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Abstract, The aim’ of this note is to extend some results of [5]
by introducing a measure of non-compactness and a corresponding
class of probabilistic condensing multivalued mappings. A characteri-
zation of condensing mappings in the sense of Himmelberg, Porter
and Van Vleck [12] is given and some results on the existence of
fixed points with applications in the random multivalued operator
equations are obtained. :

The notion of measure of non-compactness has been firstly introduced
by Kuratowski [13] and subsequently axiomatically generalized by Sadovski
[17], Goldenstein, Gohberg and Markus [8], Petryshyn and Fitzpatrick
[14], Himmelberg, Porter and Van Vleck [12], and others. The probabilistic
measures of non-compactness have been introduced by Bocsan and Constan-
tin in [3, 4]. The interesting results in fix point theory and random operator
equations have been given by Bocsan [1, 2], Hadzi¢ [10, 11], Cain [5],

Constantin and Istratescu [6, 7], and Radu [15]. .

Let A* be the set of the distribution functions of all non-negative real
random variables. Let S be a linear space and

F: S99t =Fed": supF(x)=F(x)=1}
xeR o
be a probabilistic norm such that (S, #, T) is a random normed space, i,

1. F,=H, iff p=0 (H, is the characteristic function of (0, 00));

2. F,,(x) = F,(x/|A)) for every x >0, A # 0 in the scalar field and peS;

3. Fp+q(x+y) > T(F,(x), F,() for every P, geS and x, y > 0, where T
is a t-norm such that T > T,,.

A t-norm is a function T: [0, 1] x[0, 1] —>[O 1] which is associative,
commutative, non-decreasing in every place and such that T(a, 1) =a for
every a€[0, 1]. T,, is the t-norm defined by T,(x, y) =max{x+y—1, 0}.

\
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An interesting class of r-norms weaker than Min is introduced by
Hadzié [9] as follows:

Definition 1.. A t-norm T is of H-type (or Te#) if [T"(t)}qen 18
equicontinuous at t =1, where T'(t)=T(t,t), T" () = T(T"(1)), n=1,
tef0, 1].

Write S(t, 4) = {peS: F,(tf)>1—A4) and §(r, 1) = {peS: F ()= 1-4}.

ProrosiTioN 1. Let (S, %, T) be a random normed space and let T be a
continuous H-type t-norm. Let A be the set of all A,€R™ such that |1}, is a
monotone decreasing, convergent to zero sequence and T(1—1, 1—4,) =
1—),. Then the family 'S(t, A,)! .~ is a generalized basis of the neighbourhood
system .1, of the origin. This neighbourhood system determines a Hausdorff
locally convex topological vector space.

Proof. It is known [9] that any random normed space with a conti-
“nuous H-type t-norm T is in the (¢, 4)-topology a locally convex topological
space, '

The family !S(t, A,)},.n, having the properties mentioned in the hypot-
hesis, is a generalized basis for .47, since for every Ve.47 there is an
S(¢, A) =V and a 4, <A’ such that

peS(e, A)<=F (&= 1-2,>1-1=peS(, A)=>peV.

On the other hand, S(, 4) 5 S(¢, ) implies that S(e, ) et .

The existence for every A’ >0 of a 4, such that T(A,, A,) = 4, follows
from the characterization of the H-type t-norm ([16], Lemma 1), i.e., since T
is continuous and H-type, it follows that for every a > O thereisa b > a such
that T(b, b)=b < 1.

- To prove convexity, take D, q eS(t 4. and let r=up+(l-u)g,
0<u<1, and then consider

Fo () = Fuprqa-we(ut+(1—w)t) = T(F,,(ut), Fi; -y, (1—u)t)
= T(F,@), F(0) = T(1=Ap, 1 =4) =1—14,.

Thus reS(, 4,).

Remark. We write S(t;, 2,)+S(¢,, ,l,,) CS(t1+t2, A, since, for every
peS(ty, 4,) and geS(t,, 4,),

Foug(ty+2) = T(F (1), F,(t2)) = 1—4,

LemMa 1. A subset A =S is bounded iff A = S(t, A,) for some t and 4,.

Let & = {S(t, A,)}nen> Where {4,), .y = A has the form stated in Propo-
sition 1. For a subset 4 = § and for every 4,4 define

72, (A) =inf {t: A < F+8(t, &) for a finite set F = §}.
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LEMMA 2. A set A < § is precompact iff y; (A) =0 for every 4, €4.

Definition 2. Let (S, %, T) be 2 random normed space with a
continuous H-type t-norm T. A multivalued mapping f: C — 2(S), defined
on a subset C of §, is said to be probabilistic condensing if, for every bounded
non-precompact set A = C, y;, (f(4)) < 75, (4) for every 4, €4 and v, (f(4)
<7y, (A4) for at least one 4. €A.

