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Abstract. Existence of a Jnconsistent M-estimator of regres- 
sion parameter vector and its asymptotic normality are proved in a 
general situation including redescending estimators generated by 
possibly discontinuous +-functions, 

1. Bwtroduction. Consider the linear regression model 

where Y, and En are (n x 1) random vectors, X, is an fn x p) design matrix and 
the coordinates E , ,  . . ., En of E, are independent and identically distributed 
random variables with a distribution function (dl.) F. Let rf denote the ith 
row of Xn, i = f  ,..., n. 

M-estimators of b became a part of a general statisticaI consciousness. 
For a function $: R1 4 R 1  such that 

the M-estimator M, of is usually defined as a solution of the system of 
equations 

with respect to t € R P .  
The asymptotic bihavior of M, (as n -+ co) has been studied by many 

authors. The basic references can ,be found eg. in Huber [4] and Hampel et 
al. [2]. The question of primary interest is that of conditions under which 
there exists a solution Mn of (1'.3) for which 



and if this is the case then there is a question of the asymptotic distribution 
of n1I2 (M. - B). 

If ~ is nondecreasing, then such an M,, exists and is unique in probabili- 
ty under general conditions. This question was studied, among others, by 
Huber [3] and Yohai and Maronna [7] and not only for fixed p but also 
when p is permitted to grow as n -+ m .  

If ~ is not monotone, there could be more solutions of the system (1.3) 
and some of them possibly inconsistent; Freedman and Diaconis [I] found a 
family of distributions with inconsistent M-estimators of location. For an 
appropriate family of distributions, there typically exists at least one root of 
(1.3) which satisfies-11.4). For sufficiently smooth IC/ and under some restric- 
tions on the design matrix X,,, this was demonstrated by Portnoy [6] even in 
the case where p + cn and (p, log n)/n + 0 as n -+ X I .  He proved it with the 
aid of results of the general theory of nonlinear equations in several 
variables. 

However, there are still other open questions: (i) what could we say in 
the case of non-monotone IC/ if Portnoy's conditions on X, are not satisfied 
and/or 1(/ is not continuous; (ii) even if we know that there exists s ,/;E- 
consistent solution of (1.31, then, having found one single root, we do not 
know whether it is just the consistent one. 

Some autllors recommend using redescend~ng M-estimators generated 
by the class of functions 

Y = [1(/:1)(x) = 0 for all 1x1 2 r, r e R 1 j ;  

the main motivation is that these estimators are able to reject extreme 
outliers entirely (cf. [2]). As examples of such functions we could mention 
"Tukey's biweight" 

(1-5) $(x) = ~ ( r ~ - x ~ ) ~ 1 [ - r  ,< x < 1-1, 

further the function generating the "skipped mean" in the location model, 

x for 1x1 B r ,  

0 for 1x1 > r 

or the function generating the "skipped median" in the location mode1 

signx for Ix lGr ,  
for 1x1 > r. 

Another class is formed by functions which are non-monotone and tend 
to  0 as 1x1 --+ co. Such are, e.g., the log-likelihood functions of non-unimodal 
densities. 
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This all means that the existence of a consistent M-estimator generated 
by a non-monotone function deserves a more detailed study. Surprisingly, 
this question was not yet satisfactorily solved; fu~lctions (1.6) and (1.7) do not 
even comply with Portnoy's conditions. 

In the case of non-monotone $, it is better to define the M-estimator as 
a solution of the minimization problem 

with respect to t € R P ,  where Q is an absolutely continuous function and @(x) - 

= &/dx a.e. This is in analogy with the definition of the least-squares 
estimator. If p is convex, then (1.8) is equivalent to (1.3). 

It is the aim of the present study to show that there exists a solution of 
(1.8) satisfying (1.4) for a general class of @-functions including nonconvex 
ones with discontinuous derivatives, We shall also prove the asymptotic 
normality of this solution and its asymptotic representation by a sum of i.i.d. 
random variables. 

2. Assumptions and auxiliary asymptotic linearity resalt. We impose the 
following conditions on g, F and on the design matrix X,: 

(Al)  g :  R1 + R 1  is an absolutely continuous function, bounded from 
below and such that the function 

(2.1) A ( U )  = [ Q ( x - u ) ~ F ( x )  

has a unique minimum at u = 0. 
(A2) The function $I (x) = d ~ / d x  bas the form 

where is a step function, 

for sj < x  < s ~ + ~ ,  j =  0, ..., k, 
(2.3) for x = s j ,  j = 1, ..., k, 

where -a =so  <s l  <... < s k  < s ~ + ~  = a and a*, ..., a k ~ R 1 ,  not all 
equal; $2  is a sum of two continuous functions, say, ~ , b ~  = $',1)+$\", such 
that 
d+l1)/dx is a step-function and d$i2)/dx absolutely continuous and 

(2.4) [ ( $ $ ) ( x + u + v ) - $ $ ' ( x + ~ ) ) ~ d ~ ( x )  ,< #, v2  ( i  = 1 ,  2) 

for lul < 6, lvl ,< S, K,, S > 0. 



