treatment of a non-stationary model. Such an explicit treatment of a non- 
stationary model may be found in Hinderer [9], Kertz and Nachman [lO] 
and Schll [I51 among which only Kertz and Nachman 1101 prove the 
existence of a fully optimal policy. However, their assumptions do not imply, 
nor are implied by ours - _ 

Our results and proofs rely heavily on a general decision problem studied 
by Brown [4] and the measurable selections of extrema investigated by 
Brown and Pmves [5]. , . _ ?  - . - .  

2. CHARACTERISTICS AND FORMULATION 

We now characterize a (stochastic) dynamic programming problem and 
specify assumptions on its various components. 

Let T, = ( k , k + l ,  ...) and T = TI. . 

2.11. State space. For each t E T, the state space X, at stage t is assumed 
.to be a Borel subset of a complete separable metric space. Let X, be 
endowed with the usual topology and let 93, denote the Borel v-algebra on X,. 

2.2. Sample space. The sample space is 

X = XX,. 
~ E T  

Let 

X,,,= X X , ,  9 3  and B =  Xg,=A&, .  
sbr sbi  wT 

2.3. Action space. The set of available actions at stage t is an action 
space A,, which is assumed to be a compact subset of a complete separable 
metric space. Let z, and d, denote the usual topology and the Borel 
a-algebra on A,, respectively. Let 

with the product a-algebra d. For t E T, let 

A,) = X A, and d(,, = X d,. 
s 4  r sSt  

We will use zt and z(*, to denote the natural projection maps on 
X, A, etc. 
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2A. Law of motion. The law of motion is a sequence q = (q,) such that q, 
is a measurable conditional distribution (Markov kernel) on a, +, given 

! a(,) x dtt,. Formally, 
(i) q, (. 1 x ,  a) is a version of the conditional probability distribution on 

9, + 1 given g(,) x d(,,. 
(ii) qt (B I ., 4 )  is (aI,) x d(,,)-measurable for all 3 E W, + , . 

a The interpretation is that, given x(,, = nIt1(x) and = x(,,(a), x , , ~  is 
selected according to the measure q, ( 4  1 x , a). (Note that q, (. 1 x ,  a) depends 

1 on x and a only--through x,, and a(,,. We will adopt similar notational 
conventions later in the paper.) . 

For any probability measure p on the initial state x i ,  the law of motion q 
will then define a conditional distribution F, on (X,  8) given d according 
to the natural formula 

Let p,, denote the distribution degenerate at x1gX1. We will write 
F X 1  = Fpxl- 

2.5. Policies.. A (sequential) policy is a measurable non-anticipative rule 
of selecting actions. Formally, 6 = 16,) is a policy if 

(i) 6, (. 1 x ,  a)  is a probability measure on dt for all x  E X and a E A, t 2 2 ;  
(ii) 6, (C I ., .) is (a(,, x d(, - ,,)-measurable for each C E d,, t 2 2; 

(iii) 6,(.1 x) is a probability measure on d l  for all x  E X ;  
(iv) 8, (C 1 .) is B,-measurable for all C E dl. 
The interpretation, is that, if x,, a,, ..., q-,, xt is the observed history 

up to stage t, then a, is chosen according to the measure 6,(.I x ,  a). Let 
9 = (6) denote the set of all policies. 

2.6. Observed process. The preceding suffices to guarantee the existence 
of a well-defined stochastic process of the observed states and action when 
the initial measure is p and a policy 6 is used. This process is defined on 
X x A  with the corresponding a-algebra. The probability of a cylinder set 

is given by 
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Similarly, if p is a probability measure on a(,, x d(,- ,,, ak E T, then 
define A:,, by 

Note that A:,, = A,,, and also that A:,, depends on d only through 
(6 , :  t 2 k ) .  -. -- 

2.7. Costs. The cost incurred at stage t is I t ( ~ ( , ) ,  a(,,) if the observed 
history is ( x , ,  a,, ..., ql,, x,) and a, is chosen at stage t. 

28. Asslamption. For t E T 
(i) it(., a )  is (B(,) x db$-measurable; 

(ii) i t ( - ,  -) is non-negative extended real valued; 
(iii) I, (x,, , a )  is lower semi-continuous for each x,, E X,, . 
In most of what follows the non-negativity of 1 , ( . ,  - )  can be replaced 

by the weaker assumption that l t ( . ,  .) is bounded from below or by the 
even weaker assumption that (1 ,  (., .)) is uniformly integrable. 

