CONSISTENCY OF M-ESTIMATORS IN A LINEAR MODEL, GENERATED BY NON-MONOTONE AND DISCONTINUOUS ψ-FUNCTIONS

BY
JANA JURECKOVÁ (Prague)
Abstract. Existence of a \sqrt{n}-consistent M-estimator of regression parameter vector and its asymptotic normality are proved in a general situation including redescending estimators generated by possibly discontinuous ψ-functions.

1. Introduction. Consider the linear regression model

$$
\begin{equation*}
\mathbf{Y}_{n}=X_{n} \beta+\mathbb{E}_{n}, \tag{1.1}
\end{equation*}
$$

where \mathbf{Y}_{n} and \boldsymbol{E}_{n} are ($n \times 1$) random vectors, \boldsymbol{X}_{n} is an $(n \times p)$ design matrix and the coordinates E_{1}, \ldots, E_{n} of E_{n} are independent and identically distributed random variables with a distribution function (d.f.) F. Let $\boldsymbol{x}_{i}^{\prime}$ denote the i th row of $X_{n}, i=1, \ldots, n$.
M-estimators of $\boldsymbol{\beta}$ became a part of a general statistical consciousness. For a function $\psi: R^{1} \rightarrow R^{1}$ such that

$$
\begin{equation*}
\int \psi(x) d F(x)=0 \tag{1.2}
\end{equation*}
$$

the M-estimator M_{n} of β is usually defined as a solution of the system of equations

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i} \psi\left(Y_{i}-x_{i}^{\prime} t\right)=0 \tag{1.3}
\end{equation*}
$$

with respect to $t \in R^{p}$.
The asymptotic behavior of M_{n} (as $n \rightarrow \infty$) has been studied by many authors. The basic references can be found e.g. in Huber [4] and Hamper et al. [2]. The question of primary interest is that of conditions under which there exists a solution M_{n} of (1:3) for which

$$
\begin{equation*}
n^{1 / 2}\left\|M_{n}-\beta\right\|=O_{p}(1) \quad \text { as } n \rightarrow \infty \tag{1.4}
\end{equation*}
$$

and if this is the case then there is a question of the asymptotic distribution of $n^{1 / 2}\left(M_{n}-\beta\right)$.

If ψ is nondecreasing, then such an \boldsymbol{M}_{n} exists and is unique in probability under general conditions. This question was studied, among others, by Huber [3] and Yohai and Maronna [7] and not only for fixed p but also when p is permitted to grow as $n \rightarrow \infty$.

If ψ is not monotone, there could be more solutions of the system (1.3) and some of them possibly inconsistent; Freedman and Diaconis [1] found a family of distributions with inconsistent M-estimators of location. For an appropriate family of distributions, there typically exists at least one root of (1.3) which satisfies (1.4). For sufficiently smooth ψ and under some restrictions on the design matrix X_{n}, this was demonstrated by Portnoy [6] even in the case where $p \rightarrow \infty$ and $($ p. $\log n) / n \rightarrow 0$ as $n \rightarrow \infty$. He proved it with the aid of results of the general theory of nonlinear equations in several variables.

However, there are still other open questions: (i) what could we say in the case of non-monotone ψ if Portnoy's conditions on X_{n} are not satisfied and/or ψ is not continuous; (ii) even if we know that there exists a \sqrt{n} consistent solution of (1.3), then, having found one single root, we do not know whether it is just the consistent one.

Some authors recommend using redescending M-estimators generated by the class of functions

$$
\Psi=\left\{\psi: \psi(x)=0 \text { for all }|x| \geqslant r, r \in R^{1}\right\}
$$

the main motivation is that these estimators are able to reject extreme outliers entirely (cf. [2]). As examples of such functions we could mention "Tukey's biweight"

$$
\begin{equation*}
\psi(x)=x\left(r^{2}-x^{2}\right)^{2} I[-r \leqslant x \leqslant r], \tag{1.5}
\end{equation*}
$$

further the function generating the "skipped mean" in the location model,

$$
\psi(x)= \begin{cases}x & \text { for }|x| \leqslant r \tag{1.6}\\ 0 & \text { for }|x|>r\end{cases}
$$

or the function generating the "skipped median" in the location model

$$
\psi(x)= \begin{cases}\operatorname{sign} x & \text { for }|x| \leqslant r \tag{1.7}\\ 0 & \text { for }|x|>r\end{cases}
$$

Another class is formed by functions which are non-monotone and tend to 0 as $|x| \rightarrow \infty$. Such are, e.g., the log-likelihood functions of non-unimodal densities.

