PROBABILITY AND MATHEMATICAL STATISTICS

Vol. 10, Fasc. 1 (1989), p. 161-168

TOPOLOGY OF THE CONVERGENCE IN PROBABILITY ON A LINEAR SPAN OF A SEQUENCE OF INDEPENDENT RANDOM VARIABLES

BY

K. PIETRUSKA-PAŁUBA AND W. SMOLEŃSKI (WARSAW)

Abstract. Let X_1, X_2, \ldots be a sequence of independent symmetric Hilbert space valued non-degenerated random variables and let L_X denote the closed linear span of $\{X_n\}$ in $L_0(\Omega, \mathscr{F}, P; H)$. If L_X is a locally convex subspace of L_0 , then L_X is Banach iff L_X does not contain an isomorphic copy of \mathbb{R}^∞ iff

$$\sup P(X_n = 0) < 1.$$

If, moreover, X_n are equidistributed and $P(X_n = 0) = 0$, then

$$\left\{Y \in L_X: P\left(||Y|| > \frac{1}{201}\right) < \frac{1}{201}\right\}$$

is a bounded neighbourhood of zero.

In this note we will investigate the topology of the convergence in probability for random variables of the form $\sum a_n X_n$, n = 1, 2, ..., where a_n are real numbers, $\{X_n\}$ is a fixed sequence of independent symmetric nondegenerated Hilbert space valued random variables and the series converges in probability. We denote the linear space of random variables of this form by L_X . It is easy to see that L_X endowed with the topology τ_P of the convergence in probability is a complete separable linear-metric space.

THEOREM 1. If (L_x, τ_P) is locally convex, then the following conditions are equivalent:

(i) (L_X, τ_P) is a Banach space;

(ii) L_X does not contain a subspace isomorphic to R^{∞} ;

(iii) $\sup P(X_n = 0) < 1$.

Before proving Theorem 1, we will introduce some notation and prove some lemmas. We use ":=" as "equal by definition".

11 - Probability Vol. 10, Fasc. 1

K. Pietruska-Pałuba and W. Smoleński

For n = 1, 2, ... and $t \in R$ we have $Q_n(t) := E \min(1, ||tX_n||^2)$. It is easy to see that $Q_n(0) = 0$,

$$\lim_{t\to\infty}Q_n(t)=1-P(X_n=0),$$

$$Q_n(t) = Q_n(-t)$$
 and, for $t_1 \ge t_2 \ge 0$, $Q_n(t_1) \ge Q_n(t_2)$.
For $\varepsilon > 0$

$$U_{\varepsilon} := \{Y \in L_X : Y = \sum a_n X_n \text{ and } \sum Q_n(a_n) < \varepsilon \},\$$
$$V_{\varepsilon} := \{Y \in L_X : P(||Y|| > \varepsilon) < \varepsilon \}.$$

Lemma 1. $\varepsilon U_{\varepsilon} \subset V_{2\varepsilon} \subset U_{400\varepsilon}$ for $0 < \varepsilon < 1/400$.

Proof. The inclusions follow directly from the following beautiful estimates [4]:

(1) if $0 < \varepsilon < 1/200$ and $P(\|\sum a_n X_n\| > \varepsilon) < \varepsilon$, then $\sum Q_n(a_n) < 200\varepsilon$;

(2) $P(||\sum a_n X_n|| > \varepsilon) < 2\sum Q_n(a_n \varepsilon^{-1})$ for every $\varepsilon > 0$.

Remark. Propositions (1) and (2) are stated in [4] under the assumption that X_1, X_2, \ldots are equidistributed real random variables. But those assumptions are not used in the proof, which can be rewritten (with obvious changes) in the Hilbert space case.