(A3) There exist yi = yi($, F),  i = 1 ,  2, such that 

and y = y,+y2 > 0. 
(A4) F has a positive and bounded derivative f in a neighborhood of 

S1, . . . I  Sk. 
I 

(B 1) lim Q, = Q, where Q, = n- Xk X, and Q is a positively definite 
n-rm 

(p x p)-matrix. 
- (B2) a, = max lxijl = o(n1I2) as n + m. 

1 G i G n . .  - . - 
1  S j S p  

n 

(B3) b, = max (n-I x$) =0(1) as n - c o .  
1 S j ,<p i= 1 

We shall start with the following uniform asymptotic linearity result: 
LEMMA 2.1. Let El, E2, . . . be i.i.d, random variables with the distribution 

I fiincrion F. k t  +: R1 + R 1  be a function satisfying conditions (A2) and (A3), 
ler F satisfy (A4) a d  the matrix X n  satisji (B1)-(B3). Then, for any fixed 
z d 1/2 and C > 0, 

as n + m ,  j = 1 ,  ..., p .  
Proof .  Write 

18 

(2.7) Sj(f) = n - l f T  xij [$ (E i -n - 'x i  t ) -  $ (E, ) ]  
i =  1 

and 

Let first II, E (the step-function of (2.3)). Then, for t, u €RP,  t < u 
(coordinatewise), 

. , 
' ,?. 

. I. .!  

hence 
- 

(2.10) lim a i 2  n2-"E [s:(u)-S;(t)14 6 K l l ~ - t11~ .  
n +m 
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Moreover, by (A3), 

Cambining (2.10) and (2.111, we get 

b as n + m for t ,  u E R ~ ,  t < U, \It((, ( ( ~ ( 1  < C .  

Thus, by results of [5 ] ,  the proposition (2.6) holds if II/ = 
Let now gl/ = $2. Write 

Then, by (2.5), 

(2.14) E [Ani (u) - An, (t)I2 < K1 n- 2T(~; (U - t)j2 

for both $ = $',"(v = 1 ,  2) and 

Moreover, by (A.3), 

hence 

aid, by results of 151, (2.6) - hoIds for r $, . 
COROLLARY 2.1. Let El, E,, . . . be i.i.d. random aariables with the distribu- 

tionfunctiort F .  Let p: R1 +R1,  $I = Q' and F satisfy. conditions (Al)-(A4) and 
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let X, satisfy (Bl)-(B3). Then, for any fixed T < 1/2 and C > 9 

(2.18) sup ln-1+2" [ e ( E i - n - ' x ~ t ] - ~ ( E i ) + n - ' x ~ t $ ( E i ) ] -  
Il r i l  i =  1 

Proof .  By Lemma 2.1, if t j  3 0, 

* j  n 

(2.19) sup In-'+'J xi j  \y?(Ei-n- ' [x i j s+  
jtkl S C , k =  j ,  ... ;p 0 i =  1 

and analogously if t j  < 0 with the reversed order of integration, j = 1, . . ., p. 
This, in turn, implies (2.18). - 

3. Consistewy and asymptotic normality. Assume that the functions Q 
and F satisfy conditions (All-(A4) and X, satisfies conditions (B1)-(B2) 
introduced in Section 2. If M, minimizes ,q(x -xi r), i = 1, 2, . . . , n, then 

also minimizes C (e(Ei -xf t) - Q (E,)), i = I ,  2, . . . , n, with respect to t s R P .  By 
Lemma 2.1, for any fixed C > 0, 

where 

13-31 

is a random vector of RP. By (3.2), the minimum of 

over the sphere J(tll < C can be approximated by a minimum of a convex 
function over the same sphere. However, the minimum of the convex 
function on the right-hand side of (3.2) over lltll < C in turn coincides with 
the minimum of the same function over all RP, provided only C > 0 is 
sufficiently large. Actually, we have 
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LEMMA 3.1. Under the conditions of Lemma 2.1, given E > 0, there exist 
Co > 0 and no such that, for n 2 no and C 2 Co,  

(3.4) P(B,IC, 4) < 8 ,  

where 

(3.5) B, (C, E )  = (a: I min CQ ( E ~  - n- ' I 2  XI t )  - g (Ei)]  - 
IIcll S C  i -  1 

"u' -min[-tfZ,+-rlQ,t]l > E ;  
.. . . 2 

~ r b o f .  Let L;, be the solution of the minimization 

Then 

min [ - t' 2, + (y/2) t' Q, tJ . - . . 