This all means that the existence of a consistent M-estimator generated by a non-monotone function deserves a more detailed study. Surprisingly, this question was not yet satisfactorily solved; functions (1.6) and (1.7) do not even comply with Portnoy's conditions.

In the case of non-monotone ψ, it is better to define the M-estimator as a solution of the minimization problem

$$
\begin{equation*}
\sum_{i=1}^{n} \varrho\left(Y_{i}-x_{i}^{\prime} t\right):=\min \tag{1.8}
\end{equation*}
$$

with respect to $t \in R^{p}$, where ϱ is an absolutely continuous function and $\psi(x)$ $=\dot{d} \varrho / d x$ a.e. This is in analogy with the definition of the least-squares estimator. If ϱ is convex, then (1.8) is equivalent to (1.3).

It is the aim of the present study to show that there exists a solution of (1.8) satisfying (1.4) for a general class of ϱ-functions including nonconvex ones with discontinuous derivatives. We shall also prove the asymptotic normality of this solution and its asymptotic representation by a sum of i.i.d. random variables.
2. Assumptions and auxiliary asymptotic linearity result. We impose the following conditions on ϱ, F and on the design matrix X_{n} :
(A1) $\varrho: R^{1} \rightarrow R^{1}$ is an absolutely continuous function, bounded from below and such that the function

$$
\begin{equation*}
\lambda(u)=\int \varrho(x-u) d F(x) \tag{2.1}
\end{equation*}
$$

has a unique minimum at $u=0$.
(A2) The function $\psi(x)=d \varrho / d x$ has the form

$$
\begin{equation*}
\psi=\psi_{1}+\psi_{2} \tag{2.2}
\end{equation*}
$$

where ψ_{1} is a step function,

$$
\psi_{1}(x)= \begin{cases}\alpha_{j} & \text { for } s_{j}<x<s_{j+1}, j=0, \ldots, k \tag{2.3}\\ \frac{1}{2}\left(\alpha_{j-1}+\alpha_{j}\right) & \text { for } x=s_{j}, j=1, \ldots, k\end{cases}
$$

where $-\infty=s_{0}<s_{1}<\ldots<s_{k}<s_{k+1}=\infty$ and $\alpha_{0}, \ldots, \alpha_{k} \in R^{1}$, not all equal; ψ_{2} is a sum of two continuous functions, say, $\psi_{2}=\psi_{2}^{(1)}+\psi_{2}^{(2)}$, such that $d \psi_{2}^{(1)} / d x$ is a step-function and $d \psi_{2}^{(2)} / d x$ absolutely continuous and

$$
\begin{equation*}
\int\left(\psi_{2}^{(i)}(x+u+v)-\psi_{2}^{(i)}(x+u)\right)^{2} d F(x) \leqslant K_{1} v^{2} \quad(i=1,2) \tag{2.4}
\end{equation*}
$$

for $|u| \leqslant \delta,|v| \leqslant \delta, K_{1}, \delta>0$.
(A3) There exist $\gamma_{i}=\gamma_{i}(\psi, F), i=1,2$, such that

$$
\begin{equation*}
\int\left(\psi_{i}(x+h)-\psi_{i}(x)\right) d F(x)=h \gamma_{i}+o(h) \quad \text { as } h \rightarrow 0 \tag{2.5}
\end{equation*}
$$

and $\gamma=\gamma_{1}+\gamma_{2}>0$.
(A4) F has a positive and bounded derivative f in a neighborhood of s_{1}, \ldots, s_{k}.
(B1) $\lim _{n \rightarrow \infty} \boldsymbol{Q}_{n}=\boldsymbol{Q}$, where $\boldsymbol{Q}_{n}=n^{-1} X_{n}^{\prime} X_{n}$ and \boldsymbol{Q} is a positively definite ($p \times p$)-matrix.
(B2) $a_{n}=\max _{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant p}}\left|x_{i j}\right|=o\left(n^{1 / 2}\right)$ as $n \rightarrow \infty$.
(B3) $b_{n}=\max _{1 \leqslant j \leqslant p}\left(n^{-1} \sum_{i=1}^{n} x_{i j}^{4}\right)=O(1)$ as $n \rightarrow \infty$.
We shall start with the following uniform asymptotic linearity result:
Lemma 2.1. Let E_{1}, E_{2}, \ldots be i.i.d. random variables with the distribution function F. Let $\psi: R^{1} \rightarrow R^{1}$ be a function satisfying conditions (A2) and (A3), let \boldsymbol{F} satisfy (A4) and the matrix \boldsymbol{X}_{n} satisfy (B1)-(B3). Then, for any fixed $\tau \leqslant 1 / 2$ and $C>0$,

