WEAK CONVERGENCE TO THE BROWNIAN MOTION OF THE PARTIAL SUMS OF INFIMA OF INDEPENDENT RANDOM VARIABLES
 BY

 H. HEBDA-GRABOWSKA (Lubliv)

 H. HEBDA-GRABOWSKA (Lubliv)
 Abstract. Let $\left\{Y_{n}, n \geqslant 1\right\}$ be a sequence of independent, positive random variables, defined on a probability space (Ω, \mathscr{A}, P), with the common distribution function F.
 Put $Y_{m}^{*}=\inf \left(Y_{1}, Y_{2}, \ldots, Y_{m}\right), m \geqslant 1$, and
 $$
S_{n}=\sum_{m=1}^{n} Y_{m}^{*}, \quad n \geqslant 2, S_{1}=0
$$

The aim of this note is to give the rate of weak convergence of \{ $S_{n}, n \geqslant 1$ \} to the Brownian motion. Moreover, the mixing limit theorem and the random functional limit theorem for the sums S_{n}, n $\geqslant 1$, are presented.

1. Introduction and results. Let $\left\{Y_{n}, n \geqslant 1\right\}$ be a sequence of independent, positive random variables with the common distribution function F, such that

$$
\begin{equation*}
\int_{0}^{1}\left|F(x)-\frac{x}{b}\right| x^{-2} d x<\infty \quad \text { for some } b: 0<b<\infty \tag{1}
\end{equation*}
$$

Let us put $Y_{m}^{*}=\inf \left(Y_{1}, Y_{2}, \ldots, Y_{m}\right), m \geqslant 1$ and write

$$
S_{n}=\sum_{m=1}^{n} Y_{m}^{*}, \quad n \geqslant 2, S_{1}=0
$$

The convergence in probability, almost sure and in law, is established in [5]-[8] for sums S_{n} of infima of independent random variables uniformly distributed on $[0,1]$. The almost sure invariance principle for them has been obtained in [9]. Weak convergence of sums and of random sums of infima of independent positive random variables with the common distribution function F was investigated in [11] and [10], respectively.

In this paper we examine the relation between the Wiener measure on the space (C, \mathscr{B}_{C}) and the distribution of sums $\left\{S_{n}, n \geqslant 1\right\}$, where $C=C_{\langle 0,1\rangle}$ is the space of continuous functions on [0,1] with the metric

$$
\varrho(x, y)=\sup _{t \in\langle 0,1\rangle}|x(t)-y(t)|, \quad x, y \in C,
$$

\mathscr{B}_{C} is the σ-field of Borel sets in C, and

$$
S_{n}=\sum_{m=1}^{n} Y_{m}^{*}, \quad n \geqslant 2, S_{1}=0
$$

Let \mathscr{L}_{c} be the Lévy-Prohorov's distance defined as follows: Let, for $B \in \mathscr{B}_{C}$ and $\varepsilon>0$,

$$
G_{\varepsilon}(B)=\left\{x: \bigvee_{y \in B} \varrho(x, y)<\varepsilon\right\}
$$

where ϱ is the metric on $C_{\langle 0,1\rangle}$, and let P and Q be two measures on $\left(C, \mathscr{B}_{C}\right)$. Then we say that $\mathscr{L}_{C}(P, Q)<\varepsilon$ iff $P(B) \leqslant Q\left(G_{\varepsilon}(B)\right)+\varepsilon$ and $Q(B) \leqslant P\left(G_{\varepsilon}(B)\right)+\varepsilon$ for all $B \in \mathscr{B}_{C}$.

Now, let $\left\{Y_{n}, n \geqslant 1\right\}$ be a sequence of independent, positive random variables (i.p.r.vs.), with the common distribution function F, such that (1) holds. Let us define on $C_{\langle 0,1\rangle}$ the random function $\left\{Y_{n}(t), t \in\langle 0,1\rangle\right\}$ as follows:

$$
\begin{gather*}
\tilde{Y}_{n}(0)=0, \quad n \geqslant 1, \tag{2}\\
\tilde{Y}_{n}(t)=\frac{S_{k}-b \log k}{b \sqrt{2 \log n}}+\frac{t-t_{k}}{t_{k+1}-t_{k}}\left(\frac{S_{k+1}-S_{k}-b \log \frac{k+1}{k}}{b \sqrt{2 \log n}}\right),
\end{gather*}
$$

if $t \in\left\langle t_{k}, t_{k+1}\right.$), where $t_{k}=\sigma_{k} / \sigma_{n-1}, 1 \leqslant k \leqslant n-1, t_{0}=0$, and

$$
\sigma_{k}=\sum_{m=1}^{k} \frac{1}{m}, k \geqslant 1, \quad S_{n}=\sum_{m=1}^{n} Y_{m}^{*}, n \geqslant 2, S_{1}=0
$$

Now, we are going to prove the following
ThEOREM 1. Let P_{n} denote the distribution of $\left\{\tilde{Y}_{n}(t), t \dot{\in}\langle 0,1\rangle\right\}$ in the space $\left(C, \mathscr{B}_{c}\right)$. Then

$$
\begin{equation*}
\mathscr{L}_{C}\left(P_{n}, W\right)=O\left((\log n)^{-1 / 8}\right) \tag{3}
\end{equation*}
$$

where W is the Wiener measure on $C_{\langle 0,1\rangle}$.
From Theorem 1 we immediately obtain
Corollary 1: \tilde{Y}_{n} converges weakly to $W: \tilde{Y}_{n} \Rightarrow W$ as $n \rightarrow \infty$.
Moreover, we can prove the following stronger

Theorem 2. Under the assumptions of Theorem 1 we have $\tilde{Y}_{n} \Rightarrow W$ (mixing) as $n \rightarrow \infty$.

Now, let $\left\{N_{n}, n \geqslant 1\right\}$ be a sequence of positive integer-valued random variables, defined on the same probability space (Ω, \mathscr{A}, P). Let us suppose that

$$
\begin{equation*}
N_{n} / a_{n} \xrightarrow{\mathrm{P}} \lambda \quad \text { as } n \rightarrow \infty, \tag{4}
\end{equation*}
$$

where λ is a positive random variable which may depend only on finite number of $Y_{n}, n \geqslant 1$, and $\left\{a_{n}, n \geqslant 1\right\}$ is a sequence of positive numbers such that $a_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Then we can obtain

Theorem 3. Under the assumptions of Theorem 1 we have $\tilde{Y}_{N_{n}} \Rightarrow W$ as $n \rightarrow \infty$, for every $\left\{N_{n}, n \geqslant 1\right\}$ satisfying (4).

By Theorem 3 and corollaries 5.1 and 5.3 in [12] (p. 227 and 230), by putting

$$
h_{1}(x)=\sup _{t \in\langle 0,1\rangle} x(t), \quad h_{2}(x)=\sup _{t \in\langle 0,1\rangle}|x(t)|
$$

we get
Corollary 2. Under the assumptions of Theorem 3, for each $x>0$,

$$
\lim _{n \rightarrow \infty} P\left[\max _{1 \leqslant k \leqslant N_{n}} \frac{S_{k}-b \log k}{b \sqrt{2 \log n}}<x\right]=\frac{2}{\sqrt{2 \pi}} \int_{0}^{x} e^{-u^{2} / 2} d u
$$

and

$$
\lim _{n \rightarrow \infty} P\left[\max _{1 \leqslant k \leqslant N_{n}} \frac{\left|S_{k}-b \log k\right|}{b \sqrt{2 \log n}}<x\right]=\frac{1}{\sqrt{2 \pi}} \int_{-x}^{x} \sum_{k=-\infty}^{+\infty}(-1)^{k} e^{-(u-2 k x)^{2} / 2} d u
$$

Let us observe that this paper gives a generalization of the results presented in [10].
2. Proofs. In the proof of Theorem 1 we apply some lemmas given by Dehéuvels [6] and Höglund [11]. For the sake of completeness we present them in section 3.