29. Loss fmction. The loss function L: X x A + R+ is defined by 
m 

% L ( x , a ) =  x &(x(,, ,actd ( x E X ,  ~ E A ) .  
, t = l  

Also define L", X x A + R' by 

Lef L, = L," and L" = L",l < k < n < m). 
' 

2.10. Risk function. Let 1 < k < n < co as above. For a measure p on 
a(,, x d(,- ,, and a policy 6 E 9, the conditional risk Rt is defined to be the 
expectation of the loss function L",., -) computed under the measure A L a :  

Let R, = RF, R" = R; and R = R,. Tlien R ( p ,  -) is called the risk for 
the initial measure p (on W , ) .  In particular, if pxl is the probability measure 
degenerate at x1 E X , ,  then let R (x , ,  6) = R (p,,: 6).  

Given p on a , ,  define A,,,,, to be the projection of A,,, on B,,, x d( ,-,,. 
It will be of special interest to consider Rk(A, ,d lk ,  S ) ,  for this can be 
interpreted as the conditional risk from stage k (inclusive) onward, given 
that the initial measure was p, the decision rules 6 , ,  6 , ,  . . ., 6,- , have 
already been ,used, and that the rules 6,, S,,,, ... will be used from 
stage k onward. 
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2.11. Optimal policies. Let k~ T and let p be a probability measure on 
a(,, x 4 k -  1). If 

R k h  6') = &fRk@, 6 ) ,  

then 6' is called p-optimal at stage k. If p = p( ,(,),,(,- then 6' is called 
( x ( ~ ) ,  a(,-,,)-optimal at stage k.  A policy 6 is calIed optimal at stage k 
if it is optimal for (x(,), a(,- ,,) at stage k for all (x(,, , a(, - l J ~  Xtk1 x Ack - 
A policy is called f i l ly  optimal if it is optimal at stage k for all kc T. 

For (x(,), a(,- 1 ) ) ~  X(L) X A(k- r)  let 

Rk ( ~ ( k ) ;  q l c -  1)) = &$ Rk (&x(k),o(k-  1))) 8). 

Define R; ( . ;  .) similarly relative to the loss function Li. 

2.12. Asslamption. (a) The law of motion q = {q,) is dominated. That is, 
there exists a law of motion v = {v , )  which is independent of a~ A and 
such that q, 4 v,. Let 

We also assume that cp, (- I -, .) is (gt+ x B(,, x d,,,)-measurable. 
( b )  Assume also that for each t E T, x E X, the h a p  

defined by a + rp,( . lx ,  a)  is continuous. Note that this map depends on a 
only through a(,, = n(,, (a). 

Let p denote a probability measure on i#(k) x d(,-,, and let ,ii denote its 
projection (marginal measure) on B(,, .  Let Qk denote the measure on 9 
generated by through stage k followed by v. Let qi ( - 1  a) denote the 
conditional measure on B defined by 

n m 

Note that rp i  ( - 1  a) depends on a only through a,, a,+,  , . . . Assump- 
tion 2.12 (a) guarantees that rpE(,la) 4 bk(.) for all a s  A, k~ T, p on 
B(,, x d(k-,l. (It also guarantees that the projection of A;,, on 9 is 
dominated by  Ck.) Let 
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Then Assumption 2.12 (b) implies that for each k E T the map 

N k ( p ) :  A + L1(X, g, ykl 

defined by a + hk (-  1 a) is continuous for each k E T and /I on B1,, x  d(k- 
Note that q: = F,, and so, in particular, the map 

is continuous for each initial measure p on a,: 
The -assumption above is a significant restriction on the family q. 

However, the necessity of some assumption similar to 2.12 (b) is demonstrated 
in Example 3.4. . * 

2.13. Toplogizing tbe policies. Corresponding to each policy b = IS,] E 9 
there is a conditional measure on A, given 9, defined by 

6(C1 x C2 x ... x Ct x A t + 1 ,  ...I X) 

= 1 J ... j S,(C,lx,a)d, _,( da, -,I x,a)  ... Sl(da, (x) .  
C l C 2  5 - 1  

For each k~ T and p on O , x d , - , ,  define the topology rk(pf on 9 
as the weak topaogy generated by the functions 

for f E L, (x, n a,, v,k, and c E C ( n A,), where C (  A,) denotes the 
tsTk t ~ T k  t ~ T k  

set of continuous functions on n A,. Note that ~ ~ ( p )  really depends only 
t ~ T k  

on the projection measure f i  on Let z ( p )  = T,(,u) and z(x,) = z(pxl), 
xi E XI. 