$$
\begin{align*}
& \sup _{\|t\|<c} \mid n^{-1+\tau} \sum_{i=1}^{n} x_{i j}\left[\psi\left(E_{i}-n^{-\tau} x_{i}^{\prime} t\right)-\psi\left(E_{i}\right)+n^{-\tau} \gamma x_{i}^{\prime} t\right] \stackrel{p}{\rightarrow} 0 \tag{2.6}\\
& \text { as } n \rightarrow \infty, j=1, \ldots, p .
\end{align*}
$$

Proof. Write

$$
\begin{equation*}
S_{j}(t)=n^{-1+\tau} \sum_{i=1}^{n} x_{i j}\left[\psi\left(E_{i}-n^{-\tau} x_{i}^{\prime} t\right)-\psi\left(E_{i}\right)\right] \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{j}^{0}(t)=S_{j}(t)-E S_{j}(t), \quad j=1, \ldots, p ; t \in R^{p} \tag{2.8}
\end{equation*}
$$

Let first $\psi \equiv \psi_{1}$ (the step-function of (2.3)). Then, for $\boldsymbol{t}, \boldsymbol{u} \in R^{p}, \boldsymbol{t} \leqslant \boldsymbol{u}$ (coordinatewise),

$$
\begin{align*}
\mathrm{E} & {\left[S_{j}^{0}(\boldsymbol{u})-S_{j}^{0}(t)\right]^{4} } \tag{2.9}\\
& \leqslant n^{-4+4 \tau}\left\{11 \sum_{i=1}^{n} x_{i j}^{4} \sum_{v=1}^{k}\left(\alpha_{v}-\alpha_{v-1}\right)^{4}\left|F\left(s_{v}+n^{-\tau} \boldsymbol{x}_{i}^{\prime} \boldsymbol{u}\right)-F\left(s_{v}+n^{-\tau} \boldsymbol{x}_{i}^{\prime} t\right)\right|+\right. \\
& \left.+\left[\sum_{i=1}^{n} x_{i j}^{2} \sum_{v=1}^{k}\left(\alpha_{v}-\alpha_{v-1}\right)^{2} \mid F\left(s_{v}+n^{-\tau} \boldsymbol{x}_{i}^{\prime} \boldsymbol{u}\right)-F\left(s_{v}+n^{-\tau} \boldsymbol{x}_{i}^{\prime} t\right)\right]^{2}\right\} \\
\leqslant & \|\boldsymbol{u}-\boldsymbol{t}\| O\left(n^{-3+3 \tau} a_{n}\right)+\|\boldsymbol{u}-\boldsymbol{t}\|^{2} O\left(n^{-2+2 \tau} a_{n}^{2}\right),
\end{align*}
$$

hence
(2.10)

$$
\varlimsup_{n \rightarrow \infty} a_{n}^{-2} n^{2-2 \tau} \mathrm{E}\left[S_{j}^{0}(u)-S_{j}^{0}(t)\right]^{4} \leqslant K\|u-t\|^{2} .
$$

