PROBABILITY AND MATHEMATICAL STATISTICS

Vol. 10, Fasc. 1 (1989), p. 119-135

WEAK CONVERGENCE TO THE BROWNIAN MOTION OF THE PARTIAL SUMS OF INFIMA

OF INDEPENDENT RANDOM VARIABLES

BY

H. HEBDA-GRABOWSKA (LUBLIN)

Abstract. Let $\{Y_n, n \ge 1\}$ be a sequence of independent, positive random variables, defined on a probability space (Ω, \mathcal{A}, P) , with the common distribution function F.

Put $Y_m^* = \inf(Y_1, Y_2, ..., Y_m), m \ge 1$, and

$$S_n = \sum_{m=1}^n Y_m^*, \quad n \ge 2, \ S_1 = 0.$$

The aim of this note is to give the rate of weak convergence of $\{S_n, n \ge 1\}$ to the Brownian motion. Moreover, the mixing limit theorem and the random functional limit theorem for the sums S_n , $n \ge 1$, are presented.

1. Introduction and results. Let $\{Y_n, n \ge 1\}$ be a sequence of independent, positive random variables with the common distribution function F, such that

(1)
$$\int_{0}^{1} \left| F(x) - \frac{x}{b} \right| x^{-2} dx < \infty \quad \text{for some } b: \ 0 < b < \infty.$$

Let us put $Y_m^* = \inf(Y_1, Y_2, ..., Y_m), m \ge 1$ and write

$$S_n = \sum_{m=1}^n Y_m^*, \quad n \ge 2, \, S_1 = 0.$$

The convergence in probability, almost sure and in law, is established in [5]-[8] for sums S_n of infima of independent random variables uniformly distributed on [0, 1]. The almost sure invariance principle for them has been obtained in [9]. Weak convergence of sums and of random sums of infima of independent positive random variables with the common distribution function F was investigated in [11] and [10], respectively.

In this paper we examine the relation between the Wiener measure on the space (C, \mathscr{B}_C) and the distribution of sums $\{S_n, n \ge 1\}$, where $C = C_{\langle 0,1 \rangle}$ is the space of continuous functions on [0, 1] with the metric

$$\varrho(x, y) = \sup_{t \in \langle 0, 1 \rangle} |x(t) - y(t)|, \quad x, y \in C,$$

 \mathscr{B}_{C} is the σ -field of Borel sets in C, and

$$S_n = \sum_{m=1}^n Y_m^*, \quad n \ge 2, S_1 = 0.$$

Let \mathscr{L}_C be the Lévy-Prohorov's distance defined as follows: Let, for $B \in \mathscr{B}_C$ and $\varepsilon > 0$,

$$G_{\varepsilon}(B) = \{x: \bigvee_{y \in B} \varrho(x, y) < \varepsilon\},\$$

where ϱ is the metric on $C_{\langle 0,1 \rangle}$, and let P and Q be two measures on (C, \mathscr{B}_C) . Then we say that $\mathscr{L}_C(P, Q) < \varepsilon$ iff $P(B) \leq Q(G_{\varepsilon}(B)) + \varepsilon$ and $Q(B) \leq P(G_{\varepsilon}(B)) + \varepsilon$ for all $B \in \mathscr{B}_C$.

Now, let $\{Y_n, n \ge 1\}$ be a sequence of independent, positive random variables (i.p.r.vs.), with the common distribution function F, such that (1) holds. Let us define on $C_{\langle 0,1 \rangle}$ the random function $\{Y_n(t), t \in \langle 0, 1 \rangle\}$ as follows:

$$\tilde{Y}_n(0) = 0, \quad n \ge 1,$$

$$\widetilde{Y}_{n}(t) = \frac{S_{k} - b \log k}{b \sqrt{2\log n}} + \frac{t - t_{k}}{t_{k+1} - t_{k}} \left(\frac{S_{k+1} - S_{k} - b \log \frac{k+1}{k}}{b \sqrt{2\log n}} \right),$$

if $t \in \langle t_k, t_{k+1} \rangle$, where $t_k = \sigma_k / \sigma_{n-1}$, $1 \leq k \leq n-1$, $t_0 = 0$, and

$$\sigma_k = \sum_{m=1}^k \frac{1}{m}, k \ge 1, \quad S_n = \sum_{m=1}^n Y_m^*, n \ge 2, S_1 = 0.$$

Now, we are going to prove the following

THEOREM 1. Let P_n denote the distribution of $\{\tilde{Y}_n(t), t \in \langle 0, 1 \rangle\}$ in the space (C, \mathcal{B}_c) . Then

(3)
$$\mathscr{L}_{C}(P_{n}, W) = O\left((\log n)^{-1/8}\right),$$

where W is the Wiener measure on $C_{(0,1)}$.

From Theorem 1 we immediately obtain

COROLLARY 1. \tilde{Y}_n converges weakly to W: $\tilde{Y}_n \Rightarrow W$ as $n \to \infty$. Moreover, we can prove the following stronger

(2)

THEOREM 2. Under the assumptions of Theorem 1 we have $\bar{Y}_n \Rightarrow W$ (mixing) as $n \to \infty$.

Now, let $\{N_n, n \ge 1\}$ be a sequence of positive integer-valued random variables, defined on the same probability space (Ω, \mathcal{A}, P) . Let us suppose that

(4)
$$N_n/a_n \xrightarrow{P} \lambda \quad \text{as } n \to \infty,$$

where λ is a positive random variable which may depend only on finite number of Y_n , $n \ge 1$, and $\{a_n, n \ge 1\}$ is a sequence of positive numbers such that $a_n \to \infty$ as $n \to \infty$. Then we can obtain

THEOREM 3. Under the assumptions of Theorem 1 we have $\tilde{Y}_{N_n} \Rightarrow W$ as $n \to \infty$, for every $\{N_n, n \ge 1\}$ satisfying (4).

By Theorem 3 and corollaries 5.1 and 5.3 in [12] (p. 227 and 230), by putting

$$h_1(x) = \sup_{t \in \langle 0, 1 \rangle} x(t), \quad h_2(x) = \sup_{t \in \langle 0, 1 \rangle} |x(t)|,$$

we get

COROLLARY 2. Under the assumptions of Theorem 3, for each x > 0,

$$\lim_{n \to \infty} P\left[\max_{1 \le k \le N_n} \frac{S_k - b \log k}{b \sqrt{2\log n}} < x\right] = \frac{2}{\sqrt{2\pi}} \int_0^x e^{-u^2/2} dt$$

and

$$\lim_{n \to \infty} P\left[\max_{1 \le k \le N_n} \frac{|S_k - b \log k|}{b \sqrt{2\log n}} < x\right] = \frac{1}{\sqrt{2\pi}} \int_{-x}^{x} \sum_{k = -\infty}^{+\infty} (-1)^k e^{-(u - 2kx)^2/2} du.$$

Let us observe that this paper gives a generalization of the results presented in [10].

