REMARK ON A MULTIPLICATIVE DECOMPOSITION OF PROBABILITY MEASURES
 BY

JERZY SAWA (Warszawa)
Abstract. The aim of this note is to define a rather wide class of probability measures admitting a multiplicative decomposition.

Let P be the set of all Borel probability measures on the real line. Given $\mu, \nu \in P$, by $\mu \nu$ we shall denote the probability distribution of the product $X Y$ of two independent random variables X and Y with probability distributions μ and v, respectively. It is evident that the binary operation $\mu \nu$ is commutative, associative and distributive with respect to convex combinations of probability measures. In what follows μ^{n} will denote the n-th power under this operation. Further, by δ_{c} we denote the probability measure concentrated at the point c. It is easy to check that

$$
(\mu v)(E)=\int_{x \neq 0} \mu\left(x^{-1} E\right) v(d x)+v(\{0\}) \delta_{0}(E) .
$$

Put $I=(0,1]$. By P_{I} we denote the subset of P consisting of all measures concentrated on I. We say that $\mu \in Q$ if $\mu \in P$ and, for every $x \in I$, there exists a positive number c such that $\mu\left(x^{-1} E\right) \leqslant c \mu(E)$ for all Borel subsets E of the real line.

Denote by $q(\mu, x)$ the infimum of all those numbers c. It is clear that $q(\mu, x) \geqslant 1$ whenever $x \in \mathrm{I}$ and $q(\mu, 1)=1$. Moreover, denoting by $\left\{E_{n}\right\}$ the sequence of all open intervals with rational endpoints, we have

$$
\{x: q(\mu, x) \leqslant c\}=\bigcap_{n=1}^{\infty}\left\{x: \mu\left(x^{-1} E_{n}\right) \leqslant c \mu\left(E_{n}\right)\right\}
$$

which shows that the function $q(\mu, \cdot)$ is Borel measurable on I.

A standard calculation leads to the following inequalities for $\mu \in Q$:

$$
\begin{equation*}
\int_{0}^{1} q(\mu, x)\left(\lambda_{1} \lambda_{2} \ldots \lambda_{n}\right)(d x) \leqslant \prod_{j=1}^{n} \int_{0}^{1} q(\mu, x) \lambda_{j}(d x) \tag{1}
\end{equation*}
$$

for any $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in P_{I}$;

$$
\begin{equation*}
(\lambda \mu)(E) \leqslant \mu(E) \int_{0}^{1} q(\mu, x) \lambda(d x) \quad \text { for } \lambda \in P_{I} . \tag{2}
\end{equation*}
$$

We note that the set Q is closed under convolution and convex combinations. Moreover,

$$
q(\mu * v, x) \leqslant q(\mu, x) q(v, x)
$$

and

$$
q(c \mu+(1-c) v, x) \leqslant \max (q(\mu, x), q(v, x)) .
$$

As a simple example of measures belonging to Q we quote the Gaussian measure ϱ with the mean m and the variance σ^{2}. Then we have

$$
q(\varrho, x)=x^{-1} \exp \left(\frac{m^{2}}{2 \sigma^{2}} \frac{1-x}{1+x}\right), \quad x \in I .
$$

Setting for any $b>0$

$$
\mu_{b}(E)=b \int_{E \cap I} x^{b-1} d x,
$$

we have also $\mu_{b} \in Q$ and $q\left(\mu_{b}, x\right)=x^{-b}(x \in I)$. Furthermore, it is easy to check that all unimodal distributions with the mode at 0 belong to Q.

Theorem. Let $\mu \in Q$. For every $\lambda \in P_{I}$ satisfying the condition

$$
\begin{equation*}
\int_{0}^{1} q(\mu, x) \lambda(d x)<2 \lambda(\{1\}) \tag{3}
\end{equation*}
$$

there exists a measure $v \in P$, absolutely continuous with respect to μ, such that $\lambda \nu=\mu$.

Proof. The masure λ can be written in the form

$$
\lambda=p \delta_{1}+(1-p) \eta,
$$

where $p=\lambda(\{1\}), \eta \in P_{I}$ and $\eta(\{1\})=0$. In the case $p=1$ we have $\lambda=\delta_{1}$
and our assertion is obvious with $v=\mu$. Suppose that $p<1$. Since $q(\mu, x)$ $\geqslant 1$, we have by (3) the inequality $p>1 / 2$. Consequently,

$$
\begin{equation*}
0<r=\frac{1-p}{p}<1 \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
s=r \int_{0}^{1} q(\mu, x) \eta(d x)<1 \tag{5}
\end{equation*}
$$

Further, inequalities (1) and (2) yield

$$
\begin{equation*}
\left(\eta^{n} \mu\right)(E) \leqslant\left(\int_{0}^{1} q(\mu, x) \eta(d x)\right)^{n} \mu(E), \quad n=1,2, \ldots \tag{6}
\end{equation*}
$$

Setting

$$
\begin{equation*}
\beta=(1-r)^{-1}(\mu-r \eta \mu) \tag{7}
\end{equation*}
$$

and taking into account (4) and (5) we infer that

$$
\begin{aligned}
\beta(E) & =(1-r)^{-1}\left(\mu(E)-r \int_{0}^{1} \mu\left(x^{-1} E\right) \eta(d x)\right) \\
& \geqslant(1-r)^{-1} \mu(E)\left(1-s \int_{0}^{1} q(\mu, x) \eta(d x)\right) \geqslant 0 .
\end{aligned}
$$

Since β is normed on the real line, we conclude that $\beta \in P$. Put

$$
v=\left(1-r^{2}\right) \sum_{k=0}^{\infty} r^{2 k} \eta^{2 k} \beta
$$

where $\eta^{0}=\delta_{1}$. Obviously, $v \in P$ and, by (7),

$$
\begin{equation*}
v=(1+r) \sum_{n=0}^{\infty}(-1)^{n} r^{n} \eta^{n} \mu \tag{8}
\end{equation*}
$$

Consequently, by (5) and (6),

$$
v(E) \leqslant(1+r) \sum_{n=0}^{\infty} r^{n}\left(\eta^{n} \mu\right)(E) \leqslant \frac{1+r}{1-s} \mu(E),
$$

which shows that ν is absolutely continuous with respect to μ. Further, by (4) and (8),

$$
\eta v=\frac{1+r}{r} \mu-\frac{1}{r} \nu=\frac{1}{1-p} \mu-\frac{p}{1-p} v
$$

Thus

$$
\lambda v=p\left(\delta_{1} v\right)+(1-p)(\eta v)=p v+(1-p)(\eta v)=\mu
$$

which completes the proof.
Uniwersytet Warszawski
Instytut Matematyki
Pałac Kultury i Nauki
00-901 Warszawa, Poland
Received on 23. 12. 1985;
revised version on 21. 4. 1987

