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IN PMSPACES AND APPLICATIONS 

BY 

GH. CONSTANTIN AND I. ISTBATESCU ( T I M ~ A R A )  
- 

Abstracz. The aim of this note is to extend some results of 151 
by introducing a measure of noncompactness and a corresponding 
class of probabilistic condensing rnultivalued mappings. A characteri- 
zation of condensing mappings in the sense of Bimmelberg, Porter 
and Van Vleck [I23 is given and some results on the existence of 
fixed points with applications in the random mukivalued operator 
equations are obtained. 

The notion of measure of non-compactness has been firstly introduced 
by Kuratowski [13] and subsequently axiomatically generalized by Sadovski 
[17], Goldenstein, Gohberg and Markus [a], Petryshyn and Fitzpatrick 
[14], Himmelberg, Porter and Van Vleck [12], and others. The probabilistic 
measures of non-compactness have been introduced by Bocgan and Constan- 
tin in [3, 41. The interesting results in fix point theory and random operator 
equations have been given by Bocpan [I, 21, HadziE [lo, 111, Cain [ 5 ] ,  

Constantin and IstrZiJescu [6,  71, and Radu [15]. 
Let A +  be the set of the distribution functions of all non-negative real 

random variables. Let S be a linear space and 

be a probabilistic norm such that (S, 9, T )  is a random normed space, i.e., 
1. F, = H ,  iff p = 0 (H, is the characteristic function of (0, GO)); 

2. F,,(x) = F,(x/li() for every x > 0, IZ # 0 in the scalar field and p ES; 
3. F , + , ( x +  y) 2 T(F,(x), F,(Y)) for every p, q ES and x, y > 0, where T 

is a t-norm such that T 2 T,. 
A t-norm is a function T [0, 11 x[O, 11 +[0, 11 which is associative, 

commutative, non-decreasing in every place and such that T(a, I) = a for 
every a E [ O ,  11. T, is the t-norm defined by T, (x, y) = max (x + y - 1, 0). 
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An interesting class of taorms weaker than Min is introduced by 
HadziE [9] as follows: 

Defini t ion 1.. A t-norm T is of H-type (or T ~ ; s v 3  if [Tn(t)l,& is 
equicontinuous at t = 1, where ~ ' ( t )  = T(t, t ) ,  Tnt'(t) = T(Tn(tj), rz 3 1, 
t €LO, 11. 

Write S ( t ,  2) = Ip €3:  F p ( t )  3 1-11 and $(t ,  A) = i p ~ S :  F p ( t )  2 1 - A ) .  
PRo~osr~lo~ 1. Let (S, 3, T )  be a random normed space and lel T be a 

continuous H-type r-norm. Let A be the set of all A, E R +  such that il,j,,, is  a 
monotone decreasing, convergent to zero sequence and T(l -A,, 2 -L,J = 
1 - 1,. Then the family $(t; 1,) !,,, is a generalized basis of the neighbnurhood 
system . $'* of the origin. This neighbuurhood system determines a Hausdorff 
IocialIy conuex tvpoEogical vector space. 

Proof.  It is known [9] that any random normed space with a conti- 
nuous H-type t-norm T is in the ( E ,  2,)-topology a locally convex topological 
space. 

The family {S(r, having the properties mentioned in the hypot- 
hesis, is a generalized basis for A', since for every V E , & ~  there is an 
S ( E ,  A3 c V and a A:, < A' such that 

On the other hand, S(E, j.) 1 S ( E ,  Aj implies that S(E, A) 
The existence for every 2' > 0 of a I: such that T(&, 2;) = K i  follows 

from the characterization of the H-type r-norm ([16], Lemma I), i.e., since T 
is continuous and H-type, it follows that for every a > 0 there is a b > a such 
that T(b, b) = b < 1. 

To prove convexity, take p, q &(t, A& and let r = up+(l -u) q, 
0 < u < 1, and then consider 

Thus r d ( r ,  A,,). 
Remark .  We write S(t,, l&+S(tz ,  i,) c S(t, + tz, A,J since, for every 

p&(t1, A3 and q ~ S ( t ~ ,  Ad, 

F p + g  ( t ~  f t2) 2 T(Fp(fl), Fq(t~)) 3 1 -An. 

LEMMA 1. A subset A c S is bounded ifS A E S(t,  RJ for some t and in. 
Let 9' = [S(t, An)InEN, where fin),,, = A has the form stated in Propo- 

sition 1. For a subset A c S and for every A, E A  define 

y,,(A) =inf i t :  A c F + S ( ~ ,  1,) for a finite set F c S ) .  
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LEMMA 2. A set A c S is precompnct ifl y,,(A) = 0 for every Ak EA. 

Defin i t ion  2. Let (S, 9, T )  be a random normed space with a 
continuous H-type t-norm T A multivalued mapping f: C P(S), defined 
on a subset C of S, is said to be probabilistic condensing if, for every bounded 
non-precompact set A c C, y ~ ,  (f (A)) 6 p,, (A) for every A, E A and y,,, (f ( A ) )  
< y,,, (A) for at least one A,, E A. 