Moreover, by (A3),

$$
\begin{align*}
& \left|\mathrm{E}\left[S_{j}(\boldsymbol{u})-S_{j}(\boldsymbol{t})+\gamma n^{2} \sum_{i=1}^{n} x_{i j} \boldsymbol{x}_{i}^{\prime}(\boldsymbol{u}-\boldsymbol{t})\right]\right| \tag{2.11}\\
= & \left|\mathrm{E}\left\{n^{-1+\tau} \sum_{i=1}^{n} x_{i j}\left[\psi\left(E_{i}-n^{-\tau} \boldsymbol{x}_{i}^{\prime} \boldsymbol{u}\right)-\psi\left(E_{i}-n^{-\tau} \boldsymbol{x}_{i}^{\prime} \boldsymbol{t}\right)+\gamma n^{-\tau} \boldsymbol{x}_{i}^{\prime}(\boldsymbol{u}-\boldsymbol{t})\right]\right\}\right| \\
= & o\left(n^{-1} \sum_{i=1}^{n}\left|x_{i j} \boldsymbol{x}_{i}^{\prime}(\boldsymbol{u}-\boldsymbol{t})\right|\right)=\|\boldsymbol{u}-\boldsymbol{t}\| o(1) \quad \text { as } n \rightarrow \infty .
\end{align*}
$$

Combining (2.10) and (2.11), we get

$$
\begin{align*}
\mathrm{E}\left[S_{j}(u)-S_{j}(t)+\gamma n^{-1}\right. & \left.\sum_{i=1}^{n} x_{i j} x_{i}^{\prime}(u-t)\right]^{4} \leqslant\|u-t\|^{2} o(1) \tag{2.12}\\
& \text { as } n \rightarrow \infty \text { for } t, u \in R^{p}, t \leqslant u,\|t\|,\|u\| \leqslant C .
\end{align*}
$$

Thus, by results of [5], the proposition (2.6) holds if $\psi \equiv \psi_{1}$.
Let now $\psi \equiv \psi_{2}$. Write

$$
\begin{equation*}
A_{n i}(t)=\psi\left(E_{i}-n^{-\tau} x_{i}^{\prime} t\right)-\psi\left(E_{i}\right), \quad i=1, \ldots, n \tag{2.13}
\end{equation*}
$$

Then, by (2.5),

$$
\begin{equation*}
\mathrm{E}\left[A_{n i}(\boldsymbol{u})-A_{n i}(\boldsymbol{t})\right]^{2} \leqslant K_{1} n^{-2 \tau}\left(x_{i}^{\prime}(\boldsymbol{u}-\boldsymbol{t})\right)^{2} \tag{2.14}
\end{equation*}
$$

for both $\psi=\psi_{2}^{(\nu)}(v=1,2)$ and

$$
\begin{equation*}
\operatorname{var}\left(S_{j}(u)-S_{j}(t)\right) \leqslant K_{1} n^{-2} \sum_{i=1}^{n} x_{i j}^{2}\left(x_{i}^{\prime}(u-t)\right)^{2} \leqslant K_{1}\|u-t\|^{2} O\left(n^{-1}\right) \tag{2.15}
\end{equation*}
$$

Moreover, by (A.3),

$$
\begin{equation*}
\left|\mathrm{E}\left[S_{j}(u)-S_{j}(t)+\dot{n}^{-1} \gamma \sum_{i=1}^{n} x_{i j} x_{i}^{\prime}(u-t)\right]\right| \leqslant\|u-t\| o(1) \tag{2.16}
\end{equation*}
$$

hence

$$
\begin{equation*}
\mathrm{E}\left[S_{j}(\boldsymbol{u})-S_{j}(\boldsymbol{t})+n^{-1} \gamma \sum_{i=1}^{n} x_{i j} x_{i}^{\prime}(u-t)\right]^{2} \leqslant\|u-t\|^{2} o(1) \tag{2.17}
\end{equation*}
$$

and, by results of [5], (2.6) holds for $\psi \equiv \psi_{2}$.
Corollary 2.1. Let E_{1}, E_{2}, \ldots be i.i.d. random variables with the distribution function F. Let $\varrho: R^{1} \rightarrow R^{1}, \psi=\varrho^{\prime}$ and F satisfy conditions (A1)-(A4) and
let X_{n} satisfy (B1)-(B3). Then, for any fixed $\tau \leqslant 1 / 2$ and $C>0$,

$$
\begin{align*}
& \sup _{\|t\|} \mid n^{-1+2 \tau} \sum_{i=1}^{n}\left[\varrho\left(E_{i}-n^{-\tau} x_{i}^{\prime} t\right)-\varrho\left(E_{i}\right)+n^{-\tau} x_{i}^{\prime} t \psi\left(E_{i}\right)\right]- \tag{2.18}\\
&-(\gamma / 2) t^{\prime} Q_{n} t \mid \xrightarrow{p} 0 \text { as } n \rightarrow \infty .
\end{align*}
$$