Proof of Theorem 1. Suppose that $\left\{X_{n}, n \geqslant 1\right\}$ is the sequence of independent random variables (i.r.vs.) uniformly distributed on [0,1]. (In this case $b=1$.)

Put

$$
\begin{gathered}
X_{m}^{*}=\inf \left(X_{1}, X_{2}, \ldots, X_{m}\right), \quad m \geqslant 1 \\
\tilde{S}_{n}=\sum_{m=1}^{n} X_{m}^{*}, n \geqslant 2, \quad \tilde{S}_{1}=0
\end{gathered}
$$

and define

$$
\tilde{X}_{n}(0)=0, \quad n \geqslant 1
$$

$$
\begin{equation*}
\tilde{X}_{n}(t)=\frac{\tilde{S}_{k}-\log k}{\sqrt{2 \log n}}+\frac{t-t_{k}}{t_{k+1}-t_{k}}\left(\frac{\tilde{S}_{k+1}-\tilde{S}_{k}-\log \frac{k+1}{k}}{\sqrt{2 \log n}}\right) \tag{5}
\end{equation*}
$$

if $t \in\left\langle t_{k}, t_{k+1}\right), \quad 0 \leqslant k \leqslant n-1$, where $t_{k}=\sigma_{k} / \sigma_{n-1}, \quad 1 \leqslant k \leqslant n-1, \quad t_{0}=0$, $\sigma_{k}=\sum_{m=1}^{k}(1 / m), n \geqslant 2$.

Let \tilde{P}_{n} denote the distribution of the random function $\left\{\tilde{X}_{n}(t), t \in\langle 0,1\rangle\right\}$ in the space $\left(C, \mathscr{B}_{C}\right)$. We shall prove that

$$
\begin{equation*}
\mathscr{L}_{C}\left(\tilde{P}_{n}, W\right)=O\left((\log n)^{-1 / 8}\right) \tag{6}
\end{equation*}
$$

Let us put $s_{n}=\sqrt{s_{n}^{2}}=\sqrt{\sigma^{2} U_{n}}, n \geqslant 1$, and

$$
V_{m}=\left[\tau_{m+1}-\tau_{m}-\mathrm{E}\left(\tau_{m+1}-\tau_{m}\right)\right] \varepsilon(m) / s_{n}, \quad 1 \leqslant m \leqslant n-1
$$

where the random variables U_{n} and $\tau_{n}, \mathrm{n} \geqslant 1$, are given in section 3 by (3.4) and (3.1), respectively $\left(\varepsilon(n)=n^{-1}\right)$.

Let $\left\{W_{n}^{(1)}(t), t \in\langle 0,1\rangle\right\}$ be the random function defined as follows:

$$
\begin{aligned}
W_{n}^{(1)}(0) & =0, \quad n \geqslant 1 \\
W_{n}^{(1)}(t) & =\frac{U_{k}-\mathrm{E} U_{k}}{s_{n}}+\frac{t-t_{k}}{t_{k+1}-t_{k}}\left(\frac{U_{k+1}-U_{k}-\mathrm{E}\left(U_{k+1}-U_{k}\right)}{s_{n}}\right),
\end{aligned}
$$

if $t \in\left\langle t_{k}, t_{k+1}\right.$), where t_{k} are as in (5), $0 \leqslant k \leqslant n-1$.
First we show that

$$
\begin{equation*}
\mathscr{L}_{C}\left(P_{n}^{(1)}, W\right)=O\left((\log n)^{-1 / 8}\right) \tag{7}
\end{equation*}
$$

where $P_{n}^{(1)}$ is the distribution of $\left\{W_{n}^{(1)}(t)\right\}$ in $\left(C, \mathscr{B}_{C}\right)$. To do this, it is enough to note that the sequence $\left\{V_{n}, n \geqslant 1\right\}$ satisfies the conditions of Theorem 1 ([3]). In fact, we have $\mathrm{E} V_{m}=0, m \geqslant 1$,

$$
\sigma^{2}\left(\sum_{m=1}^{n} V_{m}\right)=1, \quad t_{k}=\sum_{m=1}^{k} \sigma^{2} V_{m}
$$

$$
\begin{aligned}
& \text { Write } L_{n}^{(3)}=\sum_{m=1}^{n-1} \mathrm{E}\left|V_{m}\right|^{3} . \mathrm{By}(3.6) \text { and (3.7), } \\
& L_{n}^{(3)} \leqslant \frac{1}{s_{n}^{2}} \sum_{m=1}^{n-1} 2^{2}\left\{\mathrm{E}\left(\tau_{m+1}-\tau_{m}\right)^{3} \varepsilon^{3}(m)+\mathrm{E}^{3}\left(\tau_{m+1}-\tau_{m}\right) \varepsilon^{3}(m)\right\}=O\left((\log n)^{-1 / 2}\right),
\end{aligned}
$$

therefore, by Theorem 1 ([3]), we obtain (7).

Let us now define $\left\{W_{n}^{(2)}(t), t \in\langle 0,1\rangle\right\}$ as follows:

$$
W_{n}^{(2)}(0)=0, \quad n \geqslant 1,
$$

$$
\begin{array}{r}
W_{n}^{(2)}(t)=\frac{U_{k}-\log k}{\sqrt{2 \log n}}+\frac{t-t_{k}}{t_{k+1}-t_{k}}\left(\frac{U_{k+1}-U_{k}-\log \frac{k+1}{k}}{\sqrt{2 \log n}}\right), \\
t \in\left\langle t_{k}, t_{k+1}\right), 0 \leqslant k \leqslant n-1 .
\end{array}
$$

If $a_{n}=s_{n} /(2 \log n)^{1 / 2}$ and

$$
b_{n, k}(t)=\frac{\mathrm{E} U_{k}-\log k}{\sqrt{2 \log n}}+\frac{t-t_{k}}{t_{k+1}-t_{k}}\left(\frac{\mathrm{E}\left(U_{k+1}-U_{k}\right)-\log \frac{k+1}{k}}{\sqrt{2 \log n}}\right)
$$

for $t \in\left\langle t_{k}, t_{k+1}\right), 0 \leqslant k \leqslant n-1, b_{n, k}(0)=0,0 \leqslant k \leqslant n-1, n \geqslant 2$, then

$$
W_{n}^{(2)}(t)=a_{n} W_{n}^{(1)}(t)+b_{n, k}(t) \quad \text { for } t \in\left\langle t_{k}, t_{k+1}\right)
$$

Let $P_{n}^{(2)}$ denote the distribution of $\left\{W_{n}^{(2)}\right\}$ in $\left(C, \mathscr{B}_{\mathrm{c}}\right)$. We are going to show that

$$
\begin{equation*}
\mathscr{L}_{c}\left(P_{n}^{(2)}, P_{n}^{(1)}\right)=O\left((\log n)^{-1 / 4}\right) \tag{8}
\end{equation*}
$$

By simple evaluations we obtain

$$
\begin{aligned}
& P\left[\varrho\left(W_{n}^{(2)}, W_{n}^{(1)}\right) \geqslant C(\log n)^{-1 / 4}\right] \\
& \quad \leqslant P\left\lceil\left|1-a_{n}\right| \max _{1 \leqslant k \leqslant n} \frac{\left|U_{k}-\mathrm{E} U_{k}\right|}{s_{n}}+\max _{1 \leqslant k \leqslant n} \frac{\left|\mathrm{E} U_{k}-\log k\right|}{\sqrt{2 \log n}} \geqslant C(\log n)^{-1 / 4}\right] .
\end{aligned}
$$

By (3.5) there exists a positive constant C_{1} such that

$$
C(\log n)^{-1 / 4}-\max _{1 \leqslant k \leqslant n} \frac{\left|\mathrm{E} U_{k}-\log k\right|}{\sqrt{2 \log n}} \geqslant C_{1}(\log n)^{-1 / 4}
$$

Thus, by Kolmogorov's inequality and (3.6), we get

$$
\begin{aligned}
& P\left[\max _{1 \leqslant k \leqslant n}\left|U_{k}-\mathrm{E} U_{k}\right| \geqslant C_{1}(\log n)^{-1 / 4} s_{n}\left|1-a_{n}\right|^{-1}\right] \\
& \qquad \leqslant \frac{2 \sigma^{2} U_{n}(\log n)^{1 / 2}\left|1-a_{n}\right|^{2}}{C_{1}^{2} s_{n}^{2}}=O\left((\log n)^{-3 / 2}\right)
\end{aligned}
$$

Then, by Lemma 1.2 of [13], we get (8).