THEOREM 1. Let (S, F,  T )  be a random normed space with a continiious 
H-type t-norm T and kt C be a complete convex subset of S. Suppose that 
f: C 4 PIC) is a probabilistic condensing upper semicontinuous -multiualued 
mapping such that f ($is closed and convex for every ~ E C ,  and f(C) is 
bounded. Then f has a fixed point in C. 

Proof.  Let us recall the fixed point result of Hjmrnelberg, Porter and 
Van Vleck [12]. The multivalued mapping f is closed valued and upper 
semicontinuous, so it has a closed graph. Then it is sufficient to show that f 
is condensing in the sense of [12] relative to the family 9'. 

Indeed, let A c C be a bounded, but not precompact subset o f  C. Then 

Q (A)  = IS ( t  , A,) E 9': A c K + 3 (t , il,) for some precompact 8: . 

To prove that Q ( A )  is properly contained in Q (f (A)), choose 
S(E, 4 EQ(A). 

There is a precompact K for which A c K + $ ( E ,  A) and y, (A)  6 E. 

Indeed, if y,(A) > E, we choose t such that ~ + t  < y,,(A). Since the set K is 
precompact, there is a finite set F for which K c F+S(t ,  A). Hence 

which contradicts t + ~  < yA(A). Thus y,(A) < E and from the condensing 
hypothesis it follows that y, (f (A) )  < y,  (A)  < 8 .  This, obviously, implies 
S ( E ,  A) EEQ( f (A)). Hence Q ( A )  c Q (f (A)). This inclusion is proper since, if A 
is chosen such that y, (f (A)) < y, (A) and t ~ ( y ,  (f (A)), y, (A)), we have 

J)EQ(f (A) )  but SF, 4 $ Q ( A ) .  
The existence of the fixed point follows from the following 
THEOREM A 1121. Let C be a non-empty complete convex subset of a 

separated locally convex space E, and let f: C + 9 ( C )  be a condensing 
multivalued mapping with convex- values, closed graph, and bounded range. 
Then f has a ,fixed point. 

This result inclines one to study the connection between condensing 
mappings as defined by Himmelberg and Van Vleck and y-condensing 
mappings in general, where y  is a random measure of non-compactness. To 
this purpose let us note that Theorem 2.2 of [I] takes place also for more 
general situations, i.e., 
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THEOREM 2. Ler ( S ,  9, T) be n rnsdnm normed spcrce with a cuntirzuous 
H-type t-~zorm 'I: Then there is a  andon on^ measzrre of non-compactness y such 
that every mapping;is condensing 112 the sense of Himmelberg, Porter and Van 
Vleck relative to Y if it is probabilistic y-condensing, 

P r o o f .  Let f: (S, .F, T )  4 B(S) be a condensing mapping relative to 9". 
Then there is a [ to ,  A,) and a non-precompact set A r S such that 
f ( A )  G S(to,  /lo) + KO for a precompact set K O  c S, but A 6 $(to, A,) + K 
whichever be the precompact set K c S. Hence there exists a t E R  such that 

sup sup E A :  3 K = precompact subset, A I f ( t t ,  .,i) .)s K )  
t' C l  .. .- 

< sup sup !A G A :  3 K = precompact subset, f (A) G S(t', A) + K 1 . 
1' < l  

- 
Let- . - 

yA (t) = sup sup { A  EA, 3 K = precompact subset, A G S(tt, A) + K j  . 
t' < I  

We will prove that y, is a random measure of non-compactness on 
B(S), whereas f is a probabilistic y-condensing mapping. 

First we shall show that 17, = H ,  if A is a precompact set. Indeed, let 
r ER+ and A. € A .  Choose t '€R+ and A'EA such that 

From yA = H ,  it follows that there exists a precompact subset K' such 
that A c $(tf, 2')+Kf. Since K' is a precompact subset, there exists also a 
finite set F' such that K' G S(t', A')+ F', hence A L S(t, A)+  F', i.e. A is a 
precompact subset. 

Conversely, if A  is a precompact subset, then for every (t, A) there is a 
finite set F such that A c $(t, i) + F; hence yA = H , .  

It is also true that y, E A +. Furthermore, y, €9' if A  is a probabilistic 
bounded set, as A  c f ( t ,  i) for some t and A. 

Moreover, y is even monotone, subadditive, invariant with respect to the 
closure and to a convex hull. 

The first three properties follow immediately. For invariance with 
respect to a convex hull it is sufficient to prove that yc,, 2 y,. So let' 
3(t ,  I) E 9' and let K be a precompact subset such that A r $(t ,  1) + K .  Then 
co K is also precompact. Since g( t ,  1) is convex, $ ( t ,  A) + c o K  is also convex 
and S(t, I )+coK 1 co A. Hence 

y c o ~  (t) = sup sup ! A  E A, 3 K = precompact, co A c S(tf, 1,) + K: 3 y, (t) 
I' -=I 

and thus we have proved that y, is a random measure of non-compactness 
associated to the condensing mapping J: 
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f is y-condensing since there exists a pair (to,  A,) such that there exists a 
precompact set K O  for which f (A) c S(t,, / l , )+K, ,  but A $ $( to ,  Ao)+K, 
whatever be the precompact set K c S .  Indeed, in this case y,(,,(t,) > y A ( t O )  
and, generally, ( t )  2 7 1 ~  ( t ) .  