LEMMA 2. If conv $U_{\varepsilon} \subset U_{\eta}$ for some $0 < \varepsilon < 1 - \sup P(X_{\eta} = 0)$ and $\eta > 0$, then

$$\forall_{\delta>0} \exists_{r=r(\delta)>0} \forall_{n\in\mathbb{N}} \forall_{t\in\mathbb{R}} \quad Q_n(t) < \varepsilon \Rightarrow Q_n(rt) < \delta.$$

Proof. Let us assume that the implication is false. Then for some $\delta > 0$ there exist sequences (n_k) and (t_k) of positive integers such that

$$Q_{n_k}(t_k) < \varepsilon$$
 and $Q_{n_k}\left(\frac{t_k}{k}\right) \ge \delta$.

Since $\varepsilon < 1 - \sup P(X_n = 0)$, we have

$$\forall_{n\in N} \exists_{t_n>0} \forall_{t>t_n} \quad Q_n(t)>\varepsilon.$$

Thus the boundedness of (n_k) would entail the boundedness of (t_k) . But for (n_k) and (t_k) bounded we would have

$$\lim_{k\to\infty}Q_{n_k}\left(\frac{t_k}{k}\right)=0.$$

Hence we can assume that (n_k) is strictly increasing.

162

Consider the following sequence of elements of conv U_{ε} :

$$Y_{1} = t_{1} X_{n_{1}},$$

$$Y_{2} = \frac{1}{2} t_{2} X_{n_{2}} + \frac{1}{2} t_{3} X_{n_{3}},$$

$$\dots$$

$$Y_{m} = \sum_{k=m}^{2m-1} \frac{1}{m} t_{k} X_{n_{k}}.$$

It is clear that

$$\sum_{k=m}^{2m-1} Q_{n_k}\left(\frac{t_k}{m}\right) \ge \sum_{k=m}^{2m-1} Q_{n_k}\left(\frac{t_k}{k}\right) \ge m\delta.$$

This contradicts the assumption of the lemma that Y_m belongs to U_η . LEMMA 3. Let ε , $\lambda > 0$ and let $Z = \sum b_n X_n$, $n = 1, 2, ..., be an element of <math>U_{\varepsilon}$. If $Q_n(b_n) < \lambda$ for every n, then $\lambda Z/(\lambda + \varepsilon)$ is an element of conv U_{λ} .

Proof. Since $Q_n(b_n) < \lambda$, there exist positive integers M and $1 = n_0 < n_1$ $< n_2 < \ldots < n_M$ such that

Consequently, random variables

$$Z_k = \sum_{n=n_{k-1}}^{n_k-1} b_n X_n \ (k=1, 2, ..., M) \text{ and } Z_{M+1} = \sum_{n=n_M}^{\infty} b_n X_n$$

are elements of U_{λ} such that $Z_1 + Z_2 + \ldots + Z_M + Z_{M+1} = Z$. Obviously $M+1 \leq \varepsilon/\lambda + 1$. Thus $\lambda Z/(\lambda + \varepsilon) \in U_{\lambda}$. LEMMA 4. If

$$\sum_{n=1}^{\infty} P(X_n \neq 0) < \infty,$$

then (L_{χ}, τ_{P}) is isomorphic to R^{∞} .

Proof. We have to prove that:

(a) for every sequence of real numbers (a_n) the series $\sum a_n X_n$, n = 1, 2, ..., converges in probability;

(b) the sequence

$$\left(\sum_{n=1}^{\infty} a_{n,k} X_n\right)_{k=1}^{\infty}$$

of elements of L_x converges to zero in probability iff

$$\lim_{k \to \infty} a_{n,k} = 0 \quad \text{for every } n.$$

Both (a) and (b) follow immediately from the Borel-Cantelli Lemma.

Proof of the Theorem 1. (i) \Rightarrow (ii) is obvious.

 \sim (iii) $\Rightarrow \sim$ (ii). Let (n_k) be an increasing sequence of positive integers such that $P(X_{n_k} = 0) > 1 - 1/2^k$. By Lemma 4, the closed linear span of (X_{n_k}) is ismorphic to R^{∞} .