2. Proofs. In the proof of Theorem 1 we apply some lemmas given by Dehéuvels [6] and Höglund [11]. For the sake of completeness we present them in section 3.

Proof of Theorem 1. Suppose that $\{X_n, n \ge 1\}$ is the sequence of independent random variables (i.r.vs.) uniformly distributed on [0, 1]. (In this case b = 1.)

Put

$$\begin{aligned} X_m^* &= \inf(X_1, X_2, \dots, X_m), \quad m \ge 1, \\ \tilde{S}_n &= \sum_{m=1}^n X_m^*, \, n \ge 2, \quad \tilde{S}_1 = 0, \end{aligned}$$

and define

$$X_n(0)=0,$$

$$\tilde{X}_n(t) = \frac{\tilde{S}_k - \log k}{\sqrt{2\log n}} + \frac{t - t_k}{t_{k+1} - t_k} \left(\frac{\tilde{S}_{k+1} - \tilde{S}_k - \log \frac{k+1}{k}}{\sqrt{2\log n}} \right),$$

 $n \ge 1$.

if $t \in \langle t_k, t_{k+1} \rangle$, $0 \leq k \leq n-1$, where $t_k = \sigma_k / \sigma_{n-1}$, $1 \leq k \leq n-1$, $t_0 = 0$, $\sigma_k = \sum_{m=1}^k (1/m), n \geq 2$.

Let \tilde{P}_n denote the distribution of the random function $\{\tilde{X}_n(t), t \in \langle 0, 1 \rangle\}$ in the space (C, \mathscr{B}_C) . We shall prove that

(6)
$$\mathscr{L}_{C}(\tilde{P}_{n}, W) = O\left((\log n)^{-1/8}\right).$$

Let us put $s_n = \sqrt{s_n^2} = \sqrt{\sigma^2 U_n}$, $n \ge 1$, and

$$V_m = [\tau_{m+1} - \tau_m - E(\tau_{m+1} - \tau_m)]\varepsilon(m)/s_n, \quad 1 \le m \le n-1,$$

where the random variables U_n and τ_n , $n \ge 1$, are given in section 3 by (3.4) and (3.1), respectively $(\varepsilon(n) = n^{-1})$.

Let $\{W_n^{(1)}(t), t \in (0, 1)\}$ be the random function defined as follows:

$$W_n^{(1)}(0) = 0, \quad n \ge 1,$$

$$W_n^{(1)}(t) = \frac{U_k - EU_k}{s_n} + \frac{t - t_k}{t_{k+1} - t_k} \left(\frac{U_{k+1} - U_k - E(U_{k+1} - U_k)}{s_n} \right),$$

if $t \in \langle t_k, t_{k+1} \rangle$, where t_k are as in (5), $0 \leq k \leq n-1$. First we show that

(7)
$$\mathscr{L}_{C}(P_{n}^{(1)}, W) = O((\log n)^{-1/8}),$$

where $P_n^{(1)}$ is the distribution of $\{W_n^{(1)}(t)\}$ in (C, \mathcal{B}_C) . To do this, it is enough to note that the sequence $\{V_n, n \ge 1\}$ satisfies the conditions of Theorem 1 ([3]). In fact, we have $EV_m = 0, m \ge 1$,

$$\sigma^{2} \left(\sum_{m=1}^{n} V_{m} \right) = 1, \quad t_{k} = \sum_{m=1}^{k} \sigma^{2} V_{m}.$$

Write $L_{n}^{(3)} = \sum_{m=1}^{n-1} E |V_{m}|^{3}$. By (3.6) and (3.7),
 $L_{n}^{(3)} \leq \frac{1}{S_{n}^{2}} \sum_{m=1}^{n-1} 2^{2} \left\{ E \left(\tau_{m+1} - \tau_{m} \right)^{3} \varepsilon^{3} (m) + E^{3} \left(\tau_{m+1} - \tau_{m} \right) \varepsilon^{3} (m) \right\} = O\left((\log n)^{-1/2} \right),$

therefore, by Theorem 1 ([3]), we obtain (7).

122

(5)

Weak convergence to the Brownian motion

Let us now define $\{W_n^{(2)}(t), t \in \langle 0, 1 \rangle\}$ as follows: $W_n^{(2)}(0) = 0, \quad n \ge 1,$

$$W_n^{(2)}(t) = \frac{U_k - \log k}{\sqrt{2\log n}} + \frac{t - t_k}{t_{k+1} - t_k} \left(\frac{U_{k+1} - U_k - \log \frac{k+1}{k}}{\sqrt{2\log n}} \right),$$
$$t \in \langle t_k, t_{k+1} \rangle, \ 0 \le k \le n - 1.$$

If $a_n = s_n / (2 \log n)^{1/2}$ and

$$b_{n,k}(t) = \frac{EU_k - \log k}{\sqrt{2\log n}} + \frac{t - t_k}{t_{k+1} - t_k} \left(\frac{E(U_{k+1} - U_k) - \log \frac{k+1}{k}}{\sqrt{2\log n}}\right)$$

for $t \in \langle t_k, t_{k+1} \rangle$, $0 \leq k \leq n-1$, $b_{n,k}(0) = 0$, $0 \leq k \leq n-1$, $n \geq 2$, then

$$W_n^{(2)}(t) = a_n W_n^{(1)}(t) + b_{n,k}(t)$$
 for $t \in \langle t_k, t_{k+1} \rangle$.

Let $P_n^{(2)}$ denote the distribution of $\{W_n^{(2)}\}$ in (C, \mathcal{B}_C) . We are going to show that

(8)
$$\mathscr{L}_{C}(P_{n}^{(2)}, P_{n}^{(1)}) = O((\log n)^{-1/4}).$$

By simple evaluations we obtain

$$P[\varrho(W_n^{(2)}, W_n^{(1)}) \ge C(\log n)^{-1/4}]$$

$$\leq P\left[|1-a_n|\max_{1\leq k\leq n}\frac{|U_k-\mathrm{E}U_k|}{s_n}+\max_{1\leq k\leq n}\frac{|\mathrm{E}U_k-\log k|}{\sqrt{2\log n}}\geqslant C(\log n)^{-1/4}\right].$$

By (3.5) there exists a positive constant C_1 such that

$$C(\log n)^{-1/4} - \max_{1 \le k \le n} \frac{|EU_k - \log k|}{\sqrt{2\log n}} \ge C_1 (\log n)^{-1/4}.$$

Thus, by Kolmogorov's inequality and (3.6), we get

$$P[\max_{1 \le k \le n} |U_k - EU_k| \ge C_1 (\log n)^{-1/4} s_n |1 - a_n|^{-1}]$$

$$\leq \frac{2\sigma^2 U_n (\log n)^{1/2} |1 - a_n|^2}{C_1^2 s_n^2} = O((\log n)^{-3/2}).$$

Then, by Lemma 1.2 of [13], we get (8).