Now, let us define the random functions $\left\{Z_{n}(t), t \in\langle 0,1\rangle\right\}$: $Z_{n}(0)=0, \quad n \geqslant 1$,

$$
\begin{aligned}
Z_{n}(t)=\frac{S\left(\tau_{k}\right)-\log k}{\sqrt{2 \log n}}+\frac{t-t_{k}}{t_{k+1}-t_{k}}\left(\frac{S\left(\tau_{k+1}\right)-S\left(\tau_{k}\right)-\log \frac{k+1}{k}}{\sqrt{2 \log n}}\right), \\
n \geqslant 2, t \in\left\langle t_{k}, t_{k+1}\right), 0 \leqslant k \leqslant n-1,
\end{aligned}
$$

where $S\left(\tau_{k}\right)=X_{1}^{*}+X_{2}^{*}+\ldots+X_{\tau_{k}}^{*}, k \geqslant 1$.
By (3.4), (3.11), (3.8) and the fact that $\tau_{1}=1$ a.s. we obtain

$$
\begin{aligned}
& P\left[\varrho\left(Z_{n}, W_{n}^{(2)}\right) \geqslant C(\log n)^{-1 / 4}\right] \leqslant P\left[2 \max _{1 \leqslant k \leqslant n} \frac{\left|S\left(\tau_{k}\right)-U_{k}\right|}{\left.\sqrt{2 \log n} \geqslant C(\log n)^{-1 / 4}\right]}\right. \\
& \quad \leqslant P\left[\max \left(S\left(\tau_{1}\right)\right), \max _{1 \leqslant k \leqslant n}\left|U_{k}^{\prime}-U_{k}\right|+\left|S\left(\tau_{1}\right)-2\right| \geqslant \frac{C \sqrt{2}}{2}(\log n)^{1 / 4}\right] \\
& \quad \leqslant P\left[\left(U_{n}-U_{n}^{\prime}\right) \geqslant \frac{C \sqrt{2}}{2}(\log n)^{1 / 4}-2\right] \\
& \quad \leqslant \mathrm{E}\left(U_{n}-U_{n}^{\prime}\right)^{2}\left(\frac{C \sqrt{2}}{2}(\log n)^{1 / 4}-2\right)^{-2}=O\left((\log n)^{-1 / 2}\right)
\end{aligned}
$$

hence, by Lemma 1.2 ([13]), we have

$$
\begin{equation*}
\mathscr{L}_{C}\left(P_{n}^{(3)}, P_{n}^{(2)}\right)=O\left((\log n)^{-1 / 4}\right), \tag{9}
\end{equation*}
$$

where $P_{n}^{(3)}$ denotes the distribution of random function $\left\{Z_{n}(t), t \in\langle 0,1\rangle\right\}$ in $\left(C, \mathscr{B}_{C}\right)$.

Now, let $\left\{\tilde{X}_{n}(t), t \in\langle 0,1\rangle\right\}$ be the random function given by (5) and let \tilde{P}_{n} be the distribution of $\left\{\tilde{X}_{n}(t)\right\}$ in $\left(C, \mathscr{B}_{C}\right)$. We observe that

$$
\begin{aligned}
& \text { (10) } P\left[\varrho\left(\tilde{X}_{n}, Z_{n}\right) \geqslant C(\log n)^{-1 / 4}\right] \leqslant P\left[\max _{1 \leqslant k \leqslant n}\left|\tilde{S}_{k}-S\left(\tau_{k}\right)\right| \geqslant \frac{C \sqrt{2}}{2}(\log n)^{1 / 4}\right] \\
& \leqslant P\left[\max _{1 \leqslant k \leqslant N(n)}\left|\tilde{S}_{k}-S\left(\tau_{k}\right)\right| \geqslant \frac{C \sqrt{2}}{4}(\log n)^{1 / 4}\right]+ \\
& +P\left[\max _{N(n)<k \leqslant n}\left|\tilde{S}_{k}-S\left(\tau_{k}\right)\right| \geqslant \frac{C \sqrt{2}}{4}(\log n)^{1 / 4}\right],
\end{aligned}
$$

where $N(n)$ is a subsequence of integers.

It is easy to see, that if $N(n)=[\log n]$, then

$$
\begin{align*}
& P\left[\max _{1 \leqslant k \leqslant N(n)}\left|\tilde{S}_{k}-S\left(\tau_{k}\right)\right| \geqslant \frac{C \sqrt{2}}{4}(\log n)^{1 / 4}\right] \tag{11}\\
& \leqslant P\left[\tilde{S}_{N(n)}+S\left(\tau_{N(n)}\right) \geqslant \frac{C \sqrt{2}}{4}(\log n)^{1 / 4}\right] \\
& \leqslant P\left[\tilde{S}_{N(n)} \geqslant \frac{C \sqrt{2}}{8}(\log n)^{1 / 4}\right]+P\left[S\left(\tau_{N(n)}\right) \geqslant \frac{C \sqrt{2}}{8}(\log n)^{1 / 4}\right] \\
& \leqslant \frac{E S_{N(n)}+\mathrm{ES}\left(\tau_{N(n)}\right)}{\frac{C \sqrt{2}}{8}(\log n)^{1 / 4}}=O\left(\left(\log _{2} n\right)(\log n)^{-1 / 4}\right)
\end{align*}
$$

where $\log _{2} n=\log (\log n)$, as $\mathrm{E} \tilde{S}_{n}=\sum_{m=1}^{n} 1 /(m+1)$ and $\mathrm{ES}\left(\tau_{n}\right) \sim \log n$.
Now we are going to estimate

$$
P\left[\max _{N(n)<k \leqslant n}\left|\tilde{S}_{k}-S\left(\tau_{k}\right)\right| \geqslant \frac{C \sqrt{2}}{4}(\log n)^{1 / 4}\right] .
$$

Note that for $k \geqslant \tau_{k}$ we have, by definition (3.1),

$$
\inf \left(X_{1}, X_{2}, \ldots, X_{\tau_{k}+i}\right) \leqslant \varepsilon(k) \quad \text { for } i \geqslant 0
$$

In this case we get

$$
\tilde{S_{k}}=S\left(\tau_{k}\right)+\sum_{m=\tau_{k}+1}^{k} X_{m}^{*} \quad \text { and } \quad\left|\tilde{S}_{k}-S\left(\tau_{k}\right)\right| \leqslant k \varepsilon(k)=1
$$