(iii) \Rightarrow (i). It is enough to prove the existence of a bounded neighborhood of zero. Thus, by Lemma 1, it is enough to show that

$$\exists_{\varepsilon>0}\,\forall_{\eta>0}\,\exists_{s>0}\quad sU_{\varepsilon}\subset U_{\eta}.$$

Let us take $\delta > 0$. Local convexity of (L_X, τ_P) and Lemma 1 imply the existence of an $\varepsilon > 0$ such that conv $U_{\varepsilon} \subset U_{\delta}$. We can assume that $\varepsilon < 1 - \sup P(X_n = 0)$.

Let us fix an $\eta > 0$ and let us take a $\lambda > 0$ such that conv $U_{\lambda} \subset U_{\eta/2}$. By Lemma 2 there exists an $r = r(\eta \lambda/2\varepsilon)$ such that

$$\forall_{n\in\mathbb{N}}\,\forall_{t\in\mathbb{R}}\qquad Q_n(t)<\varepsilon\Rightarrow Q_n(rt)<\frac{\eta\lambda}{2\varepsilon}.$$

We claim that

*)
$$sU_{\varepsilon} \subset U_{\eta}$$
 for $s = \min\left(\frac{1}{r}, \frac{\lambda}{\lambda + \varepsilon}\right)$.

Let $Y = \sum_{n=1}^{\infty} a_n X_n$ be an element of U_{ε} . Let $N_{\lambda} = \{n \in N \colon Q_n(a_n) \ge \lambda\}$. Since $Q_n(a_n) < \varepsilon$, we have $Q_n(ra_n) < \eta \lambda/2\varepsilon$. Obviously card $N_{\lambda} \le \varepsilon/\lambda$. Hence

$$\sum_{n\in N_{\lambda}}Q_n(ra_n)<\frac{\eta}{2}.$$

On the other hand, by Lemma 3, we have

$$\frac{\lambda}{\lambda+\varepsilon}\sum_{n\notin N_{\lambda}}a_{n}X_{n}\in\operatorname{conv} U_{\lambda}\subset U_{\eta/2}.$$

Thus

$$\sum_{n=1}^{\infty} Q_n(sa_n) < \eta,$$

q.e.d.

As a corollary we get

THEOREM 2. If X_1, X_2, \ldots are equidistributed and (L_X, τ_P) is locally convex, then

(a) $E ||X_1||^p < \infty$, for every 0

(b) if, moreover, $P(X_1 = 0) = 0$, then

$$\left\{ Y \in L_X: \ P\left(||Y|| > \frac{1}{201} \right) < \frac{1}{201} \right\}$$

is a bounded neighbourhood of zero in (L_X, τ_P) .

Proof. (a) From Theorem 1 we know that (L_X, τ_P) is a Banach space. Thus, by a theorem of Nikishin ([5], Theorem 1)(¹) there exists an $A \in \mathscr{F}$, $P(A) \ge \frac{1}{2}$, such that $E ||X_n||^p \chi_A \le c_p$. Since X_n are equidistributed and independent, it follows that $E ||X_1||^p < \infty$ for every 0 .

(b) In view of Lemma 1 it is enough to prove that

$$\forall_{\eta>0} \exists_{s>0} \quad sU_{\varepsilon} \subset U_{\eta}, \quad \text{where } \varepsilon = \frac{200}{201}.$$

Let us fix $\eta > 0$ and let us take $\lambda > 0$ such that conv $U_{\lambda} \subset U_{\eta/2}$. Since $Q_1 = Q_2 = \dots$ and $\lim Q_1(t) = 1$, there exists an r > 0 such that

$$Q_n(t) < \varepsilon \Rightarrow Q_n(rt) < \frac{\eta\lambda}{2\varepsilon}.$$

Now we can rewrite the part of the previous proof starting from (*).

Remarks. The case of H = R and X_1, X_2, \ldots equidistributed symmetric random variables is better known.