Now, let us define the random functions $\{Z_n(t), t \in \langle 0, 1 \rangle\}$: $Z_n(0) = 0, n \ge 1,$

$$Z_{n}(t) = \frac{S(\tau_{k}) - \log k}{\sqrt{2\log n}} + \frac{t - t_{k}}{t_{k+1} - t_{k}} \left(\frac{S(\tau_{k+1}) - S(\tau_{k}) - \log \frac{k+1}{k}}{\sqrt{2\log n}} \right),$$
$$n \ge 2, \ t \in \langle t_{k}, \ t_{k+1} \rangle, \ 0 \le k \le n-1,$$

where $S(\tau_k) = X_1^* + X_2^* + \ldots + X_{\tau_k}^*, \ k \ge 1.$

By (3.4), (3.11), (3.8) and the fact that $\tau_1 = 1$ a.s. we obtain

$$P\left[\varrho(Z_n, W_n^{(2)}) \ge C(\log n)^{-1/4}\right] \le P\left[2 \max_{1 \le k \le n} \frac{|S(\tau_k) - U_k|}{\sqrt{2\log n}} \ge C(\log n)^{-1/4}\right]$$
$$\le P\left[\max(S(\tau_1)), \max_{1 \le k \le n} |U'_k - U_k| + |S(\tau_1) - 2| \ge \frac{C\sqrt{2}}{2}(\log n)^{1/4}\right]$$
$$\le P\left[(U_n - U'_n) \ge \frac{C\sqrt{2}}{2}(\log n)^{1/4} - 2\right]$$
$$\le E(U_n - U'_n)^2 \left(\frac{C\sqrt{2}}{2}(\log n)^{1/4} - 2\right)^{-2} = O\left((\log n)^{-1/2}\right),$$

hence, by Lemma 1.2 ([13]), we have

(9)
$$\mathscr{L}_{C}(P_{n}^{(3)}, P_{n}^{(2)}) = O((\log n)^{-1/4}),$$

where $P_n^{(3)}$ denotes the distribution of random function $\{Z_n(t), t \in \langle 0, 1 \rangle\}$ in (C, \mathcal{B}_C) .

Now, let $\{\tilde{X}_n(t), t \in \langle 0, 1 \rangle\}$ be the random function given by (5) and let \tilde{P}_n be the distribution of $\{\tilde{X}_n(t)\}$ in (C, \mathcal{B}_C) . We observe that

$$(10) P\left[\varrho(\tilde{X}_{n}, Z_{n}) \ge C(\log n)^{-1/4}\right] \le P\left[\max_{1 \le k \le n} |\tilde{S}_{k} - S(\tau_{k})| \ge \frac{C\sqrt{2}}{2}(\log n)^{1/4}\right]$$
$$\le P\left[\max_{1 \le k \le N(n)} |\tilde{S}_{k} - S(\tau_{k})| \ge \frac{C\sqrt{2}}{4}(\log n)^{1/4}\right] + P\left[\max_{N(n) \le k \le n} |\tilde{S}_{k} - S(\tau_{k})| \ge \frac{C\sqrt{2}}{4}(\log n)^{1/4}\right],$$

where N(n) is a subsequence of integers.

Weak convergence to the Brownian motion

It is easy to see, that if $N(n) = \lfloor \log n \rfloor$, then

(11)
$$P\left[\max_{1 \le k \le N(n)} |\tilde{S}_{k} - S(\tau_{k})| \ge \frac{C\sqrt{2}}{4} (\log n)^{1/4}\right]$$
$$\leq P\left[\tilde{S}_{N(n)} + S(\tau_{N(n)}) \ge \frac{C\sqrt{2}}{4} (\log n)^{1/4}\right]$$
$$\leq P\left[\tilde{S}_{N(n)} \ge \frac{C\sqrt{2}}{8} (\log n)^{1/4}\right] + P\left[S(\tau_{N(n)}) \ge \frac{C\sqrt{2}}{8} (\log n)^{1/4}\right]$$
$$\leq \frac{ES_{N(n)} + ES(\tau_{N(n)})}{\frac{C\sqrt{2}}{8} (\log n)^{1/4}} = O\left((\log_{2} n) (\log n)^{-1/4}\right),$$

where $\log_2 n = \log(\log n)$, as $E \tilde{S}_n = \sum_{m=1}^n 1/(m+1)$ and $ES(\tau_n) \sim \log n$.

Now we are going to estimate

$$P\left[\max_{N(n) < k \leq n} |\tilde{S}_k - S(\tau_k)| \geq \frac{C\sqrt{2}}{4} (\log n)^{1/4}\right].$$

Note that for $k \ge \tau_k$ we have, by definition (3.1),

$$\inf(X_1, X_2, \dots, X_{\tau_k+i}) \leq \varepsilon(k) \quad \text{for } i \geq 0.$$

In this case we get

$$\widetilde{S}_k = S(\tau_k) + \sum_{m=\tau_k+1}^{\kappa} X_m^*$$
 and $|\widetilde{S}_k - S(\tau_k)| \leq k\varepsilon(k) = 1$.