These topologies are not Hausdorff. For an intensive study of 9 with 
these topologies it is useful to define the space B k ( p )  of equivalence 
classes of 9 with the topology zk(p) .  This is done in [4]. It may help 
the reader to visualize 9, z(p),  etc., in this manner but we will not 
explicitly need this terminology in the sequel. 

The following important results may be directly deduced from Theorems 3.6 
and 3.14 of [4]. 

2.14. THEOREM. For each k E T, p on 9i9(k) x d(k - 

(a) the spaces 9, zk (p)  are compact, 
(b) the maps Rk(b, - ) :  9 + [0,  m] are lower semi-continurns relative to 

zk ( ~ 1 )  - 
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It is implicit in Theorem 2.14 (b) that R,(p,  6 )  depends only on the 
z,(p) equivalence class of d €9. For k = 1 this latter fact follows from 
the expression 

RIP,  6)  = [ L C ~ ,  a)&l(xla)6(dalx) G ( d x )  

and from Theorem 3.10 in 141. This expression is derived in [4], Proposi- 
tion 2.2. Similar expressions are valid for R,(,u, 6 )  but are not explicitly 
needed in the sequel. (The above result is comparable to resuIts in [13].) 

. . 3. POLICIES OPTIMAL FOR p 

3.1. THEOREM. For each k E T and each p on x dtk- l )  there exists 
an optimal policy for p at stage k .  I n  particular, for each x1 there 
is an xi-optimal policy at stage 1. 

Proof. The theorem follows directly from Theorem 214 since any lower 
semi-continuous function on a compact set achieves its infimum. 

This theorem leaves many questions unanswered. For example, if p is 
a given initial measure on 3, and S is p-optimal at stage 1, then is 6 an 
xi-optimal policy at stage 1 for p-almost every x,? We have been able 
to adapt methods developed in Eaton [6] to answer this question (and 
other similar ones) in the &mative when the measures ( V k l  : x1 E X , )  
form a dominated family. However, the optimality reSults proved in the 
next section by a different method are stronger than the results we can 
prove using Eaton's methods, and so we will omit the detailed argument. 

The following technical result will later be useful: 

3.2. LEMMA. R(x1 )  = lim Rn(x1).  
n-r  m 

P r o  of. Rn ( x , ,  S)  is the risk in the problem with the loss fundion 

By Theorem 3.1 there exists an optimal policy 6 ,  for each such problem. 
Since g ,  z ( x l )  is compact, there exists a "convergent" subnet 6,. -, 6. 
(Actually 6 :s determined only up to its z(x,) equivalence class and dn1 -+ S 
only in this sense.) By Theorem 2.14 (b) we have 

lim i d  Rm(xl  , a,,) 2 Rm (x ,  , 6)  for each m E T. 
In') 

Also 

Hence 
R ( x ~ )  2 R n ( x l , 6 , )  2 R m ( x l , 6 , ) -  (n 2 m). 

This proves the lemma. 
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33. Remark. The assumption that A be compact may be relaxed. For 
example, it suffices for A to be locally compact with 

lim L(x, a) = 
0-m 

and for certain other techni=al conditions to be satisfied. Details may be 
deduced from Section 4 of [4] together with the above theorems. A similar 
remark is also valid for later s v  theorems in this paper. 

The f&thcoming example demonstrates the important. role of Assump- 
tion 2.12 (b) concerning-. the continuity of the maps a -+ cp, l.1 x, a). The 
example demonstrates that Theorem 3.1 is faIse under the weaker assumption 
that for fixed p the map 

is continuous as a map from A to L1 (X, 8, 5') with the weak topology. 

3A. Example. Let S denote the trivial space consisting of one point. Let 

X2 =CO, 111 A2 = (0, 1) = X3, At=  S = Xk+l ,  k =  3,4 ,..., 
and let 

In standard statistical terminology, x, -is the unknown parameter and 
the problem is one of testing the simple hypothesis, x, = 0, versus the 
simple alternative, x, = 1, based on the observation of x,  EX^. The prior 
distribution of x, and the distribution of x2, given x,, are determined by 
the-choice of a, as specified in the sequel. 