TueoreM 1. Let (S, %, T) be a random normed space with a continiious
H-type t-norm T and let C be a complete convex subset of S. Suppose that
f: C > P(C) is a probabilistic condensing upper semicontinuous rultivalued

mapping such that f(p)y is closed and convex for every peC, and f(C) is

bounded. Then f has a fixed point in C.

Proof. Let us recall the fixed point result of Himmelberg, Porter and
Van Vieck [12]. The multivalued mapping f is closed valued and upper
semicontinuous, so it has a closed graph. Then it is sufficient to show that f
is condensing in the sense of [12] relative to the family <.

Indeed, let 4 < C be a bounded, but not precompact subset of C. Then

Q(A) =!8, A)ey: A<K+S8(t, &) for some precompact K!.

To prove that Q(4) is properly contained in Q(f(4)), choose
S(e, ) eQ(A). .

There is a precompact K for which 4 « K+S§(e, 1) and y,(4) <e.
Indeed, if y,(A4) > ¢, we choose t such that ¢+t < y;(A4). Since the set K is
precompact, there is a finite set F for which K < F+S(t, 4). Hence

A <K+8(, ) = F+S8(t, )+8(, ) c F+S(t+e, 4),

which contradicts t+¢& < y,(4). Thus y,(4) <& and from the condensing
hypothesis it follows that p,(f(A4)) < y,(4) <& This, obviously, implies
S(e, ) €Q(f(4)). Hence Q(A4) = Q(f(A)). This inclusion is proper since, if 1
is chosen such that y,(f(4)) <y;(4) and 7e(y,(f(4)), 71(4), we have
S(t, ) eQ(f () but SE )¢Q(A).

The existence of the fixed point follows from the following

TueEoREM A [12]. Let C be a non-empty complete convex subset of a
separated locally convex space E, and let f: C - P(C) be a condensing
multivalued mapping with convex values, closed graph, and bounded range.
Then f has a fixed point.

This result inclines one to study the connection between condensing

mappings as defined by Himmelberg and Van Vleck and y-condensing
mappings in general, where y is a random measure of non-compactness. To
this purpose let us note that Theorem 2.2 of [1] takes place also for more
general situations, i.e.,




bounded set, as 4 = S(t, A) for some ¢ and A.
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TH]:OREM 2. Let (S, #, T) be a random normed space with a continuous
H-type t-norm 1. Then there is a random measure of non-compactness y such
that every mapping.is condensing in the sense of Himmelberg, Porter and Van
Vieck relative to & iff it is probabilistic y-condensing.

Proof. Let f: (S, #, T) = 2(S) be a condensing mapping relative to <.
Then there is a (t5, 4g) and a non-precompact set 4 S such that
f(A) € 8(to, Ao)+ K, for a precompact set K, =8, but 4 & S(ty, 4o)+K
whichever be the precompact set K — S. Hence there exists a t €R such that

supsup ,/1 edA: 1K = precompact subset A S, AH+K)

t' <t

< supsup {AeA: 3K = precompact subset f4) < S(t A +K}.
<t

_Let—- -
y4(t) = supsup l/l EA 31 K = precompact subset A =8, }L)+K‘

t <t

We will prove that y, is -a random measure of non-compactness on
2(S), whereas f is a probabilistic y-condensing mapping.

First we shall show that y, = H, iff A is a precompact set. Indeed, let
teR™ and leA. Choose t'eR™ and A'€A such that

_ S, )+S5@, ¥) <S8, A). ,

From y, = H, it follows that there exists a precompact subset K’ such
that 4 = §(¢', /)+K'. Since K’ is a precompact subset, there exists also a
finite set F’ such that K' = S(t', )+ F’, hence A <§(t, )+ F', ie. A is a
precompact subset. ‘

Conversely, if 4 is a precompact subset, then for every (t, 4) there is a
finite set F such that A CS(t A)+F; hence y, = H,.

It is also true that y,€4*. Furthermore, y,€9"* if Aisa probablhstlc

Moreover, y is even monotone, subadditive, 1nvar1ant with respect to the
closure and to a convex hull.