If $k < \tau_k$, then, by Lemma 3.7,

$$|\tilde{S}_k - S(\tau_k)| = \sum_{m=k+1}^{\tau_k} X_m^* \leq (\tau_k - k) X_{k+1} \leq (\tau_k - k) \frac{(1+A)\log_2 k}{k} \text{ a.s.}$$

for sufficiently large k. Therefore, by Lemma 3.6, for sufficiently large n we have

$$P\left[\max_{N(n) < k \le n} |\tilde{S}_{k} - S(\tau_{k})| \ge \frac{C\sqrt{2}}{4} (\log n)^{1/4}\right]$$

$$\leq P\left[\max_{N(n) < k < \tau_{k} \le n} (\tau_{k} - k) \frac{(1+A)\log_{2}k}{k} \ge \frac{C\sqrt{2}}{4} (\log n)^{1/4}\right]$$

$$\leq P\left[\max_{N(n) < k < \tau_{k} \le n} \left\{ (\tau_{k} - \tau_{k-1}) \frac{(1+A)\log_{2}k}{k} + \tau_{k-1} \frac{(1+A)\log_{2}k}{k} - \frac{1}{4} \right\} \right]$$

 $-(1+A)\log_2 k \bigg\} \ge \frac{C\sqrt{2}}{4} (\log n)^{1/4}$

$$\leq P\left[\max_{N(n) < k < \tau_k \leq n} \left\{ (\tau_k - \tau_{k-1}) \frac{(1+A)\log_2 k}{k} + \frac{\tau_{k-1}}{k\log_2 k} (1+A)(\log_2 k)^2 \right\} \geq \frac{C\sqrt{2}}{4} (\log n)^{1/4} + (1+A)\log_2 N(n) \right]$$

$$\leq P\left[\max_{N(n) < k < \tau_k \leq n} (\tau_k - \tau_{k-1}) \frac{(1+A)\log_2 k}{k} \geq C_1 (\log n)^{1/4} \right],$$

real C is a maximum constant such that

where C_1 is a positive constant such that

$$\frac{C\sqrt{2}}{4}(\log n)^{1/4} + (1+A)\log_2 N(n) - (1+A)^2(\log_2 n)^2 \ge C_1(\log n)^{1/4}.$$

Hence, by a simple evaluation, we obtain

$$P\left[\max_{N(n) < k < \tau_k \leq n} (\tau_k - \tau_{k-1}) \frac{(1+A)\log_2 k}{k} \ge C_1 (\log n)^{1/4}\right]$$

$$\leq P\left[\max_{N(n) < k < \tau_k \leq n} \frac{\tau_k - \tau_{k-1}}{(1+A)k\log_2 k} \ge \frac{C_1 (\log n)^{1/4}}{(1+A)^2 (\log_2 n)^2}\right]$$

$$\leq \sum_{k=N(n)+1}^n P[\tau_k - \tau_{k-1} \ge (1+A)k (\log_2 k)A_n],$$

where $A_n = C_1 (\log n)^{1/4} / (1+A)^2 (\log_2 n)^2$. Now, by (3.3) we have

(12)
$$P\left[\max_{N(n) < k \leq n} |\tilde{S}_{k} - S(\tau_{k})| \ge \frac{C\sqrt{2}}{4} (\log n)^{1/4}\right]$$
$$\leq \sum_{k=N(n)+1}^{n} \frac{1}{k} \left(1 - \frac{1}{k}\right)^{(1+A)k(\log_{2}k)A_{n}-1}$$
$$\leq \left(1 + \frac{1}{N(n)}\right) \sum_{k=N(n)+1}^{n} \frac{1}{k} e^{-(1+A)(\log_{2}k)A_{n}}$$
$$= \left(1 + \frac{1}{N(n)}\right) \sum_{k=N(n)+1}^{n} \frac{1}{k(\log k)^{(1+A)A_{n}}} = O\left((\log n)^{-1/4}\right).$$
Hence, by (10)-(12) and Lemma 1.2 of [13], we get

(13) $\mathscr{L}_{C}(\tilde{P}_{n}, P_{n}^{(3)}) = O((\log n)^{-1/4}).$

Using (8), (9) and (13) we obtain (6).

Now, let $\{Y_n, n \ge 1\}$ be a sequence of i.p.r.vs. with the same distribution function F satisfying (1) and let, as previously, $\{X_n, n \ge 1\}$ be a sequence of i.r.vs. uniformly distributed on [0, 1].

Put $G(t) = \inf \{x \ge 0: F(x) \ge t\}$. Then, by [7], the sequences $\{G(X_n), n \ge 1\}$ and $\{Y_n, n \ge 1\}$ are the same in law. Furthermore, the sums

$$S_n = \sum_{m=1}^n Y_m^*$$
, where $Y_m^* = \inf(Y_1, Y_2, ..., Y_m)$

may be represented as

 $\bar{Y}_n(0)=0,$

$$\bar{S}_n = \sum_{m=1}^n G(X_m^*)$$
, where $X_m^* = \inf(X_1, X_2, ..., X_m)$.

Let us define the random functions $\{\bar{Y}_n(t), t \in (0, 1)\}$ as follows:

(14)

$$\bar{Y}_{n}(t) = \frac{\bar{S}_{k} - b \log k}{b \sqrt{2\log n}} + \frac{t - t_{k}}{t_{k+1} - t_{k}} \left(\frac{\bar{S}_{k+1} - \bar{S}_{k} - b \log \frac{k+1}{k}}{b \sqrt{2\log n}} \right),$$

if $t \in \langle t_k, t_{k+1} \rangle$, $0 \leq k \leq n-1$, $n \geq 2$, where $t_k = \sigma_k / \sigma_{n-1}$, $1 \leq k \leq n-1$, $t_0 = 0$, $\overline{S}_1 = 0$.

We shall show that

(15)
$$\mathscr{L}_C(\bar{P}_n, \tilde{P}_n) = O((\log n)^{-1/4}),$$

 $n \ge 1$,

where \bar{P}_n denotes the distribution of $\{\bar{Y}_n(t)\}$, in (C, \mathscr{B}_C) . Indeed,

$$P\left[\sup_{t \in \langle 0,1 \rangle} |\bar{Y}_{n}(t) - \tilde{X}_{n}(t)| \ge C(\log n)^{-1/4}\right]$$

$$\leq P\left[\max_{1 \le k \le n} |\bar{S}_{k} - b\tilde{S}_{k}| \ge \frac{b\sqrt{2}}{2}(\log n)^{1/4}\right]$$

$$= P\left[\max_{1 \le k \le n} |\sum_{m=1}^{k} \delta_{m}(G(X_{m}^{*}) - bX_{m}^{*}) + \sum_{m=1}^{k} (1 - \delta_{m})(G(X_{m}^{*}) - bX_{m}^{*})\right]$$

$$\geq \frac{b\sqrt{2}}{2}(\log n)^{1/4}\right]$$

$$\leq P\left[\sum_{m=1}^{n} \delta_{m}|G(X_{m}^{*}) - bX_{m}^{*}| + \sum_{m=1}^{n} (1 - \delta_{m})|G(X_{m}^{*}) - bX_{m}^{*}| \ge \frac{b\sqrt{2}}{2}(\log n)^{1/4}\right],$$

where

$$\delta_m = \begin{cases} 1 & \text{if } X_m^* \leq \delta, \\ 0 & \text{otherwise, } 0 < \delta < 1. \end{cases}$$

With probability 1 all but finitely many δ_m are equal to 1, so

 $P\left[\sup_{t\in\langle 0,1\rangle} |\bar{Y}_n(t) - \tilde{X}_n(t)| \ge C(\log n)^{-1/4}\right]$

$$\leq P \left[\sum_{m=1}^{n} \delta_{m} | G(X_{m}^{*}) - bX_{m}^{*} | \geq C_{1} (\log n)^{1/4} \right],$$

where C_1 is a positive constant. Hence, by the Markoff inequality and Lemma 3.8, we get (15). Thus, taking into account (6) and (15) we immediately obtain $\mathscr{L}_C(\bar{P}_n, W) = O((\log n)^{-1/8})$ and the proof of Theorem 1 is completed.