1. It is proved in [1] that, for equidistributed real symmetric random variables, "locally convex" and "Banach" is the same for (L_X, τ_P) (see also [2] for a survey of results).

165

⁽¹⁾ It is stated for H = R and $\Omega = [0, 1]$ but, again, the proof can be just re-written to get what we want.

K. Pietruska-Pałuba and W. Smoleński

2. The case of X_1, X_2, \ldots real symmetric equidistributed, with $P(X_1 = 1) = P(X_1 = -1) = \frac{1}{2}$, shows that $\{Y \in L_X: P(||Y|| > \frac{1}{2}) < \frac{1}{2}\}$ is not, in general, a bounded neighbourhood for a locally convex τ_P . However, in this real case $\frac{1}{2} - \varepsilon$ works for every $\varepsilon > 0$. The last statement follows from the following estimate (obtained from Inequality II, p. 6, in [3] and from [6]): for every $0 < \lambda < \frac{1}{2}$, if $P(|\sum a_n X_n| > \varrho) < \lambda$, then

$$\sqrt{\sum a_n^2} < 4 \frac{\varrho}{1-2\lambda}.$$

3. For every $1 \le p < 2$ there exists a sequence X_1, X_2, \ldots of equidistributed symmetric independent real r.v.'s such that $E|X_1|^p < \infty$, but (L_X, τ_P) is not locally convex $\binom{2}{2}$.

Indeed, let (l_i) be an increasing sequence of positive integers such that

(*)
$$\sum_{i=1}^{\infty} l_i \left(\frac{l_{i-1}}{l_i}\right)^{2/p} i^{2/p} < \infty, \quad l_0 = 1$$

(e.g. $l_i = 2^{c^{i+i_0}}, c > p/(2-p)$). We put $a_i = (l_{i-1}/l_i)^2 i^2, i = 1, 2, ...$ Then

(**)

$$\sum_{i=1}^{\infty} l_i a_i^{1/p} < \infty \, .$$

Let g_1, g_2, \ldots be a sequence of independent symmetric random variables with distribution

$$P(g_i = l_i) = P(g_i = -l_i) = a_i = \frac{1}{2} - \frac{1}{2}P(g_i = 0)$$

and let $(g_{i1})_{i=1}^{\infty}, (g_{i2})_{i=1}^{\infty}, \dots$ be independent copies of the sequence $(g_i)_{i=1}^{\infty}$. We put

$$X_j = \sum_{i=1}^{\infty} g_{ij}.$$

It follows from (**) that $E|X_j|^p < \infty$. Let

$$A_i = \frac{i}{l_i}, \quad k_i = \frac{1}{a_i i} = \left(\frac{l_{i-1}}{l_i}\right)^{-2} i^{-3}.$$

(²) We owe this remark to S. Kwapień.

Topology of the convergence in probability

For
$$0 < \delta < 1$$
 we have

$$P(|A_i \sum_{j=1}^{k_i} X_j| > \delta) \leq P(|A_i \sum_{j=1}^{k_i} \sum_{s=i}^{\infty} g_{sj}| > \frac{\delta}{2}) + P(|A_i \sum_{j=1}^{k_i} \sum_{s=1}^{i-1} g_{sj}| > \frac{\delta}{2}) = I + II,$$

$$I \leq \sum_{j=1}^{k_i} \sum_{s=i}^{\infty} P(|g_{sj}| \neq 0) = k_i \sum_{s=i}^{\infty} a_s \leq 2Mk_i a_i = \frac{2M}{i} \to 0$$