The first three properties follow nnmedlately For invariance with
respect to a convex hull it is sufficient to prove that 7y,,=7,. So let
S(t, 1) € % and let K be a precompact subset such that A = S(t, )+ K. Then
co K is also precompact. Since S(z, 4) is convex, S, N+coK is also convex
and S(t, A}+coK 2co A. Hence

Yeou (f) = supsup (1€, IK = precompact, coA =8¢, )+K! > yA(t)

<t

and thus we have proved that v, is a random measure of non-compactness
_ associated to the condensing mapping f.
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fis y-condensing since there exists a pair (o, 40) such that there exists a
precompact set K, for which f(4) =8(to, o)+ Ko, but A & S(ty, Ag)+K,
whatever be the precompact set K — §. Indeed, in this case y .4, (to) > 7.4(to)
and, generally, 7,04 (t) = y.4(0).

Conversely, let f be a probabilistic y-condensing mapping. If 4 €2(S) is
such that Q(A4) # &, then A is a non-precompact set, i.e. y, < H,. Since f is
y-condensing, we have 7,4 (f) > y,(t), hence there exists a ¢ <t such that
f(4) =S, )+K, for a precompact subset K,, but A ¢ S(t', )+ K, what-
ever- be the precompact set K. Therefore S(t', 1) €Q(f (4)), but S(z', )¢ Q(A4),
i.e. fis a condensing mapping relative to %, and the proof of the theorem is
completed.

Remark. This result allows us to state the fixed point theorems with
respect to the condensing mapping as defined by Himmelberg, Porter and
Van Vleck relative to &, which are also true for random normed spaces
relative to the y-condensing mapping. Conversely, the fixed point theorem of
Himmelberg, Porter and Van Vleck in random normed spaces can be derived
from the previous theorem for a probabilistic y-condensing mapping, where
y is as stated above. '

In order to give an example of how to utilize the probabilistic property
to derive new fixed point theorems, let us remember

Definition 3. A multivalued mapping (multifunction) f: C = § — 2(S)
is a probabilistic contraction if there exists a constant £, 0 <k < 1, such that,
for p, geC and ref(p), there exists a point sef(g) with

F, ()= F,_,(t) for all t>0.

Let us also recall that a multivalued mapping h: C — 2(S) is called
completely continuous if h(B) is precompact, whenever B is a bounded subset
of C.

_ A probabilistic and multifunction analogy of Krasnoselskii’s theorem for
random normed spaces with the H-type t-norm T can be stated as

THEOREM 3. Suppose C is a complete convex subset of the random normed
space (S, F, T). Let f: C — P (C) be an upper semicontinuous compact convex
valued mapping of C into itself. If f =g+h, where g is a compact valued
contraction and h is completely continuous, then f has a fixed point.

Proof. Let us first consider a result which is of interest also by itself.

Lemma 3. Let f: C — P(S) be a multivalued mapping such that f = g+h,
where g is a compact valued contraction and h is completely continuous. Then f
is probabilistic condensing.

Proof. Let B be a bounded non-precompact subset of the domain of f.
We shall show that, for every Aed, there is a t' < y,(B) such that f(B) <
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F+S8(t', 2) for some finite set F. This will prove that f is probabilistic

condensing.
Let £ > 0 be an arbitrary positive number and let K be the contraction
constant of g. We choose ¢ and t' such that kt <t' <y, (B)+¢ =t. v
Since t > y;(B), there exists a finite set G such that B < G+8(t, A).
Moreover, since h(B) is contained in a precompact set, there exists a finite set
H such that h(B) = H+S((r'—2k)/2, A). Let I, be a finite set, for every r €G,
such that g(r) c I, +S((t' —kt)/2, ).

... Now define J = H+{J iI,: reG} which is clearly finite.-We shall prove

next that f(B) cJ+8(, A).

Let peB and g be an arbitrary element of g(p). Let r €G be such that
F,_.(t) > 1-4, and choose s €g(r) such that F,_,(kt) > F,_,(:) > 1—2A. The-
re is a uel, for which it is true that F,_ ((t¢ —kz)/2) > 1—-A. Thus

Fo o +kt)/2) 2 T (Fue (' —k0)/2), F_y(kt)) > T(1 -4, 1-2) = 1-4,

ie. g(B) =U I,: reG)+5((t' +ke)/2, A).
We can now conclude that

f(B) =g(B)+h(B) <UL, reG)+8((t' +koy/2, )+ H+
+5((t —key2, A) T +8(t, 4).

Thus  y,(f(B) <t <y,(B)+& which, obviously, means that
7a (f (B)) < 7:(B).

To see that y,(f(B)) < y,(B) for at least one A €4, note that if y,(B) > 0,
then ¢ can be chosen to be zero. Hence f is condensing.

Lemma 3 and Theorem 1 show that f has a fixed point. Hence the proof
of Theorem 3 is completed.

Some other applications of condensing multivalued mappings on ran-
dom normed spaces to the problem of stability of solutions of some classes
of multivalued random operator equations will be given in-a subsequent

- work.
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