Proof of Theorem 2. At first we assume that $\{X_n, n \ge 1\}$ is a sequence of i.r.vs. uniformly distributed on [0, 1]. We will show that

(16)
$$\tilde{X}_n \Rightarrow W \text{ (mixing)} \quad \text{as } n \to \infty,$$

where $\{\tilde{X}_n(t), t \in \langle 0, 1 \rangle\}$ is defined by (5). By Corollary 1 we have $\tilde{X}_n \Rightarrow W$ as $n \to \infty$. Putting

$$X_n^{(1)}(0) = 0, \quad n \ge 1,$$

$$X_n^{(1)}(t) = (\tilde{S}_k - \log k) / \sqrt{2\log n} \quad \text{if } t \in \langle t_k, t_{k+1} \rangle,$$

 $0 \le k \le n-1$, $n \ge 2$, we immediately obtain

(17)
$$X_n^{(1)} \Rightarrow W \quad \text{as } n \to \infty$$

and

(18)
$$\varrho(\tilde{X}_n, X_n^{(1)}) \leq \sup_{1 \leq k \leq n} \frac{\left|X_{k+1}^* - \log \frac{k+1}{k}\right|}{\sqrt{2\log n}} \to 0 \text{ a.s.} \quad \text{as } n \to \infty.$$

Now, let

(19)
$$X_n^{(2)}(t) = (\tilde{S}_{[e^{t \log n}]} - t \log n) / \sqrt{2 \log n}, \quad t \in \langle 0, 1 \rangle, n > 1.$$

We shall estimate $\varrho(X_n^{(1)}, X_n^{(2)})$. Write $e_t^{(n)} = \exp(t \log n), t \in \langle 0, 1 \rangle, n > 1$. We have

$$\varrho(X_n^{(1)}, X_n^{(2)}) \leq \frac{1}{\sqrt{2\log n}} \max_{1 \leq k < n} \sup_{t \in \langle t_k, t_{k+1} \rangle} \{ |\tilde{S}_{[e_t^n]} - \tilde{S}_k| + |t \log n - \log k| \}$$

Weak convergence to the Brownian motion

$$\leq \frac{1}{\sqrt{2\log n}} \max_{1 \leq k < n} \sup_{t \in \langle t_k, t_{k+1} \rangle} \{\max(\tilde{S}_{[e_t^{(n)}]} - \tilde{S}_k, \tilde{S}_k - \tilde{S}_{[e_t^{(n)}]}) +$$

 $+ \max \left(t \log n - \log k, \log k - t \log n \right)$

$$\leq \frac{1}{\sqrt{2\log n}} \max_{1 \leq k < n} \{\max(\tilde{S}_{[e_{t_{k+1}}^{(n)}]} - \tilde{S}_k, \tilde{S}_k - \tilde{S}_{[e_{t_k}^{(n)}]}) +$$

 $+ \max \left(t_{k+1} \log n - \log k, \log k - t_k \log n \right)$

$$\leq \frac{1}{\sqrt{2\log n}} \max_{1 \leq k < n} \left\{ \sum_{\substack{m = [e_{t_k}^{(n)}] + 1 \\ m = [e_{t_k}^{(n)}] + 1}}^{[e_{t_{k+1}}^{(n)}]} X_m^* + \max(\sigma_{k+1}(\log n/\sigma_{n-1}) - \log k, m) \right\}$$

$$\log k - \sigma_k (\log n / \sigma_{n-1}))\}$$

 $\leq \frac{1}{\sqrt{2\log n}} (\max_{1 \leq k \leq N(n)} \sum_{m=[e_{t_k}^{(n)}]+1}^{[e_{t_{k+1}}^{(n)}]} X_m^* + \max_{N(n) < k < n} \sum_{m=[e_{t_k}^{(n)}]+1}^{[e_{t_{k+1}}^{(n)}]} X_m^*) + \frac{1}{1}$

 $+\frac{1}{\sqrt{2\log n}}\max_{1\leq k\leq n}\max\left[(\sigma_{k+1}-\log k)(\log n/\sigma_{n-1})+\right]$

$$-\log k (\log n/\sigma_{n-1}-1), (\log k-\sigma_k) (\log n/\sigma_n) + \log k (1-\log n/\sigma_{n-1})]$$

$$\leq \frac{1}{\sqrt{2\log n}} \left\{ \tilde{S}_{[e_{t_{N(n)}+1}^{(n)}]} + \sum_{m=[e_{t_{k}}^{(n)}]+1}^{[e_{t_{k}+1}^{(n)}]} \frac{(1+A)\log_{2}m}{m} + O(1) \right\} \text{ a.s.}$$

by Lemma 3.7.

We observe that

$$\frac{1}{\sqrt{2\log n}}\tilde{S}_{[e_{t_{N(n)+1}}^{(n)}]} = \frac{S_{[e_{t_{N(n)+1}}^{(n)}]} t_{N(n)+1} \log n}{t_{N(n)+1} \log n} \to 0 \text{ a.s.}$$

as $n \to \infty$, because, by Lemma 3.3,

$$\widetilde{S}_{[e_{t_{N(n)}+1}^{(n)}]}/t_{N(n)+1}\log n\to 1, \quad n\to\infty,$$

and $t_{N(n)+1} \log n \sim \log N(n)$. Moreover,

$$\frac{1}{\sqrt{2\log n}} \max_{N(n) < k < n} \sum_{\substack{m=[e_{t_k}^{(n)}]+1}}^{[e_{t_k+1}^{(n)}]} \frac{(1+A)\log_2 m}{m}$$