((*) implies that $\sum_{s=i}^{\infty} a_s \leq Ma_i$ for some constant M),

$$\begin{split} \Pi \leqslant \left(\frac{2}{\delta}\right)^2 \mathbf{E} \left|A_i \sum_{j=1}^{k_i} \sum_{s=1}^{i-1} g_{sj}\right|^2 &= \frac{4}{\delta^2} A_i^2 k_i \left(\sum_{s=1}^{i-1} l_s^2 a_s\right) \\ &= \frac{4}{\delta^2} A_i^2 k_i \left(\sum_{s=1}^{i-1} l_{s-1}^2 s^2\right) \leqslant \frac{4}{\delta^2} M_1 A_i^2 k_i l_{i-1}^2 &= \frac{4}{\delta^2} \frac{M_1}{i} \to 0 \end{split}$$

((*) implies that $\sum_{s=1}^{i-1} l_{s-1}^2 s^2 \leq M_1 l_{i-1}^2$ for some constant M_1). Thus for every $0 < \delta < 1$ there exists an *i* such that

$$P(|A_i\sum_{j=1}^{k_i}X_j| > \delta) < \delta.$$

On the other hand, for every i we have

$$\begin{split} P\left(\frac{1}{i} \left| A_{i} \sum_{j=1}^{k_{i}} X_{j} + A_{i} \sum_{j=k_{i}+1}^{2k_{i}} X_{j} + \ldots + A_{i} \sum_{j=(i-1)k_{i}+1}^{ik_{i}} X_{j} \right| \geq \frac{1}{5} \right) \\ &= P\left(\frac{A_{i}}{i} \left| \sum_{j=1}^{ik_{i}} X_{j} \right| \geq \frac{1}{5} \right) \geq \frac{1}{2} P\left(\frac{A_{i}}{i} \left| \sum_{j=1}^{ik_{i}} g_{ij} \right| \geq \frac{1}{5} \right) \\ &\geq \frac{1}{4} P\left(\max_{1 \leq j \leq ik_{i}} \left| \frac{A_{i}}{i} g_{ij} \right| \geq \frac{1}{5} \right) = \frac{1}{4} (1 - (1 - 2a_{i})^{ik_{i}}) \\ &\geq \frac{1}{4} (1 - e^{-2ia_{i}k_{i}}) = \frac{1}{4} (1 - e^{-2}) \geq \frac{1}{5}, \end{split}$$

which shows that (L_X, τ_P) is not locally convex.

4. In this case we can give a simple sufficient condition to have (L_X, τ_P) locally convex, namely, for $t > t_0$, $tP(|X_1| > t)$ is decreasing.

It can be obtained by the calculating derivative of Q(x)/x. This condition

K. Pietruska-Pałuba and W. Smoleński

is sufficient for Q(x)/x to be decreasing in some small neighbourhood of zero, so that Q can be replaced by an equivalent convex function Q_1 .

Acknowledgement. We would like to thank S. Kwapień for his helpful advice.

REFERENCES

[1] J. Bretagnolle and D. Dacunha-Castelle, Formes linéaires aléatoires et espaces d'Orlicz, Ann. Sci. Ec. Norm. Sup., Série 4, 2.4 (1969), p. 437-480.

[2] D. Dacunha-Castelle, Principe de dualité pour des espaces de suites associés à une suite
 de variables aléatoires, Lecture Notes in Math. 124, p. 47-59, Springer, Berlin 1970.

- [3] J.-P. Kahane, Some random series of functions, Lexington 1968.
- [4] S. Kwapień and W. A. Woyczyński, Double stochastic integrals random quadratic forms and random series in Orlicz spaces, Ann. of Prob. 15.3, p. 1072–1096.
- [5] E. M. Nikishin, Resonance theorems and superlinear operators, Uspekhi Mat. Nauk 25.6 (1970), p. 129–191.
- [6] S. J. Szarek, On the best constant in the Khinchine inequality, Studia Math. 58 (1976), p. 197-208.

Department of Mathematics Warsaw University PKiN, 9p. 00-901 Warsaw, Poland Institute of Mathematics Warsaw Technical University Pl. Jedności Robot. 1 00-661 Warsaw, Poland

Received on 9. 12. 1986

168