For y E [O, 11, let bkCy) denote the k-th digit in the binary expansion 
of y. (Adopt any convention to 'define b,lyj uniquely when y has a ter- 
minating binary expansion.) Let A denote the Lebesgue measure on [O, 11 
and let 
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The choice of (v,} with v ,  = h and v, = v*, where v*({O)) = v9({1)) 
= 1/2, yields - 

I 
V; = z x ~ x v * x ~ x z x r x  ..., 

i where t denotes the unique probability measure on S. Then it can easily 
i be checked that the map a + dF, ( . la)/dJ$l ( . ) is continuous as a map from 

A to L, ( X ,  a, V;) with the weak topology. It is also true that the map 
a -c q , ( . [ x ,  a) has a similar continuity property, but note that the map 
a -* q2 (. I x , a) does not. - - 

Consider the sequence of policies {6("] : m = 1,2,  ...} defined by 

Then a simple computation yields R (p, 6(m)) = 1/6 + 1/2m. Hence R (p} 
< 1/6, but it can be readily seen that there is no policy which satisfies 
R (p, 6) 6 1/6. So there is no optiial policy. 

4. EXISTENCE OF FULLY OPTIMAL POLlCIES 

Now we state the main theorem of the paper. 
4.1. THEOREM. Let the assumptions of Section 2 be sati.$ed('). Then there 

exists a fully optimal policy. 
P r  o of. For 1 < k < rz < ocr define Si (. ; - , . ) inductively (backwards on k) by 

s: tad X ( n ) ,  a(n- 1 ) )  = In ( ~ ( n ) ,  tab- 1) 3 an)), 

- Q@k 

where denotes the lower integral. Write SA, (al ; x l )  instead of f l  (a,; x(,,, a(o,). - 
_ The following claims will now be proved for 1 < k < n < oo: 

(A) % ( a ;  ., .) is (d, x 99(k) x drk- ,,)-measurabie. 
(B) Si(-; xtk,, a(k- ,,) is lower semi-continuous on A, for all xrk,, a(k- l ) .  

(C)  There exists a measurable map hk,n : X(,, x A(,- ,, -* A, such that 

(2) s; (ak; X ( k ) ,  ark- 1,) = s: ( h k , n  ( ~ ( k ) ,  #(k- 11); +k), a(i- 1)) 
ah€*+ 

= Ki  b , k )  ; U,k - 1)).  

( I )  For the proof of this theorem the most important are the assumptions stated in 
Sections 2.3. 2.8. 2.12 and 3.3. 
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For k = n, claims (A) and (B) iollow from Assumption 2.8. In view 
of the assumptions on A, stated in Section 2.3, the existence of h,., 
satisfying the first p u t  of (2) follows from the selection theorem of Brown 
and Purves [ 5 ] .  It is clear that 

@n,n (~(nl, a ( n  - X(n1, a{n - I 1) R: (~(n); a[n - 11)- 

On the other hand, 

R::bx(n).'(n- 4 = S:: (h"," (x(,), a(,- 1 ) ) ;  XI,), n(,- 1,) 

for the policy 6 with - -  - = 

4 ' 1  ~ ( n )  9 a, - I )) = ~ l , ~ , ~ ( x ( ~ ) , a ( ,  - )) 

Hence the second equality of (2) is also satisfied for k = n. 
Let 2 < rn < ,n. Suppose that (A), (B) and (C) are satisfied for m < k < n, 

Then 

+ IR:((~{ns-~)r~m);Ia(rn-z), am-1))(~r.-I(~mI~, a)~m-l(dxa~x)- 
3 

By (A) and (C), R: ( 7 ;  a )  is (a,) x d,,- ,,)-measurable. Hence Sk-I satisfies 
(A) by standard Fubini-type theorems (see, e-g., [12], p. 74). 

Let ai be any convergent sequence in A,,,-,, say ai -B u. Let 6") be 
a policy satisfying 

(i) '$)('Ix, = Phktn ( ' ) ( x ( k ) , a ( k -  1)) (m ' ' nl, 
(ii) 62- ({ai] 1 -, -) = 1. 
Then, by (2) and (31, 

(4) %-I ( ~ 1 ;  ~ [ n s - i ) ,  a (m-~l)  = Rz-1 (kh-ll,a(,-2)), 

Let 6 be any ~rm-~(&x,-,pa(m-2~ ) accumulation point of the sequence 
(8')) (S exists by Theorem 2.14 (a)). Note that every accumulation point 
of (6")) is equivalent to S relative to this topology. By (4) and Theorem 2.14 (b), 

-. 