9 - Probability Vol. 10, Fasc. 1

$$\leq \frac{1}{\sqrt{2\log n}} \max_{N(n) < k < n} (1+A) (\log_2 e_{t_{k+1}}^{(n)}) (\log e_{t_{k+1}}^{(n)} - \log e_{t_k}^{(n)})$$
$$\leq \frac{(1+A)\log_2 n}{\sqrt{2\log n}} \max_{N(n) < k < n} \left(\frac{\sigma_{k+1}}{\sigma_n} \log n - \frac{\sigma_k}{\sigma_n} \log n\right) = O\left(\left(\frac{\log_2 n}{(\log n)^{3/2}}\right)^{-1}\right) \to 0$$

as $n \to \infty$. Thus

(20)
$$\varrho(X_n^{(1)}, X_n^{(2)}) \to 0 \text{ a.s.}, \quad n \to \infty,$$

and, by (18),

(21)
$$X_n^{(2)} \Rightarrow W, \quad n \to \infty.$$

Now, let us put $X_{(l,m)}^* = \inf(X_{l+1}, X_{l+2}, ..., X_m)$ for m > l, and define $\{X_n^{(3)}(t), t \in (0, 1)\}$ by

(22)
$$X_n^{(3)}(t) = \frac{1}{\sqrt{2\log n}} \Big(\sum_{m=N(n)+1}^{[e^{t\log n}]} X_{(N(n),m)}^* - t \log n \Big), \quad t \in \langle 0, 1 \rangle,$$

where $N(n) = [\log n]$.

By Lemma 3 ([10]), $X_{(l,m)}^* \ge X_m$, m > l, and the sum $\sum (X_{(l,m)}^* - X_m^*)$, $m = l+1, l+2, \ldots$, converges almost surely. Moreover, one can note that the random variable $\sum X_{(l,m)}^*$, $m = l+1, l+2, \ldots, N$, is independent of X_1, X_2, \ldots, X_l for all l > 1 and N > l. By definitions (19), (22), Lemma 3.3 and Lemma 3 ([10]) we obtain (23)

$$\varrho(X_n^{(2)}, X_n^{(3)}) \leq \frac{1}{\sqrt{2\log n}} (\tilde{S}_{N(n)} + \sum_{m=N(n)+1}^n (X_{(N(n),m)}^* - X_m^*)) \to 0 \text{ a.s.}, \quad n \to \infty,$$

so, by (22),

(24)

$$X_n^{(3)} \Rightarrow W, \quad n \to \infty$$

Let \mathscr{B}_0 be the field of cylinders which consists of sets of the form $\{\omega: (X_1(\omega), X_2(\omega), \ldots, X_k(\omega)) \in H\}$, with $k \ge 1$ and $H \in \mathbb{R}^k$. Then, for any $E \in \mathscr{B}_0$, by the definition (22) and relation (24) we obtain that $P[(X_n^{(3)} \in A) \cap E] \to W(A) P(E), n \to \infty$, for every W-continuity set A, so that $X_n^{(3)} \Rightarrow W$ (mixing) as $n \to \infty$, and, by (17), (18), (20) and (23), also

(25)
$$\tilde{X}_n \Rightarrow W \text{ (mixing)} \quad \text{as } n \to \infty.$$

Now, let $\{Y_n, n \ge 1\}$ be a sequence of i.p.r.vs., with the common distribution function F, such that (1) holds for some b ($0 < b < \infty$), and let $\{\overline{Y}_n(t), t \in \langle 0, 1 \rangle\}$ be defined by (14). By (15) we see that $\varrho(\overline{Y}_n, \widetilde{X}_n) \xrightarrow{P} 0$ as

 $n \to \infty$, so, by (25), we immediately obtain that $\overline{Y}_n \Rightarrow W$ (mixing) as $n \to \infty$. Thus the proof of Theorem 2 is completed.

Proof of Theorem 3. Let $\{N_n, n \ge 1\}$ be a sequence of positive integer-valued random variables satisfying (3). To prove Theorem 3 it is enough to show that the random elements $\{\tilde{X}_n(t), t \in \langle 0, 1 \rangle\}$, given by (5), satisfy the generalized Anscombe condition with the norming sequence $\{k_n = n, n \ge 1\}$, i.e.

(26)
$$\max_{i\in D_n(\delta)} \varrho(\tilde{X}_i, \tilde{X}_n) \stackrel{P}{\to} 0, \quad n\to\infty,$$

for some $\delta > 0$, where $\overline{D_n(\delta)} = \{i: (1-\delta) n \le i < (1+\delta) n\}$. (See Theorem 3 ([4]) and the relation (16).)

By (18), (20) and (23) we can only to estimate
$$\max_{i \in D_n(\delta)} \varrho(X_i^{(3)}, X_n^{(3)})$$
.

$$\max_{i \in D_n(\delta)} \varrho(X_i^{(3)}, X_n^{(3)}) \leq \max_{i \in D_n(\delta)} \sup_{t \in \langle 0, 1 \rangle} \left| \frac{1}{\sqrt{2\log i}} \widetilde{S}_{[e_t^{(i)}]} - \frac{1}{\sqrt{2\log n}} \widetilde{S}_{[e_t^{(n)}]} \right| +$$

 $+ \max_{i \in D_n(\delta)} \frac{1}{\sqrt{2}} |\sqrt{\log i} - \sqrt{\log n}| \leq \max_{i \in D_n(\delta)} \sup_{t \in \langle 0, 1 \rangle} \frac{1}{\sqrt{2\log i}} |\tilde{S}_{[e_t^{(i)}]} - \tilde{S}_{[e_t^{(n)}]}| + \frac{1}{\sqrt{2\log i}} |\tilde{S}_{[e_t^{(n)}]}| + \frac{1}{\sqrt{2\log i}} |\tilde{S}$

$$+ \max_{i \in D_n(\delta)} \sup_{t \in \langle 0,1 \rangle} \widetilde{S}_{[e_t^{(n)}]} \left| \frac{1}{\sqrt{2\log i}} - \frac{1}{\sqrt{2\log n}} \right| + \frac{1}{\sqrt{2}} \left(\sqrt{\log n(1+\delta)} - \sqrt{\log n(1-\delta)} \right)$$

$$\leq \frac{1}{\sqrt{2\log n(1-\delta)}} \max \left\{ \max_{\substack{(1-\delta)n \leq i < nt \in \langle 0,1 \rangle}} \sup_{(\tilde{S}_{[e_t^{(n)}]} - \tilde{S}_{[e_t^{(i)}]})} \right\}$$

$$\begin{aligned} \max_{n \leq i < (1+\delta)n} \sup_{t \in \langle 0,1 \rangle} (\widetilde{S}_{[e_t^{(i)}]} - \widetilde{S}_{[e_t^{(n)}]}) + \widetilde{S}_n \left(\frac{1}{\sqrt{2\log n(1-\delta)}} - \frac{1}{\sqrt{2\log n(1+\delta)}} \right) + \\ + \frac{\log \left[(1+\delta)/(1-\delta) \right]}{\sqrt{2} \left(\sqrt{\log n(1+\delta)} + \sqrt{\log n(1-\delta)} \right)}. \end{aligned}$$