If $k<\tau_{k}$, then, by Lemma 3.7,

$$
\left|\tilde{S}_{k}-S\left(\tau_{k}\right)\right|=\sum_{m=k+1}^{\tau_{k}} X_{m}^{*} \leqslant\left(\tau_{k}-k\right) X_{k+1} \leqslant\left(\tau_{k}-k\right) \frac{(1+A) \log _{2} k}{k} \text { a.s. }
$$

for sufficiently large k. Therefore, by Lemma 3.6 , for sufficiently large n we have

$$
\begin{aligned}
& P\left[\max _{N(n)<k \leqslant n}\left|\tilde{S}_{k}-S\left(\tau_{k}\right)\right| \geqslant \frac{C \sqrt{2}}{4}(\log n)^{1 / 4}\right] \\
& \leqslant P\left[\max _{N(n)<k<\tau_{k} \leqslant n}\left(\tau_{k}-k\right) \frac{(1+A) \log _{2} k}{k} \geqslant \frac{C \sqrt{2}}{4}(\log n)^{1 / 4}\right] \\
& \leqslant P\left[\operatorname { m a x } _ { N (n) < k < \tau _ { k } \leqslant n } \left\{\left(\tau_{k}-\tau_{k-1}\right) \frac{(1+A) \log _{2} k}{k}+\tau_{k-1} \frac{(1+A) \log _{2} k}{k}-\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\quad-(1+A) \log _{2} k\right\} \geqslant \frac{C \sqrt{2}}{4}(\log n)^{1 / 4}\right] \\
& \leqslant P\left[\operatorname { m a x } _ { N (n) < k < \tau _ { k } \leqslant n } \left\{\left(\tau_{k}-\tau_{k-1}\right) \frac{(1+A) \log _{2} k}{k}+\right.\right. \\
& \left.\left.\quad+\frac{\tau_{k-1}}{k \log _{2} k}(1+A)\left(\log _{2} k\right)^{2}\right\} \geqslant \frac{C \sqrt{2}}{4}(\log n)^{1 / 4}+(1+A) \log _{2} N(n)\right] \\
& \leqslant P\left[\max _{N(n)<k<\tau_{k} \leqslant n}\left(\tau_{k}-\tau_{k-1}\right) \frac{(1+A) \log _{2} k}{k} \geqslant C_{1}(\log n)^{1 / 4}\right],
\end{aligned}
$$

where C_{1} is a positive constant such that

$$
\frac{C \sqrt{2}}{4}(\log n)^{1 / 4}+(1+A) \log _{2} N(n)-(1+A)^{2}\left(\log _{2} n\right)^{2} \geqslant C_{1}(\log n)^{1 / 4}
$$

Hence, by a simple evaluation, we obtain

$$
\begin{aligned}
& P\left[\max _{N(n)<k<\tau_{k} \leqslant n}\left(\tau_{k}-\tau_{k-1}\right) \frac{(1+A) \log _{2} k}{k} \geqslant C_{1}(\log n)^{1 / 4}\right] \\
& \leqslant P\left[\max _{N(n)<k<\tau_{k} \leqslant n} \frac{\tau_{k}-\tau_{k-1}}{(1+A) k \log _{2} k} \geqslant \frac{C_{1}(\log n)^{1 / 4}}{(1+A)^{2}\left(\log _{2} n\right)^{2}}\right] \\
& \leqslant \sum_{k=N(n)+1}^{n} P\left[\tau_{k}-\tau_{k-1} \geqslant(1+A) k\left(\log _{2} k\right) A_{n}\right],
\end{aligned}
$$

where $A_{n}=C_{1}(\log n)^{1 / 4} /(1+A)^{2}\left(\log _{2} n\right)^{2}$.
Now, by (3.3) we have

$$
\begin{align*}
& P\left[\max _{N(n)<k \leqslant n}\left|\tilde{S}_{k}-S\left(\tau_{k}\right)\right| \geqslant \frac{C \sqrt{2}}{4}(\log n)^{1 / 4}\right] \tag{12}\\
& \leqslant \sum_{k=N(n)+1}^{n} \frac{1}{k}\left(1-\frac{1}{k}\right)^{(1+A) k\left(\log 2_{2} k\right) A_{n}-1} \\
& \leqslant\left(1+\frac{1}{N(n)}\right)_{k=N(n)+1}^{n} \frac{1}{k} e^{-(1+A)\left(\log _{2} k\right) A_{n}} \\
& =\left(1+\frac{1}{N(n)}\right) \sum_{k=N(n)+1}^{n} \frac{1}{k(\log k)^{(1+A) A_{n}}}=O\left((\log n)^{-1 / 4}\right)
\end{align*}
$$

Hence, by (10)-(12) and Lemma 1.2 of [13], we get

$$
\begin{equation*}
\mathscr{L}_{C}\left(\tilde{P}_{n}, P_{n}^{(3)}\right)=O\left((\log n)^{-1 / 4}\right) \tag{13}
\end{equation*}
$$

Using (8), (9) and (13) we obtain (6).

Now, let $\left\{Y_{n}, n \geqslant 1\right\}$ be a sequence of i.p.r.vs. with the same distribution function F satisfying (1) and let, as previously, $\left\{X_{n}, n \geqslant 1\right\}$ be a sequence of i.r.vs. uniformly distributed on $[0,1]$.

Put $G(t)=\inf \{x \geqslant 0: F(x) \geqslant t\}$. Then, by [7], the sequences $\left\{G\left(X_{n}\right), n\right.$ $\geqslant 1\}$ and $\left\{Y_{n}, n \geqslant 1\right\}$ are the same in law. Furthermore, the sums

$$
S_{n}=\sum_{m=1}^{n} Y_{m}^{*}, \quad \text { where } Y_{m}^{*}=\inf \left(Y_{1}, Y_{2}, \ldots, Y_{m}\right)
$$

may be represented as

$$
\bar{S}_{n}=\sum_{m=1}^{n} G\left(X_{m}^{*}\right), \quad \text { where } X_{m}^{*}=\inf \left(X_{1}, X_{2}, \ldots, X_{m}\right)
$$

Let us define the random functions $\left\{\bar{Y}_{n}(t), t \in\langle 0,1\rangle\right.$, as follows:

$$
\begin{equation*}
\bar{Y}_{n}(0)=0, \quad n \geqslant 1, \tag{14}
\end{equation*}
$$

$$
\bar{Y}_{n}(t)=\frac{\bar{S}_{k}-b \log k}{b \sqrt{2 \log n}}+\frac{t-t_{k}}{t_{k+1}-t_{k}}\left(\frac{\bar{S}_{k+1}-\bar{S}_{k}-b \log \frac{k+1}{k}}{b \sqrt{2 \log n}}\right)
$$

if $t \in\left\langle t_{k}, t_{k+1}\right), 0 \leqslant k \leqslant n-1, n \geqslant 2$, where $t_{k}=\sigma_{k} / \sigma_{n-1}, 1 \leqslant k \leqslant n-1, t_{0}=0$, $\bar{S}_{1}=0$.