= lim infSm-l(ai; X ~ , - ~ ) , - ~ , - ~ J .  
t+m 

Hence Sk-, satisfies (B). The existence of h,-,,, satisfying the first 
equality of (2) then follows from the selection theorem of Brown and 
h v e s  [5] .  The second equality of (2) then follows from the first equality 
and the definitions of and R:-,  by the same reasoning as in the 
case k = n. This completes the proof of (A), (B) and (C) for 1 k k < n < a. 
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i 

i Clearly, S ;  is nondecreasing in n for fixed k. Let 

Sk = lim S;E. 
R-'m 

Then Sk satisfies (A) and (B). So there exist measurable functions h, 
satisfying the first equality in (2) for Sk.  By Lemma 3.2, 

(5 )  X R  ( ( ~ ( k )  a(k - l ))) = lim -& > a{k - 1 ) )  
A+=+ 

= lim inf Si (ak; x ( ~ ) ,  a{k- . - 
n+ m u e A k  

= inf S k  ( a h ;  X(k] r ~ ( k -  1)) 
"@Ak 

since Ak is compact and { S ;  ( - ; x, , a,, - ,,) : PI = 1 , 2 ,  . . .) is a non-decreasing 
sequence of lower semi-continuous functions. Thus Sk and Rk also satisfy the 
second equality in (2). It folIows from the above and from the definition (1) 
that, furthermore, 

(6) .. lim SB (h,, I x ( k )  , a(k - I )I; x(R), q k  - I 1) = S k  (h C X W ,  a(k - I )I; XM), a ~ k  - 11) 
n-m 

since A, is compact and (S; ; x,,, , a,,- ,,): n = 1 ,  2, . . .) is a non-decreasing 
scquence of lower semi-continuous functions. So (S,)  satisfies the recursion (1) 
for all k 2 2, 

Let 6* be the policy defined by 

J { h  ,  a - 1 1  I , a = 1 (k 

Then, by (11, 

Rk ( P ( X ( ~ ) , ~ ( ~ -  1))' Sk (hk ( ~ ( k ) t  ~ ( k -  I)); X(k)r  a(k-  1 ) ) .  

By Lemma 3.2 and formulas (5) and (61, 

It follows that R k ( p ( x ( k p , ( k -  ,,, , d*) = Rk ( x ( , ) ;  a(k- ,J, and hence 6" is 
optimal at stage k for all k~ T. This proves the theore 

Note that the fully optimal policy a*, derived above, is non-randomized. 
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5. STATIONARY CASE 

In this section we consider an important special case of the general 
problem. Assume that the state and action spaces, the law of motion and 
the cost structure are time invariant (stationary), that is, 

X, = XI, A, = A,,  

4t(Bt+,Ix, a) = 41(B,+l Ixt,%) = qt-l(B,Ix,-l,4-1) 0 2 2) 
-. 

ifB,,, = B,EL@, ,  xz = and a, = Moreover,for some a, 0-c cr 6 1, 
-. - -  

i 
I 

where I ( . ,  -)  is a ( a l  x &,)-measurable non-negative function which is lower 
semi-continuous with respect to the action variable. 

When a =.I, this =orresponds to the negative dynamic programming 
of Strauch [16], and when a < 1 and I ( . ,  -) is bounded (not necessarily 
non-negative), this corresponds to the discounted dynamic programming of 
Blackwell [2]. One of their main concerns was to determine whether 
a stationary optimal policy necessarily exists, that is, whether there always 
exists a d ~g such that 6 is optimal. in 9 and 

for all C E A ~  and x, = x,-,EX,. 
Blackwell [2] gave a counterexample showing that this is not the case. 

However, in his example, depending on the interpretation, either A, is not 
compact or l(x, .) is not lower semi-continuous. With our assumptions, 
which include compactness of A,  (but see Remark 3.3), lower semi-continuity 
of E(x, .) and assumptions on q, we can show that a fully optimal stationary 
policy does exist. 

The desired result follows almost immediately from Theorem 4.1. (It could 
also be proved independently of Theorem 4.1 by specializing the proof of 
that theorem to th'e stationary case.) As noted in the Introduction the 
following result is similar to the regularity condition (S) of Sch'il [14]: 

5.1. THEOREM. Let the assumptions of Theorem 4.1 and also the stationarity 
assumptions above be satisfied. Then there exists a stationary fully optimal 
policy. 

Proof. Let 6" be the fully optimal policy of Theorem 4.1. Note that 6' 
need not be stationary. However, define 6** by 

for B E Bk = g l ,  xk- E XI.  hen 6" is stationary. It can readily be shown- 
that R ( - ,  a**) = R ( . ,  d*), thus implying that the stationary policy S** is 
fully optimal. 
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