By Lemma 3.3 we see that

$$\widetilde{S}_n\left(\frac{1}{\sqrt{2\log n(1-\delta)}}-\frac{1}{\sqrt{2\log n(1+\delta)}}\right) \to 0 \text{ a.s.}, \quad n \to \infty$$

Putting $t_{N(n)} = \log N(n)/\log n$, where $N(n) = \lfloor \log n \rfloor$, by Lemma 3.7 we get

$$\frac{1}{\sqrt{2\log n(1-\delta)}} \max\left\{\max_{\substack{(1-\delta)n \leq i < n \ t \in \langle 0,1 \rangle \\ m = [e_t^{(i)}]+1}} \sum_{\substack{m = [e_t^{(i)}]+1 \\ m = [e_t^{(i)}]+1}} X_m^*, \max_{n \leq i < n(1+\delta)} \sup_{\substack{t \in \langle 0,1 \rangle \\ m = [e_t^{(n)}]+1}} X_m^*\right\}$$

$$\leq \frac{1}{\sqrt{2\log n (1-\delta)}} \max \left\{ \max_{(1-\delta)n \leq i < n} (\sup_{t \in (0,t_{N(n)})} \sum_{m=[e_{t}^{(i)}]+1}^{[e_{t}^{(n)}]} X_{m}^{*} + \sup_{t \in \langle t_{N(n)}, 1 \rangle} \sum_{m=[e_{t}^{(i)}]+1}^{[e_{t}^{(n)}]} X_{m}^{*} \right\} \\ \max_{n \leq i < n(1+\delta)} (\sup_{t \in \langle 0, t_{N(n)} \rangle} \sum_{m=[e_{t}^{(n)}]+1}^{[e_{t}^{(i)}]} X_{m}^{*} + \sup_{t \in \langle t_{N(n)}, 1 \rangle} \sum_{m=[e_{t}^{(n)}]+1}^{[e_{t}^{(i)}]} X_{m}^{*} \right\} a.s.$$

$$\leq \frac{1}{\sqrt{2\log n (1-\delta)}} \max \left\{ \tilde{S}_{[e_{t_{N(n)}}^{(n)}]} + \max_{n \leq i < n(1+\delta)} \sup_{t \in \langle t_{N(n)}, 1 \rangle} \sum_{m=[e_{t}^{(i)}]+1}^{[e_{t}^{(i)}]} \frac{(1+A)\log_{2}m}{m} \right\} \\ \leq \max_{n \leq i < n(1+\delta)} \tilde{S}_{[e_{t_{N(n)}}^{(i)}]} + \max_{n \leq i < n(1+\delta)} \sup_{t \in \langle t_{N(n)}, 1 \rangle} \sum_{m=[e_{t}^{(i)}]+1}^{[e_{t}^{(i)}]} \frac{(1+A)\log_{2}m}{m} \right\} \\ \leq \max_{i < n(1+\delta)} \tilde{S}_{[e_{t_{N(n)}}^{(i)}]} t_{N(n)}\log n (t_{N(n)}\log n/\sqrt{2\log n (1-\delta)}), \\ (\tilde{S}_{[e_{t_{N(n)}}^{(m(1+\delta))}]/t_{N(n)}}\log n (1+\delta))(t_{N(n)}\log n (1+\delta)/\sqrt{2\log n (1-\delta)}) + \\ + \frac{(1+A)\log_{2}n}{\sqrt{2\log n (1-\delta)}} \max_{(1-\delta)n \leq i < n i \in \langle t_{N(n)}, 1 \rangle} t_{N(n)}\log n, \\ max \quad \sup_{n \leq i < n(1+\delta)} t_{i \in \langle t_{N(n)}, 1 \rangle} t_{N(n)}\log n (1+\delta) + 0 \text{ a.s.}, n \to \infty, \\ n \leq i < n(1+\delta) t_{i \in \langle t_{N(n)}, 1 \rangle} t_{N(n)} + 0 \text{ a.s.}, n \to \infty, \end{cases}$$

Annual 9.5 and 5.7. Then

 $\max_{i\in D_n(\delta)}\varrho(X_n^{(3)}, X_i^{(3)})\stackrel{P}{\to} 0, \quad n\to\infty.$

Hence, taking into account the relation given above, we have (26), so that the generalized Anscombe condition holds, in this case.

Now, let $\{\overline{Y}_n(t), t \in \langle 0, 1 \rangle\}$ be given by (14). By simple evaluation and Lemma 3.8 we get

$$\max_{i\in D_n(\delta)} \varrho(\bar{Y}_i, \tilde{X}_i) \leq \frac{1}{b\sqrt{2\log n(1-\delta)}} \sum_{m=1}^{\lfloor n(1+\delta) \rfloor} |G(X_m^*) - bX_m^*| \xrightarrow{P} 0,$$

as $n \to \infty$. Hence, by (26), we obtain

$$\max_{i\in D_n(\delta)} \varrho(\bar{Y}_i, \bar{Y}_n) \xrightarrow{P} 0 \quad \text{as } n \to \infty.$$

Thus by Theorem 3 of [4] the proof of Theorem 3 is completed.

3. Lemmas. In this section we present some lemmas we needed in the proofs of Theorems 1-3.

Let $\{\varepsilon(n), n \ge 1\}$ be a sequence of positive real numbers strictly decreasing to zero.

By $\{\tau_n = \tau(\varepsilon(n)), n \ge 1\}$ we denote the sequence of random variables such that

(3.1)
$$\tau_n = \inf \{m: \inf(X_1, X_2, \ldots, X_m) \leq \varepsilon(n)\},\$$

where $\{X_n, n \ge 1\}$ is a sequence of independent random variables uniformly distributed on [0, 1].

LEMMA 3.1. The sequence $\{\tau_n, n \ge 1\}$ increases with probability 1, and $\tau_n \to \infty$ a.s. as $n \to \infty$.