Proof. By Lemma 2.1, if $t_{j} \geqslant 0$,

$$
\begin{align*}
& \sup _{\left|t_{k}\right| \leqslant c, k=j, \ldots, p} \mid n^{-1+\tau} \int_{0}^{t_{j}} \sum_{i=1}^{n} x_{i j}\left\{\psi \left(E_{i}-n^{-\tau}\left[x_{i j} s+\right.\right.\right. \tag{2.19}\\
+ & \left.\left.\left.\sum_{k=j+1}^{p} x_{i k} t_{k}\right]\right)-\psi\left(E_{i}\right)+n^{-\tau} \gamma\left(x_{i j} s+\sum_{k=j+1}^{p} x_{i k} t_{k}\right)\right\} d s \mid \xrightarrow{p} 0 \quad \text { as } n \rightarrow \infty,
\end{align*}
$$

and analogously if $t_{j}<0$ with the reversed order of integration, $j=1, \ldots, p$. This, in turn, implies (2.18).
3. Consistency and asymptotic normality. Assume that the functions ϱ and F satisfy conditions (A1)-(A4) and X_{n} satisfies conditions (B1)-(B2) introduced in Section 2. If \boldsymbol{M}_{n} minimizes $\sum \varrho\left(Y_{i}-\boldsymbol{x}_{\boldsymbol{i}}^{\prime} \boldsymbol{t}\right), i=1,2, \ldots, n$, then

$$
\begin{equation*}
T_{n}=M_{n}-\boldsymbol{\beta} \tag{3.1}
\end{equation*}
$$

also minimizes $\sum\left(\varrho\left(E_{i}-\boldsymbol{x}_{i}^{\prime} \boldsymbol{t}\right)-\varrho\left(E_{i}\right)\right), i=1,2, \ldots, n$, with respect to $\boldsymbol{t} \in \boldsymbol{R}^{p}$. By Lemma 2.1, for any fixed $C>0$,

$$
\begin{align*}
& \min _{\|t\| \leqslant C} \sum_{i=1}^{n}\left[\varrho\left(E_{i}-n^{-1 / 2} \boldsymbol{x}_{i}^{\prime} \boldsymbol{t}\right)-\varrho\left(E_{i}\right)\right] \tag{3.2}\\
&=\min _{\|t\| \leqslant c}\left(-\boldsymbol{t}^{\prime} \boldsymbol{Z}_{n}+\frac{\gamma}{2} \boldsymbol{t}^{\prime} \boldsymbol{Q}_{n} t\right)+o_{p}(1) \quad \text { as } n \rightarrow \infty
\end{align*}
$$

where

$$
\begin{equation*}
Z_{n}=n^{-1 / 2} \sum_{i=1}^{n} x_{i} \psi\left(E_{i}\right)\left(=O_{p}(1)\right) \tag{3.3}
\end{equation*}
$$

is a random vector of R^{p}. By (3.2), the minimum of

$$
\sum_{i=1}^{n}\left[\varrho\left(E_{i}-n^{-1 / 2} x_{i}^{\prime} t\right)-\varrho\left(E_{i}\right)\right]
$$

over the sphere $\|t\| \leqslant C$ can be approximated by a minimum of a convex function over the same sphere. However, the minimum of the convex function on the right-hand side of (3.2) over $\|t\| \leqslant C$ in turn coincides with the minimum of the same function over all R^{p}, provided only $C>0$ is sufficiently large. Actually, we have

Lemma 3.1. Under the conditions of Lemma 2.1, given $\varepsilon>0$, there exist $C_{0}>0$ and n_{0} such that, for $n \geqslant n_{0}$ and $C \geqslant C_{0}$,

$$
\begin{equation*}
P\left(B_{n}(C, \varepsilon)\right)<\varepsilon, \tag{3.4}
\end{equation*}
$$

where

$$
\begin{align*}
& B_{n}(C, \varepsilon)=\left\{\omega: \mid \min _{\|\boldsymbol{t}\| \leqslant c} \sum_{i=1}^{n}\left[\varrho\left(E_{i}-n^{-1 / 2} \boldsymbol{x}_{i}^{\prime} \boldsymbol{t}\right)-\varrho\left(E_{i}\right)\right]-\right. \tag{3.5}\\
& \left.\quad-\min _{\boldsymbol{t} \in \boldsymbol{R}^{p}}\left[-\boldsymbol{t}^{\prime} \boldsymbol{Z}_{n}+\frac{\gamma}{2} \boldsymbol{t}^{\prime} \boldsymbol{Q}_{n} \boldsymbol{t}\right] \right\rvert\,>\varepsilon_{i} .
\end{align*}
$$