~ E R  P 

and hence there exist C, > 0 and no so that P(llU,,II > Go) < ~ / 2  for n 2 no. 
Then, regarding (3.2) and (3.51, for C 3 C, and pz 2 n, we have 

n 

< P ( 1  min [ e ( ~ i - n - 1 t 2 x i ' t ) - ~ ( E i ) ] -  
lltll c C i =  1 

- min (- t '~~+( .~/2) t ' (E, t ) l  > E ) + ( E / ~ )  GE. 
IItll s c  

The function 

has- a unique minimum over RP equal to ( - 1/2y) Zit Q ,  ' Zn which is negative 
with probability 1 starting from some no.  Hence, by Lemma 3.1, 

(3.8) min [g(Ei - n-'I2 x; t)- @(Ei)] = (-  1/21)) Z;, Q; Z,+o,(l). 
lltli r C i =  1 

Moreover, the sequence Zk Q; ' Z ,  a; ' has asymptoticaIIy the x2-dis- 
tribution with p degrees of freedom, where a$ = (IJ/'(x)dF(x); thus, by (3.8), 
there exist 6 > 0 and no to given E > 0 such that, for n 2 n,, 

PI min [ e ( ~ i - n - 1 / 2 ~ : t ) - e ( E i ) ]  < - 8 ;  > 1-E  
Iltll d C i = 1  

$7- 

Now, assume that M ,  is not a ,!n-consistent estimator of b; then there 



exists a 2 < 1/2 such that 

as n + co. Then, by Lemma 2.1, 

= (n' c) Q, (nr 9 + o, ( 1 ) .  

. The sequence (&I of distribution functions of (nr x') a ( n T  T,,) contains a 
convergent subsequence (H,,] which converges to a nondegenerate d.f. H, 
concentrated on the positive half-axis. Hence, given an E > 0, there exist 
6, > 0 and an integer k, such that 

Notice that the Iower bound ni-2'Sl in (3.1 2) is unbounded as k -t oq. 
This implies that the function (y (Ei -xi t) - ,o (E,)), i = 1,  2, . . . , n, to be 
minimized could take on positive unbounded values with probability arb- 
itrarily close to 1 if f = T,; while, by (3.9), the minimum of the same function 
over the sphere /It11 < n-'I2 C is negative with probability arbitrarily close 
to 1. Thus, T < 1/2 cannot be true; this means that T = 1/2 and 11TJ) 
= Op (n- ' I 2 ) .  

We are in a position to formulate the main theorem of the paper. 
THEOREM 3.2. Let Yl , . . . , Y, be independent random variables, & distribu- 

ted according to  the dLf. F(y-xit), i = 1 ,  . . ., n. Let Mn be the point of global 
minimum of e (x -xi t),  i = 1 2,  . . . , n, with respect to t E R< where the 
functions Q, F and the matrix X, = ( x l ,  . . ., xJ1 satisfy conditions (A1)-(A4) and 
(B1)-(B2). Then 

and n1I2(MnLB) has asymptotica12~ p-dimensional normal distribution 

Proof .  (3.1 3) follows from the above considerations. To prove (3.14) and 
(3.15), it suffices to prove that 
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for T,, of (3.1) and li, of (3.6). Because the function g,( t )  is convex and has a 
unique minimum at t = kl,, with probability 1, we get 

Y Y (3.17) ~ . ( t ) - g n ( O n ) = 5 ( t - U J ' ~ ( r - U J ~ j l ~ r - O n 1 ~ 2 i ~  for r e R p ,  

where A: is the minimal Qgenvalue of Q,,. Hence, given q > 0, there exist 
6 > 0 and a, so that, for n 3 no, 

Being combined with Lemma 2.1 this further implies that, to v > 0 and 
I 

E > 0, there exists an n ,  such that, for n 2 n,, 

Propositions (3.13) and (3.14) then follow from (3.3), (3.6) and from . 
assumption (Al). 

Remark. The function Q does not need to be necessarily convex; 
however, conditions (2.1) of (Al)  and 1) > 0 of (A3) are crucial for the 

existence of a ,,%-consistent solution of the minimization (1.8). 
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