We shall show that

$$
\begin{equation*}
\mathscr{L}_{C}\left(\bar{P}_{n}, \tilde{P}_{n}\right)=O\left((\log n)^{-1 / 4}\right) \tag{15}
\end{equation*}
$$

where \bar{P}_{n} denotes the distribution of $\left\{\bar{Y}_{n}(t)\right\}$, in $\left(C, \mathscr{B}_{C}\right)$.
Indeed,

$$
\begin{aligned}
& P\left[\sup _{t \in\langle 0,1\rangle}\left|\bar{Y}_{n}(t)-\tilde{X}_{n}(t)\right| \geqslant C(\log n)^{-1 / 4}\right] \\
\leqslant & \leqslant\left[\max _{1 \leqslant k \leqslant n}\left|\bar{S}_{k}-b \tilde{S}_{k}\right| \geqslant \frac{b \sqrt{2}}{2}(\log n)^{1 / 4}\right] \\
= & P\left[\max _{1 \leqslant k \leqslant n}\left|\sum_{m=1}^{k} \delta_{m}\left(G\left(X_{m}^{*}\right)-b X_{m}^{*}\right)+\sum_{m=1}^{k}\left(1-\delta_{m}\right)\left(G\left(X_{m}^{*}\right)-b X_{m}^{*}\right)\right|\right. \\
\geqslant & \left.\geqslant \frac{b \sqrt{2}}{2}(\log n)^{1 / 4}\right] \\
\leqslant & P\left[\sum_{m=1}^{n} \delta_{m}\left|G\left(X_{m}^{*}\right)-b X_{m}^{*}\right|+\sum_{m=1}^{n}\left(1-\delta_{m}\right)\left|G\left(X_{m}^{*}\right)-b X_{m}^{*}\right| \geqslant \frac{b \sqrt{2}}{2}(\log n)^{1 / 4}\right],
\end{aligned}
$$

where

$$
\delta_{m}= \begin{cases}1 & \text { if } X_{m}^{*} \leqslant \delta \\ 0 & \text { otherwise, } 0<\delta<1\end{cases}
$$

With probability 1 all but finitely many δ_{m} are equal to 1 , so

$$
\begin{aligned}
& P\left[\sup _{t \in\langle 0,1\rangle}\left|\bar{Y}_{n}(t)-\tilde{X}_{n}(t)\right| \geqslant C(\log n)^{-1 / 4}\right] \\
& \qquad
\end{aligned}
$$

where C_{1} is a positive constant. Hence, by the Markoff inequality and Lemma 3.8, we get (15). Thus, taking into account (6) and (15) we immediately obtain $\mathscr{L}_{C}\left(\bar{P}_{n}, W\right)=O\left((\log n)^{-1 / 8}\right)$ and the proof of Theorem 1 is completed.

Proof of Theorem 2. At first we assume that $\left\{X_{n}, n \geqslant 1\right\}$ is a sequence of i.r.vs. uniformly distributed on $[0,1]$. We will show that

$$
\begin{equation*}
\tilde{X}_{n} \Rightarrow W \text { (mixing) } \quad \text { as } \eta \rightarrow \infty, \tag{16}
\end{equation*}
$$

where $\left\{\tilde{X}_{n}(t), t \in\langle 0,1\rangle\right\}$ is defined by (5). By Corollary 1 we have $\tilde{X}_{n} \Rightarrow W$ as $n \rightarrow \infty$. Putting

$$
\begin{aligned}
X_{n}^{(1)}(0) & =0, \quad n \geqslant 1 \\
X_{n}^{(1)}(t) & =\left(\tilde{S}_{k}-\log k\right) / \sqrt{2 \log n} \quad \text { if } t \in\left\langle t_{k}, \dot{t}_{k+1}\right),
\end{aligned}
$$

$0 \leqslant k \leqslant n-1, n \geqslant 2$, we immediately obtain

$$
\begin{equation*}
X_{n}^{(1)} \Rightarrow W \quad \text { as } n \rightarrow \infty \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\varrho\left(\tilde{X}_{n}, X_{n}^{(1)}\right) \leqslant \sup _{1 \leqslant k \leqslant n} \frac{\left|X_{k+1}^{*}-\log \frac{k+1}{k}\right|}{\sqrt{2 \log n}} \rightarrow 0 \text { a.s. } \quad \text { as } n \rightarrow \infty . \tag{18}
\end{equation*}
$$

Now, let

$$
\begin{equation*}
X_{n}^{(2)}(t)=\left(\tilde{S}_{\left[e^{t \log n]}\right.}-t \log n\right) / \sqrt{2 \log n}, \quad t \in\langle 0,1\rangle, n>1 \tag{19}
\end{equation*}
$$

We shall estimate $\varrho\left(X_{n}^{(1)}, X_{n}^{(2)}\right)$. Write $\left.e_{t}^{(n)}=\exp (t \log n), t \in\langle 0,1\rangle, n\right\rangle 1$. We have

$$
\varrho\left(X_{n}^{(1)}, X_{n}^{(2)}\right) \leqslant \frac{1}{\sqrt{2 \log n}} \max _{1 \leqslant k<n} \sup _{t \in\left\langle t_{k}, t_{k+1}\right)}\left\{\left|\tilde{S}_{\left[e_{t}^{n}\right]}-\tilde{S}_{k}\right|+|t \log n-\log k|\right\}
$$

$$
\begin{aligned}
& \leqslant \frac{1}{\sqrt{2 \log n}}\left(\max _{1 \leqslant k \leqslant N(n)} \sum_{m=\left[e_{t_{k}}^{(n)}\right]+1}^{\left[e_{t_{k+1}}^{(n)}\right]} X_{m}^{*}+\max _{N(n)<k<n} \sum_{m=\left[e_{t_{k}}^{(n)}\right]+1}^{[(n)} X_{m}^{(n)}\right] \\
&+\frac{1}{\sqrt{2 \log n}} \max _{1 \leqslant k<n}^{*} \max \left[\left(\sigma_{k+1}-\log k\right)\left(\log n / \sigma_{n-1}\right)+\right.
\end{aligned}
$$

$$
\left.+\log k\left(\log n / \sigma_{n-1}-1\right),\left(\log k-\sigma_{k}\right)\left(\log n / \sigma_{n}\right)+\log k\left(1-\log n / \sigma_{n-1}\right)\right]
$$

$$
\leqslant \frac{1}{\sqrt{2 \log n}}\left\{\tilde{S}_{\left[e_{t_{N(n)}}^{(n)}\right]}+\sum_{m=\left[e_{k}^{(n)}\right]+1}^{\left[e_{t_{k+1}}^{(n)}\right]} \frac{(1+A) \log _{2} m}{m}+O(1)\right\} \text { a.s. }
$$

by Lemma 3.7.
We observe that
as $n \rightarrow \infty$, because, by Lemma 3.3,

$$
\tilde{S}_{\left[e_{t_{N(n)+1}}^{(n)}\right.} 1 / t_{N(n)+1} \log n \rightarrow 1, \quad n \rightarrow \infty
$$

and $t_{N(n)+1} \log n \sim \log N(n)$.
Moreover,

$$
\frac{1}{\sqrt{2 \log n}} \max _{N(n)<k<n} \sum_{m=\left[e_{t_{k}}^{(n)}\right]+1}^{\left[e_{k+1}^{(n)}\right]} \frac{(1+A) \log _{2} m}{m}
$$

$$
\begin{aligned}
& \leqslant \frac{1}{\sqrt{2 \log n}} \max _{\left.1 \leqslant k<n \in t_{t}, t_{k+1}\right)}\left\{\max \left(\tilde{S}_{\left[e_{i}^{(n)}\right]}-\tilde{S}_{k}, \tilde{S}_{k}-\tilde{S}_{\left[e_{t}^{(n)}\right]}\right)+\right. \\
& +\max (t \log n-\log k, \log k-t \log n)\} \\
& \leqslant \frac{1}{\sqrt{2 \log n}} \max _{1 \leqslant k<n}\left\{\max \left(\tilde{S}_{\left[e_{t_{k+1}}^{(n)}\right]}-\tilde{S}_{k}, \tilde{S}_{k}-\tilde{S}_{\left[e_{t_{k}}^{(n)}\right]}\right)+\right. \\
& \left.+\max \left(t_{k+1} \log n-\log k, \log k-t_{k} \log n\right)\right\} \\
& \leqslant \frac{1}{\sqrt{2 \log n}} \max _{1 \leqslant k<n}\left\{\sum_{m=\left[e_{t_{k}}^{(n)}\right]+1}^{\substack{\left.(n) \\
n_{k+1}\right)}} X_{m}^{*}+\max \left(\sigma_{k+1}\left(\log n / \sigma_{n-1}\right)-\log k,\right.\right. \\
& \left.\left.\log k-\sigma_{k}\left(\log n / \sigma_{n-1}\right)\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant \frac{1}{\sqrt{2 \log n}} \max _{N(n)<k<n}(1+A)\left(\log _{2} e_{t_{k+1}}^{(n)}\right)\left(\log e_{t_{k}+1}^{(n)}-\log e_{t_{k}}^{(n)}\right) \\
& \leqslant \frac{(1+A) \log _{2} n}{\sqrt{2 \log n}} \max _{N(n)<k<n}\left(\frac{\sigma_{k+1}}{\sigma_{n}} \log n-\frac{\sigma_{k}}{\sigma_{n}} \log n\right)=O\left(\left(\frac{\log _{2} n}{(\log n)^{3 / 2}}\right)^{-1}\right) \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$. Thus