Proof. Let U_{n} be the solution of the minimization

$$
\min _{\boldsymbol{t} \in \mathbb{R}^{p}}\left[-\boldsymbol{t}^{\prime} \boldsymbol{Z}_{n}+(\gamma / 2) \boldsymbol{t}^{\prime} \boldsymbol{Q}_{n} \boldsymbol{t}\right]
$$

Then

$$
\begin{equation*}
I_{n}=\gamma^{-1} Q_{n}^{-1} Z_{n}\left(=O_{p}(1)\right) \tag{3.6}
\end{equation*}
$$

and hence there exist $C_{0}>0$ and n_{0} so that $P\left(\left\|U_{n}\right\|>C_{0}\right)<\varepsilon / 2$ for $n \geqslant n_{0}$. Then, regarding (3.2) and (3.5), for $C \geqslant C_{0}$ and $n \geqslant n_{0}$ we have

$$
\begin{aligned}
P\left(B_{n}(C, \varepsilon)\right) \leqslant & P\left(B_{n}(C, \varepsilon) \cap\left[\left\|U_{n}\right\| \leqslant C\right]\right)+(\varepsilon / 2) \\
\leqslant & \mathrm{P}\left\{\min _{\|i t\| \leqslant} \sum_{i=1}^{n}\left[\varrho\left(E_{i}-n^{-1 / 2} \boldsymbol{x}_{i}^{\prime} t\right)-\varrho\left(E_{i}\right)\right]-\right. \\
& -\min _{\|t\| \leqslant c}\left(-t^{\prime} Z_{n}+(\gamma / 2) t^{\prime} Q_{n} t\right) \mid>\varepsilon_{i}^{\prime}+(\varepsilon / 2) \leqslant \varepsilon .
\end{aligned}
$$

The function

$$
\begin{equation*}
g_{n}(t)=-t^{\prime} Z_{n}+(\gamma / 2) t^{\prime} Q_{n} t \tag{3.7}
\end{equation*}
$$

has a unique minimum over R^{p} equal to $(-1 / 2 \gamma) \boldsymbol{Z}_{n}^{\prime} \boldsymbol{Q}_{n}^{-1} Z_{n}$ which is negative with probability 1 starting from some n_{0}. Hence, by Lemma 3.1,

$$
\begin{equation*}
\min _{\|t\| \leqslant C} \sum_{i=1}^{n}\left[\varrho\left(E_{i}-n^{-1 / 2} \boldsymbol{x}_{i}^{\prime} t\right)-\varrho\left(E_{i}\right)\right]=(-1 / 2 \gamma) \boldsymbol{Z}_{n}^{\prime} \boldsymbol{Q}_{n}^{-1} \boldsymbol{Z}_{n}+o_{p}(1) \tag{3.8}
\end{equation*}
$$

Moreover, the sequence $Z_{n}^{\prime} Q_{n}^{-1} Z_{n} \sigma_{\psi}^{-1}$ has asymptotically the χ^{2}-distribution with p degrees of freedom, where $\sigma_{\psi}^{2}=\int \psi^{2}(x) d F(x)$; thus, by (3.8), there exist $\delta>0$ and n_{0} to given $\varepsilon>0$ such that, for $n \geqslant n_{0}$,

$$
\begin{equation*}
P\left\{\min _{\|t\| \leqslant c} \sum_{i=1}^{n}\left[\varrho\left(E_{i}-n^{-1 / 2} \boldsymbol{x}_{i}^{\prime} t\right)-\varrho\left(E_{i}\right)\right] \leqslant-\delta_{i}>1-\varepsilon .\right. \tag{3.9}
\end{equation*}
$$