LEMMA 3.2. The random variables $\tau_n - \tau_{n-1}$, $n \ge 2$, are independent, and if $\varepsilon(n) = n^{-1}$, then

(3.2)
$$E(\tau_{n+1} - \tau_n) = 1, \quad \sigma^2(\tau_{n+1} - \tau_n) = 2n,$$

(3.3) $P[\tau_{n+1} - \tau_n \ge r] = \frac{1}{n+1} \left(1 - \frac{1}{n+1}\right)^{r-1}$ for any $r > 0.$

Let

(3.4)
$$U_n = \sum_{m=1}^{n-1} (\tau_{m+1} - \tau_m) \varepsilon(m), \quad U'_n = \sum_{m=1}^{n-1} (\tau_{m+1} - \tau_m) \varepsilon(m+1),$$

where $\varepsilon(n) = n^{-1}$. Then

(3.5)
$$EU_n - \log n = O(1), \quad EU'_n - \log n = O(1),$$

(3.6)
$$\sigma^2 U_n - 2\log n = O(1), \quad \sigma^2 U'_n - 2\log n = O(1),$$

(3.7)
$$\sum_{m=1}^{n} E(\tau_{m+1} - \tau_m)^p \varepsilon^p(m) \sim \sum_{m=1}^{n} E(\tau_{m+1} - \tau_m)^p \varepsilon^p(m+1) \sim p! \log n,$$

(3.8)
$$E(U_n - U'_n) = O(1), \quad \sigma^2(U_n - U'_n) = O(1),$$

where $b_n = O(1)$ denotes that the sequence $\{b_n, n \ge 1\}$ is bounded as $n \to \infty$. LEMMA 3.3. We have

(3.9)
$$\frac{U_n - \log n}{\sqrt{2\log n}} \xrightarrow{\mathscr{D}} N(0, 1), \quad \frac{\widetilde{S}_n - \log n}{\sqrt{2\log n}} \xrightarrow{\mathscr{D}} N(0, 1), \quad n \to \infty,$$

(3.10)
$$\frac{S(\tau_n)}{\log n} \to 1 \text{ a.s.}, \quad \frac{\tilde{S}_n}{\log n} \to 1 \text{ a.s.}, \quad n \to \infty,$$

where

$$\tilde{S}_n = \sum_{m=1}^n X_m^*, \quad S(\tau_n) = X_1^* + X_2^* + \dots + X_{\tau_n}^*, \quad n \ge 1,$$
$$X_m^* = \inf(X_1, X_2, \dots, X_m), \quad m \ge 1.$$

LEMMA 3.4. Let U_n , U'_n be given by (3.4). Then

$$(3.11) -2+U'_n \leq S(\tau_n)-S(\tau_1) \leq U_n \text{ a.s.}, \quad n \geq 2,$$

(3.12)
$$S(\tau_{n-1}) \leq \tilde{S}_m \leq S(\tau_n) \quad \text{for } m \in \langle \tau_{n-1}, \tau_n \rangle$$

LEMMA 3.5. For all A > 0

$$\log n - (1+A)\log_2 n \le \log \tau_n \le \log n + (1+A)\log_3 n \ a.s.$$

for sufficiently large n, where $\log_p x = \log(\log_{p-1} x)$, $p \ge 2$, $\log_1 x = \log x$. LEMMA 3.6. We have

$$\limsup \tau_n / n \log_2 n = 1 \quad a.s.$$

LEMMA 3.7. For all A > 0

$$(n\log n\log_2 n\dots(\log_n n)^{1+A})^{-1} \leq X_n^*$$

$$\leq (\log_2 n + \log_3 n + \dots + (1 + A) \log_p n)/n \ a.s.$$

for sufficiently large n.

LEMMA 3.8. Under the assumptions of Theorem 1

$$\frac{\sum_{m=1}^{n} \delta_m \left(G(X_m^*) - bX_m^* \right)}{b\sqrt{2\log n}} + \frac{\sum_{m=1}^{n} (1 - \delta_m) \left(G(X_m^*) - bX_m^* \right)}{b\sqrt{2\log n}} \xrightarrow{P} 0$$

as $n \to \infty$, and

$$\mathbb{E}\left[\sum_{m=1}\delta_m |G(X_m^*) - bX_{r}^*|\right] < \infty,$$

where

$$\delta_m = \begin{cases} 1 & \text{if } X_m^* < \delta \\ 0 & \text{if } X_m^* \ge \delta \end{cases}, \quad 0 < \delta < 1, \qquad G(t) = \inf \{ x \ge 0 \colon F(x) \ge t \}. \end{cases}$$

REFERENCES

- [1] D. J. Aldous, Weak convergence of radomly indexed sequences of random variables, Math. Proc. Cambridge Philos. Soc. 83 (1978), p. 117-126.
- [2] P. Billingsley, *Convergence of Probability Measures*, John Wiley and Sons, Inc. New York, London, Sydney, Toronto 1968.
- [3] A. A. Borovkov, Ob ocenkach w principie invariantnosti, DAN SSSR, 205, 5 (1972), p. 1037-1039.
- [4] M. Csörgö and Z. Rychlik, Weak convergence of sequences of random elements with random indices, Math. Proc. Camb. Phil. Soc. 88 (1980), p. 171-174.

- [5] P. Dehéuvels, Sur la convergence de sommes de minima de variables aléatoires, C. R. Acad. Sci. Paris 276, Série A (1973), p. 304-313.
- [6] Valeurs extrémales d'échantillons croissants d'une variable aléatoire réelle, Ann. Inst. Henri Poincaré, Sect. B, X (1974), p. 89-114.
- [7] U. Grenander, A limit theorem for sums of minima of stochastic variables, Ann. Math. Stat. (1966), p. 1041-1042.
- [8] H. Hebda-Grabowska and D. Szynal, On the rate of convergence in law for the partial sums of infima of random variables, Bull. Acad. Polon. Scienc. XXVII. 6 (1979), p. 503-509.
- [9] An almost sure invariance principle for partial sums of infima of independent random variables, Ann. Prob. 7.6 (1979), p. 1036–1045.
- [10] H. Hebda-Grabowska, Weak convergence of random sums of infima of independent random variables, Prob. and Math. Stat. 8 (1987), p. 41-47.
- [11] T. Höglund, Asymptotic normality of sums of minima of random variables, Ann. Math. Stat. 43 (1972), p. 351-353.
- [12] K. R. Parthasarathy, Probability measures on metric spaces, Academic Press, New York and London, 1967.
- [13] Yu. V. Prohorov, Schodimost' slučajnych processov i predel'nye teoremy veroyatnosti, Teor. Ver. i ee Prim. 1 (1956), p. 177-238.

Institute of Mathematics Maria Curie-Skłodowska University Plac Marii Curie-Skłodowskiej 1

20-031 Lublin, Poland.

Received on 7. 10. 1986; revised version on 21. 4. 1987

19 N.S.