$$
\begin{equation*}
\varrho\left(X_{n}^{(1)}, X_{n}^{(2)}\right) \rightarrow 0 \text { a.s., } \quad n \rightarrow \infty, \tag{20}
\end{equation*}
$$

and, by (18),

$$
\begin{equation*}
X_{n}^{(2)} \Rightarrow W, \quad n \rightarrow \infty . \tag{21}
\end{equation*}
$$

Now, let us put $X_{(l, m)}^{*}=\inf \left(X_{l+1}, X_{l+2}, \ldots, X_{m}\right)$ for $m>l$, and define $\left\{X_{n}^{(3)}(t), t \in\langle 0,1\rangle\right\}$ by

$$
\begin{equation*}
X_{n}^{(3)}(t)=\frac{1}{\sqrt{2 \log n}}\left(\sum_{m=N(n)+1}^{\left[e^{t \log n}\right]} X_{(N(n), m)}^{*}-t \log n\right), \quad t \in\langle 0,1\rangle \tag{22}
\end{equation*}
$$

where $N(n)=[\log n]$.
By Lemma 3 ([10]), $X_{(l, m)}^{*} \geqslant X_{m}, m>l$, and the sum $\sum\left(X_{(l, m)}^{*}-X_{m}^{*}\right), m$ $=l+1, l+2, \ldots$, converges almost surely. Moreover, one can note that the random variable $\sum X_{(l, m)}^{*}, \quad m=l+1, l+2, \ldots, N, \quad$ is independent of $X_{1}, X_{2}, \ldots, X_{l}$ for all $l>1$ and $N>l$. By definitions (19), (22), Lemma 3.3 and Lemma 3 ([10]) we obtain

$$
\begin{equation*}
\varrho\left(X_{n}^{(2)}, X_{n}^{(3)}\right) \leqslant \frac{1}{\sqrt{2 \log n}}\left(\tilde{S}_{N(n)}+\sum_{m=N(n)+1}^{n}\left(X_{(N(n), m)}^{*}-X_{m}^{*}\right)\right) \rightarrow 0 \text { a.s., } \quad n \rightarrow \infty \tag{23}
\end{equation*}
$$

so, by (22),

$$
\begin{equation*}
X_{n}^{(3)} \Rightarrow W, \quad n \rightarrow \infty . \tag{24}
\end{equation*}
$$

Let \mathscr{B}_{0} be the field of cylinders which consists of sets of the form $\left\{\omega:\left(X_{1}(\omega), X_{2}(\omega), \ldots, X_{k}(\omega)\right) \in H\right\}$, with $k \geqslant 1$ and $H \in \mathbb{R}^{k}$. Then, for any $E \in: B_{0}$, by the definition (22) and relation (24) we obtain that $P\left[\left(X_{n}^{(3)} \in A\right)\right.$ $\cap E] \rightarrow W(A) P(E), n \rightarrow \infty$, for every W-continuity set A, so that $X_{n}^{(3)} \Rightarrow W$ (mixing) as $n \rightarrow \infty$, and, by (17), (18), (20) and (23), also

$$
\begin{equation*}
\tilde{X}_{n} \Rightarrow W \text { (mixing) } \quad \text { as } n \rightarrow \infty \tag{25}
\end{equation*}
$$

Now, let $\left\{Y_{n}, n \geqslant 1\right\}$ be a sequence of i.p.r.vs., with the common distribution function F, such that (1) holds for some $b(0<b<\infty)$, and let $\left\{\bar{Y}_{n}(t), t \in\langle 0,1\rangle\right\}$ be defined by (14). By (15) we see that $\varrho\left(\bar{Y}_{n}, \tilde{X}_{n}\right) \xrightarrow{P} 0$ as
$n \rightarrow \infty$, so, by (25), we immediately obtain that $\bar{Y}_{n} \Rightarrow W$ (mixing) as $n \rightarrow \infty$. Thus the proof of Theorem 2 is completed.
Proof of Theorem 3. Let $\left\{N_{n}, n \geqslant 1\right\}$ be a sequence of positive integer-valued random variables satisfying (3). To prove Theorem 3 it is enough to show that the random elements $\left\{\tilde{X}_{n}(t), t \in\langle 0,1\rangle\right\}$, given by (5), satisfy the generalized Anscombe condition with the norming sequence $\left\{k_{n}\right.$ $=n, n \geqslant 1$, i.e.

$$
\begin{equation*}
\max _{i \in D_{n}(\delta)} \varrho\left(\tilde{X}_{i}, \tilde{X}_{n}\right) \xrightarrow{p} 0, \quad n \rightarrow \infty, \tag{26}
\end{equation*}
$$

for some $\delta>0$, where $\bar{D}_{n}(\delta)=\{i:(1-\delta) n \leqslant i<(1+\delta) n\}$. (See Theorem 3 ([4]) and the relation (16):),

By (18), (20) and (23) we can only to estimate $\max _{i \in D_{n}(\delta)} \varrho\left(X_{i}^{(3)}, X_{n}^{(3)}\right)$.
Observe that

$$
\begin{aligned}
& \max _{i \in D_{n}(\delta)} \varrho\left(X_{i}^{(3)}, X_{n}^{(3)}\right) \leqslant \max _{i \in D_{n}(\delta)} \sup _{t \in(0,1\rangle}\left|\frac{1}{\sqrt{2 \log i}} \tilde{S}_{\left[e_{i}^{(i)]}-\right.} \frac{1}{\sqrt{2 \log n}} \tilde{S}_{\left[e_{i}^{(n)}\right]}\right|+ \\
& \left.+\max _{i \in D_{n}(\delta)} \frac{1}{\sqrt{2}}\left|\sqrt{\log i}-\sqrt{\log n \mid} \leqslant \max _{i \in D_{n}(\delta)} \sup _{t \in\{0,1\rangle}, \frac{1}{\sqrt{2 \log i} i}\right| \tilde{S}_{\left[e_{t}(i)\right]}-\tilde{S}_{\left[e_{t}^{(n)}\right]} \right\rvert\,+ \\
& +\max _{i \in D_{n}(\delta) \in(\operatorname{sic}\langle 0,1\rangle} \sup _{\left.\mathrm{Se}_{t}^{(n)}\right)}\left|\frac{1}{\sqrt{2 \log i}}-\frac{1}{\sqrt{2 \log n}}\right|+\frac{1}{\sqrt{2}}(\sqrt{\log n(1+\delta)}-\sqrt{\log n(1-\delta)}) \\
& \left.\leqslant \frac{1}{\sqrt{2 \log n(1-\delta)}} \max \max _{(1-\delta) n \leqslant i<n t \in\langle 0,1\rangle} \sup _{\left.\mathrm{S}_{\left[e_{t}^{(n)}\right]}-\tilde{S}_{\left[e_{t}\right.}^{(i)}\right)}\right), \\
& \left.\max _{n \leqslant i<1+\delta)} \sup _{n \in\langle 0,1\rangle}\left(\tilde{S}_{\left[e_{t}^{(i)]}\right.}-\tilde{S}_{\left[e_{e}^{(n)}\right)}\right)\right\}+\tilde{S}_{n}\left(\frac{1}{\sqrt{2 \log n(1-\delta)}}-\frac{1}{\sqrt{2 \log n(1+\delta)}}\right)+ \\
& +\frac{\log [(1+\delta) /(1-\delta)]}{\sqrt{2(\sqrt{\log n(1+\delta)}+\sqrt{\log n(1-\delta)})}} .
\end{aligned}
$$