Now, assume that \boldsymbol{M}_{n} is not a \sqrt{n}-consistent estimator of $\boldsymbol{\beta}$; then there
exists a $\tau<1 / 2$ such that

$$
\begin{equation*}
\left\|T_{n}\right\|=\left\|M_{n}-\beta\right\|=O_{p}\left(n^{-\tau}\right) \text { but }\left\|T_{n}\right\| \neq o_{p}\left(n^{-\tau}\right) \tag{3.10}
\end{equation*}
$$

as $n \rightarrow \infty$. Then, by Lemma 2.1,

$$
\begin{align*}
n^{-1+2 \tau} \sum_{i=1}^{n}\left[\varrho\left(E_{i}-x_{i}^{\prime} T_{n}\right)\right. & \left.-\varrho\left(E_{i}\right)\right] \tag{3.11}\\
& =\left(n^{\tau} T_{n}^{\prime}\right) Q_{n}\left(n^{\tau} T_{n}\right)-n^{-(1 / 2)+\tau}\left(n^{\tau} T_{n}^{\prime}\right) \mathbb{Z}_{n}+o_{p}(1) \\
& =\left(n^{\tau} T_{n}^{\prime}\right) Q_{n}\left(n^{\tau} T_{n}\right)+o_{p}(1)
\end{align*}
$$

The sequence $\left\{H_{n}\right\}$ of distribution functions of $\left(n^{\tau} T_{n}^{\prime}\right) Q_{n}\left(n^{\tau} T_{n}\right)$ contains a convergent subsequence $\left\{H_{n_{k}}\right\}$ which converges to a nondegenerate d.f. H, concentrated on the positive half-axis. Hence, given an $\varepsilon>0$, there exist $\delta_{1}>0$ and an integer k_{1} such that

$$
\begin{equation*}
P\left\{\sum_{i=1}^{n_{k}}\left[\varrho\left(E_{i}-x_{i}^{\prime} T_{n_{k}}\right)-\varrho\left(E_{i}\right)\right] \geqslant n_{k}^{1-2 \tau} \delta_{1}\right\}>1-\varepsilon \quad \text { for } k \geqslant k_{1} . \tag{3.12}
\end{equation*}
$$

Notice that the lower bound $n_{k}^{1-2 \tau} \delta_{1}$ in (3.12) is unbounded as $k \rightarrow \infty$. This implies that the function $\sum\left(\varrho\left(E_{i}-x_{i}^{\prime} t\right)-\varrho\left(E_{i}\right)\right), i=1,2, \ldots, n$, to be minimized could take on positive unbounded values with probability arbitrarily close to 1 if $t=T_{n}$; while, by (3.9), the minimum of the same function over the sphere $\|t\| \leqslant n^{-1 / 2} C$ is negative with probability arbitrarily close to 1 . Thus, $\tau<1 / 2$ cannot be true; this means that $\tau=1 / 2$ and $\left\|T_{n}\right\|$ $=O_{p}\left(n^{-1 / 2}\right)$.

We are in a position to formulate the main theorem of the paper.
Theorem 3.2. Let Y_{1}, \ldots, Y_{n} be independent random variables, Y_{i} distributed according to the d.f. $F\left(y-x_{i}^{\prime} t\right), i=1, \ldots, n$. Let M_{n} be the point of global minimum of $\sum \varrho\left(Y_{i}-x_{i}^{\prime} t\right), i=1,2, \ldots, n$, with respect to $t \in R^{p}$, where the functions ϱ, F and the matrix $X_{n}=\left(x_{1}, \ldots, x_{n}\right)^{\prime}$ satisfy conditions (A1)-(A4) and (B1)-(B2). Then

$$
\begin{equation*}
n^{1 / 2}\left(M_{n}-\beta\right)=n^{-1 / 2} \gamma^{-1} Q^{-1} \sum_{i=1}^{n} x_{i} \psi\left(E_{i}\right)+o_{p}(1) \quad \text { as } n \rightarrow \infty \tag{3.13}
\end{equation*}
$$ and $n^{1 / 2}\left(M_{n}-\beta\right)$ has asymptotically p-dimensional normal distribution

$$
\begin{equation*}
N_{p}\left(O,\left(\sigma_{\psi}^{2} / \gamma^{2}\right) Q^{-1}\right) \tag{3.15}
\end{equation*}
$$