Conversely, let f be a probabilistic y-condensing mapping. If A E P(S) is 
such that Q ( A )  # 9, then A is a non-precompact set, i.e. y, < H,. Since f is 
y-condensing, we have yrcAl ( t )  > yn (t), hence there exists a t' < t such that 
f ( A )  G ~ ( t ' ,  A) + K ,  for a precompact subset KO, but A $ ~ ( t ' ,  A) + K ,  what- 
ever be the precompact set K .  Therefore S(t ' ,  A] EEQ (f (A)), but Stt', A) $ Q (A), 
i.e. f is a condensing mapping relative to .Y', and the proof of tKe theorem is 
compked. 

Remark .  This result allows us to state the fixed point theorems with 
respect to the condensing mapping as defined by Himmelberg, Porter and 
Van Vleck relative to 9, which are also true for random normed spaces 
relative to the y-condensing mapping. Conversely, the fixed point theorem of 
Himmelberg, Porter and Van Vleck in random normed spaces can be derived 
from the previous theorem for a probabilistic y-condensing mapping, where 
y is as stated above. 

In order to give an example of how to utilize the probabilistic property 
to derive new fixed point theorems, let us remember 

De f in i t i on  3. A multivalued mapping (multifunction) .f: C c S + B(S) 
is a probabilistic contraction if there exists a constant k, 0 < k < 1, such that, 
for p, q EC and r ~ f ( p j ,  there exists a point s E f (q) with 

F , ~ , ( k t ) > F , - , ( t )  for all t > 0 .  

Let us also recall that a multivalued mapping h: C + P ( S )  is called 
completely continuous if h ( 3 )  is precompact, whenever B is a bounded subset 
of C. 

A probabilistic and multifunction analogy of Krasnoselskii's theorem for 
random normed spaces with the H-type t-norm T can be stated as 

THEOREM 3. Suppose C is a complete convex subset of the randonz normed 
space ( S ,  9, 7'). Let f: C + 9 ( C j  be an  upper semicontinuous compact convex 
valued mapping of C into itself. Iff = g f h ,  where g is a compact valued 
contraction and h is completely continuous, then f has a $xed point. 

Proof .  Let us first consider a result which is of interest also by itself. 
LEMMA 3. Let f: C + B ( S )  be a multivalued mapping such that f = g + h, 

where g is a compact valued contraction and h is compIetely continuous. Then f 
is probabilistic condensing. 

Proof .  Let B be a bounded non-precompact subset of the domain of$ 
We shall show that, for every 1 € A ,  there is a t' < y,(B) such that f (3) G 
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F + S @ ' ,  A) for some finite set F. This will prove that f is probabilistic 
condensing. 

Let E > 0 be an arbitrary positive number and let K be the contraction 
constant of g.  We choose t and t' such that kt < t f  < y,(B)+& = t. 

Since t > y,(B), there exists a finite set G such that B c G + S ( t ,  A). 
Moreover, since h(B) is contained in a precompact set, there exists a finite set 
H such that h(B)  c H + f ( ( t l - 2 k ) / 2 ,  A). Let I ,  be a finite set, for every ~ E G ,  
such that g (r)  c I ,  + S((rl - kt)/2, A). 
_ Now define 9 = H +  U \I ,:  r E G )  which is clearly finite. We shall prove 
next that f (23) G J+S(~' ,  A). 

- Let p EB and q be an arbitrary element of g(p ) .  Let r eG be such that 
F,- ,  ( t )  > 1 -A, and choose s ~g (r)  such that F,-, (kt) 3 F,-,  (t) > 1 - 1. The- 
re is a U-E Ir for which it is true that P,- ,  ((t' - kt)/2) > 1 -1. Thus 

F,-,((t1+Kt)/2) 2 T (F,-,((tr-kt)/2), &-,(kt))  2 T(1-A, 1 - A )  = I-A, 

i.e. g (B) E U I I,: r  s G  ] + $((tf  + k#)/2, A). 
We can now conclude that 

f (3) = g(B)+h(B)  G U { I , ,  r ~ ~ ] + S ( ( t ' + k t ) / 2 ,  A ) + M +  
t S((tt - kt)/2,  i) c J + $(t', A). 

Thus y, (f (B)) < t' < y, (B)  + E ,  which, obviously, means that 
Y f ( 1  Y ( 1  - 

To see that y, (f (B)) < y, (B) for at least one R E A, note that if y, (B)  > Oy 
then E can be chosen to be zero. Hence f is condensing. 

Lemma 3 and Theorem 1 show that f has a fixed point. Hence the proof 
of Theorem 3 is completed. 

Some other applications of condensing multivalued mappings on ran- 
dom normed spaces to the problem of stability of solutions of some classes 
of multivalued random operator equations will be given in. a subsequent 
work. 
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