By Lemma 3.3 we see that

$$
\tilde{S}_{n}\left(\frac{1}{\sqrt{2 \log n(1-\delta)}}-\frac{1}{\sqrt{2 \log n(1+\delta)}}\right) \rightarrow 0 \text { a.s., } \quad n \rightarrow \infty .
$$

Putting $t_{N(n)}=\log N(n) / \log n$, where $N(n)=[\log n]$, by Lemma 3.7 we get
$\frac{1}{\sqrt{2 \log n(1-\delta)}} \max \left\{\max _{(1-\delta) n \leqslant i<n} \sup _{t \in\langle 0,1\rangle} \sum_{m=\left[e_{i}^{(i)}\right]+1}^{\left[\varepsilon_{e}^{(n)}\right]} X_{m}^{*}, \max _{n \leqslant i<n(1+\delta)} \sup _{t \in\langle 0,1\rangle} \sum_{m=\left\{e_{i}^{(n)}\right]+1}^{\left[e_{i}^{(i)}\right]} X_{m}^{*}\right\}$

$$
\begin{aligned}
& \leqslant \frac{1}{\sqrt{2 \log n(1-\delta)}} \max \left\{\max _{(1-\delta) n \leqslant i<n}\left(\sup _{t \in\left\langle 0, t_{N(n)}\right\rangle} \sum_{m=\left[e_{t}^{(i)}\right]+1}^{\left[e_{i}^{(n)}\right]} X_{m}^{*}+\sup _{i \in\left\langle t_{N(n)}, 1\right\rangle} \sum_{m=\left[e_{t}^{(i)}\right]+1}^{\left[e_{t}^{(n)}\right]} X_{m}^{*}\right),\right. \\
& \left.\max _{n \leqslant i<n(1+\delta)}\left(\sup _{t \in\left\langle 0, t_{N(n)}\right\rangle} \sum_{m=\left[e_{t}^{(n)}\right]+1}^{\left[\epsilon_{t}^{(i)}\right]} X_{m}^{*}+\sup _{t \in\left\langle t_{N(n)}, 1\right\rangle} \sum_{m=\left[e_{t}^{(n)}\right]+1}^{\left\{e_{t}^{(i)}\right]} X_{m}^{*}\right)\right\} \text { a.s. } \\
& \leqslant \frac{1}{\sqrt{2 \log n(1-\delta)}} \max \left\{\tilde{S}_{\left[e_{T N(n)}^{(n)}\right]}+\max _{(1-\delta) n \leqslant i<n \in \in\left\langle t_{N(n), 1\rangle}\right.} \sup _{m=\left[e_{t}\right.} \sum_{\substack{(i)}}^{\left[e_{t}^{(n)}\right]} \frac{(1+A) \log _{2} m}{m},\right. \\
& \left.\max _{n \leqslant i<n(1+\delta)} \tilde{S}_{\left[e_{t_{N(n)}}^{(i)}\right]}+\max _{n \leqslant i<n(1+\delta)} \sup _{t \in\left\langle t_{N(n)}, 1\right\rangle} \sum_{m=\left[e_{t}^{(n)}\right]+1}^{\left[e_{i}^{(i)}\right]} \frac{(1+A) \log _{2} m}{m}\right\} \\
& \leqslant \max \left\{\left(\widetilde{S}_{\left[e_{i(n)}^{(n)}\right.}\right] t_{N(n)} \log n\right)\left(t_{N(n)} \log n / \sqrt{2 \log n(1-\delta)}\right), \\
& \left(\tilde{S}_{\left[e_{N(n)}^{(n(1+\delta))}\right]} / t_{N(n)} \log n(1+\delta)\right)\left(t_{N(n)} \log n(1+\delta) / \sqrt{2 \log n(1-\delta)}\right)+ \\
& +\frac{(1+A) \log _{2} n}{\sqrt{2 \log n(1-\delta)}} \max \left\{\max _{(1-\delta) n \leqslant i<n} \sup _{t \in\left\langle t_{N(n)}, 1\right\rangle} t(\log n-\log i),\right. \\
& \left.\max _{\leqslant \leqslant i<n(1+\delta)} \sup _{t \in\left\langle t_{N(n)}, 1\right\rangle} t(\log i-\log n)\right\} \rightarrow 0 \text { a.s., } \quad n \rightarrow \infty,
\end{aligned}
$$

by Lemmas 3.3 and 3.7. Then

$$
\max _{i \in D_{n^{(\delta)}}} \varrho\left(X_{n}^{(3)}, X_{i}^{(3)}\right) \xrightarrow{P} 0, \quad n \rightarrow \infty .
$$

Hence, taking into account the relation given above, we have (26), so that the generalized Anscombe condition holds, in this case.

Now, let $\left\{\bar{Y}_{n}(t), t \in\langle 0,1\rangle\right\}$ be given by (14). By simple evaluation and Lemma 3.8 we get

$$
\max _{i \in D_{n}(\delta)} \varrho\left(\bar{Y}_{i}, \tilde{X}_{i}\right) \leqslant \frac{1}{b \sqrt{2 \log n(1-\delta)}} \sum_{m=1}^{[n(1+\delta)]}\left|G\left(X_{m}^{*}\right)-b X_{m}^{*}\right| \xrightarrow{P} 0,
$$

as $n \rightarrow \infty$. Hence, by (26), we obtain

$$
\max _{i \in D_{n}(\delta)} \varrho\left(\bar{Y}_{i}, \bar{Y}_{n}\right) \xrightarrow{P} 0 \quad \text { as } n \rightarrow \infty
$$

Thus by Theorem 3 of [4] the proof of Theorem 3 is completed.
3. Lemmas. In this section we present some lemmas we needed in the proofs of Theorems 1-3.

Let $\{\varepsilon(n), n \geqslant 1\}$ be a sequence of positive real numbers strictly decreasing to zero.

By $\left\{\tau_{n}=\tau(\varepsilon(n)), n \geqslant 1\right\}$ we denote the sequence of random variables such that

$$
\begin{equation*}
\tau_{n}=\inf \left\{m: \inf \left(X_{1}, X_{2}, \ldots, X_{m}\right) \leqslant \varepsilon(n)\right\} \tag{3.1}
\end{equation*}
$$

where $\left\{X_{n}, n \geqslant 1\right\}$ is a sequence of independent random variables uniformly distributed on [0, 1].

Lemma 3.1. The sequence $\left\{\tau_{n}, n \geqslant 1\right\}$ increases with probability 1 , and $\tau_{n} \rightarrow \infty$ a.s. as $n \rightarrow \infty$.