Proof. (3.13) follows from the above considerations. To prove (3.14) and (3.15), it suffices to prove that

$$
\begin{equation*}
\left\|n^{1 / 2} T_{n}-U_{n}\right\| \xrightarrow{\xrightarrow{2} 0} \quad \text { as } n \rightarrow \infty \tag{3.16}
\end{equation*}
$$

for T_{n} of (3.1) and U_{n} of (3.6). Because the function $g_{n}(t)$ is convex and has a unique minimum at $t=U_{n}$ with probability 1 , we get

$$
\begin{equation*}
g_{n}(t)-g_{n}\left(U_{n}\right)=\frac{\gamma}{2}\left(t-U_{n}\right)^{\prime} Q_{n}\left(t-U_{n}\right) \geqslant \frac{\gamma}{2}\left\|t-U_{n}\right\|^{2} \lambda_{n}^{0} \quad \text { for } t \in R^{p} \tag{3.17}
\end{equation*}
$$

where λ_{n}^{0} is the minimal eigenvalue of \mathcal{Q}_{n}. Hence, given $\eta>0$, there exist $\delta>0$ and n_{0} so that, for $n \geqslant n_{0}$,

$$
\begin{equation*}
P\left(\left\|n^{1 / 2} T_{n}-U_{n}\right\|>\eta\right) \leqslant P\left(g_{n}\left(n^{1 / 2} T_{n}\right)-g_{n}\left(U_{n}\right)>\delta\right) . \tag{3.18}
\end{equation*}
$$

Being combined with Lemma 2.1 this further implies that, to $\eta>0$ and $\varepsilon>0$, there exists an n_{1} such that, for $n \geqslant n_{1}$,

$$
\begin{aligned}
& P\left(\left\|n^{1 / 2} T_{n}-U_{n}\right\|>\eta\right) \\
& \leqslant P\left\{g_{n}\left(n^{1 / 2} T_{n}\right)-g_{n}\left(U_{n}\right)>\delta, \mid \sum_{i=1}^{n}\left[\varrho\left(E_{i}-n^{-1 / 2} \boldsymbol{x}_{i}^{\prime} U_{n}\right)-\varrho\left(E_{i}\right)\right]-\right. \\
& \left.\quad-g_{n}\left(I_{n}\right)\left|\leqslant \frac{\delta}{4}, \sum_{i=1}^{n}\left[\varrho\left(E_{i}-x_{i}^{\prime} T_{n}\right)-\varrho\left(E_{i}\right)\right]-g_{n}\left(n^{1 / 2} T_{n}\right)\right| \leqslant \frac{\delta}{4}\right\}+\varepsilon \\
& \leqslant \\
& \leqslant
\end{aligned} \begin{aligned}
& \left.\frac{\delta}{2}<\sum_{i=1}^{n}\left[\varrho\left(E_{i}-x_{i}^{\prime} T_{n}\right)-\varrho\left(E_{i}-n^{-1 / 2} \boldsymbol{x}_{i}^{\prime} U_{n}\right)\right]\right\}+\varepsilon=\varepsilon .
\end{aligned}
$$

Propositions (3.13) and (3.14) then follow from (3.3), (3.6) and from assumption (A1).

Remark. The function ϱ does not need to be necessarily convex; however, conditions (2.1) of (A1) and $\gamma>0$ of (A3) are crucial for the existence of a \sqrt{n}-consistent solution of the minimization (1.8).

REFERENCES

[1] D. A. Freedman and P. Diaconis, On inconsistent M-estimators, Ann. Statist. 10 (1982), p. 454-461.
[2] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw and W. A. Stahel, Robust Statistics: The Approach Based on Influence Function, John Wiley, New York 1986.
[3] P. J. Huber, Robust regression: Asymptotics, conjectures and Monte Carlo, Ann. Statist. 1 (1973), p. 799-821.
[4] - Robust Statistics, John Wiley, New York 1981.
[5] J. Jurečková and P. K. Sen, Uniform second order asymptotic linearity of M-statistics in linear models (to appear).
[6] S. Portnoy, Asymptotic behavior of M-estimators of p regression parameters when p^{2} / n is large. I. Consistency, Ann. Statist. 12 (1984), p. 1298-1309.
[7] V. J. Yohai and R. A. Maronna, Asymptotic behavior of M-estimators for the linear model, ibidem 7 (1979), p. 258-268.

Charles University
Department of Probability and Statistics
Sokolovská 83
18600 Prague 8, Czechoslovakia