Lemma 3.2. The random variables $\tau_{n}-\tau_{n-1}, n \geqslant 2$, are independent, and if $\varepsilon(n)=n^{-1}$, then

$$
\begin{gather*}
\mathrm{E}\left(\tau_{n+1}-\tau_{n}\right)=1, \quad \sigma^{2}\left(\tau_{n+1}-\tau_{n}\right)=2 n \tag{3.2}\\
P\left[\tau_{n+1}-\tau_{n} \geqslant r\right]=\frac{1}{n+1}\left(1-\frac{1}{n+1}\right)^{r-1} \quad \text { for any } r>0 \tag{3.3}
\end{gather*}
$$

Let

$$
\begin{equation*}
U_{n}=\sum_{m=1}^{n-1}\left(\tau_{m+1}-\tau_{m}\right) \varepsilon(m), \quad U_{n}^{\prime}=\sum_{m=1}^{n-1}\left(\tau_{m+1}-\tau_{m}\right) \varepsilon(m+1) \tag{3.4}
\end{equation*}
$$

where $\varepsilon(n)=n^{-1}$. Then

$$
\begin{align*}
\mathrm{E} U_{n}-\log n & =O(1), & \mathrm{E} U_{n}^{\prime}-\log n=O(1) \tag{3.5}\\
\sigma^{2} U_{n}-2 \log n & =O(1), & \sigma^{2} \cdot U_{n}^{\prime}-2 \log n=O(1) \tag{3.6}
\end{align*}
$$

(3.7) $\sum_{m=1}^{n} \mathrm{E}\left(\tau_{m+1}-\tau_{m}\right)^{p} \varepsilon^{p}(m) \sim \sum_{m=1} \mathrm{E}\left(\tau_{m+1}-\tau_{m}\right)^{p} \varepsilon^{p}(m+1) \sim p!\log n$,

$$
\begin{equation*}
\mathrm{E}\left(U_{n}-U_{n}^{\prime}\right)=O(1), \quad \sigma^{2}\left(U_{n}-U_{n}^{\prime}\right)=O(1) \tag{3.8}
\end{equation*}
$$

where $b_{n}=O(1)$ denotes that the sequence $\left\{b_{n}, n \geqslant 1\right\}$ is bounded as $n \rightarrow \infty$.
Lemma 3.3. We have

$$
\begin{align*}
\frac{U_{n}-\log n}{\sqrt{2 \log n}} \xrightarrow[\rightarrow]{\mathscr{m}} N(0,1), \quad \frac{\tilde{S}_{n}-\log n}{\sqrt{2 \log n}} \xrightarrow[\rightarrow]{\sin } N(0,1), \quad n \rightarrow \infty, \tag{3.9}\\
\frac{S\left(\tau_{n}\right)}{\log n} \rightarrow 1 \text { a.s., } \quad \frac{\tilde{S}_{n}}{\log n} \rightarrow 1 \text { a.s., } n \rightarrow \infty, \tag{3.10}
\end{align*}
$$

where

$$
\begin{gathered}
\tilde{S}_{n}=\sum_{m=1}^{n} X_{m}^{*}, \quad S\left(\tau_{n}\right)=X_{1}^{*}+X_{2}^{*}+\ldots+X_{\tau_{n}}^{*}, \quad n \geqslant 1 \\
X_{m}^{*}=\inf \left(X_{1}, X_{2}, \ldots, X_{m}\right), \quad m \geqslant 1
\end{gathered}
$$

Lemma 3.4. Let U_{n}, U_{n}^{\prime} be given by (3.4). Then

$$
\begin{align*}
-2+U_{n}^{\prime} & \leqslant S\left(\tau_{n}\right)-S\left(\tau_{1}\right) \leqslant U_{n} \text { a.s. }, \quad n \geqslant 2, \tag{3.11}\\
S\left(\tau_{n-1}\right) & \leqslant \tilde{S}_{m} \leqslant S\left(\tau_{n}\right) \quad \text { for } m \in\left\langle\tau_{n-1}, \tau_{n}\right) . \tag{3.12}
\end{align*}
$$

Lemma 3.5. For all $A>0$
$\log n-(1+A) \log _{2} n \leqslant \log \tau_{n} \leqslant \log n+(1+A) \log _{3} n$ a.s.
for sufficiently large n, where $\log _{p} x=\log \left(\log _{p-1} x\right), p \geqslant 2, \log _{1} x=\log x$.
Lemma 3.6. We have

$$
\limsup _{n \rightarrow \infty} \tau_{n} / n \log _{2} n=1 \text { a.s.. }
$$

Lemma 3.7. For all $A>0$

$$
\begin{aligned}
\left(n \log n \log _{2} n \ldots\left(\log _{p} n\right)^{1+A}\right)^{-1} & \leqslant X_{n}^{*} \\
\leqslant & \left(\log _{2} n+\log _{3} n+\ldots+(1+A) \log _{p} n\right) / n \text { a.s. }
\end{aligned}
$$

for sufficiently large n.
Lemma 3.8. Under the assumptions of Theorem 1

$$
\frac{\sum_{m=1}^{n} \delta_{m}\left(G\left(X_{m}^{*}\right)-b X_{m}^{*}\right)}{b \sqrt{2 \log n}}+\frac{\sum_{m=1}^{n}\left(1-\delta_{m}\right)\left(G\left(X_{m}^{*}\right)-b X_{m}^{*}\right)}{b \sqrt{2 \log n}} \xrightarrow{P} 0
$$

as $n \rightarrow \infty$, and

$$
\mathrm{E}\left[\sum_{m=1} \delta_{m}\left|G\left(X_{m}^{*}\right)-b X_{m}^{*}\right|\right]<\infty
$$

where

$$
\delta_{m}=\left\{\begin{array}{ll}
1 & \text { if } X_{m}^{*}<\delta \\
0 & \text { if } X_{m}^{*} \geqslant \delta
\end{array}, 0<\delta<1, \quad G(t)=\inf \{x \geqslant 0: F(x) \geqslant t\}\right.
$$

REFERENCES

[1] D. J. Aldous, Weak convergence of radomly indexed sequences of random variables, Math. Proc. Cambridge Philos. Soc. 83 (1978), p. 117-126.
[2] P. Billingsley, Convergence of Probability Measures, John Wiley and Sons, Inc. New York, London, Sydney, Toronto 1968.
[3] A. A. Borovkov, Ob ocenkach w principie invariantnosti, DAN SSSR, 205, 5 (1972), p. 1037-1039.
[4] M. Csörgö and Z. Rychlik, Weak convergence of sequences of random elements with random indices, Math. Proc. Camb. Phil. Soc. 88 (1980), p. 171-174.
[5] P. Dehéuvels, Sur la convergence de sommes de minima de variables aléatoires, C. R. Acad. Sci. Paris 276, Série A (1973), p. 304-313.
[6] - Valeurs extrémales déchantillons croissants d'une variable aléatoire réelle, Ann. Inst. Henri Poincaré, Sect. B, X (1974), p. 89-114.
[7] U. Grenander, A limit theorem for sums of minima of stochastic variables, Ann. Math. Stat. (1966), p. 1041-1042.
[8] H. Hebda-Grabowska and D. Szynal, On the rate of convergence in law for the partial sums of infima of random variables, Bull. Acad. Polon. Scienc. XXVII. 6 (1979), p. 503-509.
[9] - An almost sure invariance principle for partial sums of infima of independent random variables, Ann. Prob. 7.6 (1979), p. 1036-1045.
[10] H. Hebda-Grabowska, Weak convergence of random sums of infima of independent random variables, Prob. and Math. Stat. 8 (1987), p. 41-47.
[11] T. Höglund, Asymptotic normality of sums of minima of random variables, Ann. Math. Stat. 43 (1972), p. 351-353.
[12] K. R. Parthasarathy, Probability measures on metric spaces, Academic Press, New York and London, 1967.
[13] Yu. V. Prohorov, Schodimost' slučajnych processov i predel'nye teoremy veroyatnosti, Teor. Ver. i ee Prim. 1 (1956), p. 177-238.

Insstitute of Mathematics
Maria Curie-Skłodowska University
Plac Marii Curie-Skłodowskiej 1
20-031 Lublin, Poland.
Received on 7. 10. 1986;
revised version on 21. 4. 1987

