TOPOLOGY OF THE CONVERGENCE IN PROBABILITY ON A LINEAR SPAN OF A SEQUENCE OF INDEPENDENT RANDOM VARIABLES

K. PIETRUSKA-PALUBA AND W. SMOLEŃSKI (Warsaw)

Abstract. Let X_{1}, X_{2}, \ldots be a sequence of independent symmetric Hilbert space valued non-degenerated random variables and let L_{X} denote the closed linear span of $\left\{X_{n}\right\}$ in $L_{0}(\Omega, \mathscr{F}, P ; H)$. If L_{X} is a locally convex subspace of L_{0}, then L_{X} is Banach iff L_{X} does not contain an isomorphic copy of R^{∞} iff

$$
\sup _{n} P\left(X_{n}=0\right)<1
$$

If, moreover, X_{n} are equidistributed and $P\left(X_{n}=0\right)=0$, then

$$
\left\{Y \in L_{X}: P\left(\|Y\|>\frac{1}{201}\right)<\frac{1}{201}\right\}
$$

is a bounded neighbourhood of zero.

In this note we will investigate the topology of the convergence in probability for random variables of the form $\sum a_{n} X_{n}, n=1,2, \ldots$, where a_{n} are real numbers, $\left\{X_{n}\right\}$ is a fixed sequence of independent symmetric nondegenerated Hilbert space valued random variables and the series converges in probability. We denote the linear space of random variables of this form by L_{X}. It is easy to see that L_{X} endowed with the topology τ_{P} of the convergence in probability is a complete separable linear-metric space.

Theorem 1. If $\left(L_{X}, \tau_{P}\right)$ is locally convex, then the following conditions are equivalent:
(i) $\left(L_{X}, \tau_{P}\right)$ is a Banach space;
(ii) L_{X} does not contain a subspace isomorphic to R^{∞};
(iii) $\sup P\left(X_{n}=0\right)<1$.

Before proving Theorem 1, we will introduce some notation and prove some lemmas. We use ":=" as "equal by definition".

For $n=1,2, \ldots$ and $t \in R$ we have $Q_{n}(t):=E \min \left(1,\left\|t X_{n}\right\|^{2}\right)$. It is easy to see that $Q_{n}(0)=0$,

$$
\lim _{t \rightarrow \infty} Q_{n}(t)=1-P\left(X_{n}=0\right)
$$

$Q_{n}(t)=Q_{n}(-t)$ and, for $t_{1} \geqslant t_{2} \geqslant 0, Q_{n}\left(t_{1}\right) \geqslant Q_{n}\left(t_{2}\right)$.
For $\varepsilon>0$

$$
\begin{gathered}
U_{\varepsilon}:=\left\{Y \in L_{X}: Y=\sum a_{n} X_{n} \text { and } \sum Q_{n}\left(a_{n}\right)<\varepsilon\right\}, \\
V_{\varepsilon}:=\left\{Y \in L_{X}: P(\|Y\|>\varepsilon)<\varepsilon\right\}
\end{gathered}
$$

Lemma 1. $\varepsilon U_{\varepsilon} \subset V_{2 \varepsilon} \subset U_{400 \varepsilon}$ for $0<\varepsilon<1 / 400$.
Proof. The inclusions follow directly from the following beautiful estimates [4]:
(1) if $0<\varepsilon<1 / 200$ and $P\left(\left\|\sum a_{n} X_{n}\right\|>\varepsilon\right)<\varepsilon$, then $\sum Q_{n}\left(a_{n}\right)<200 \varepsilon$;
(2) $P\left(\left\|\sum a_{n} X_{n}\right\|>\varepsilon\right)<2 \sum Q_{n}\left(a_{n} \varepsilon^{-1}\right)$ for every $\varepsilon>0$.

Remark. Propositions (1) and (2) are stated in [4] under the assumption that X_{1}, X_{2}, \ldots are equidistributed real random variables. But those assumptions are not used in the proof, which can be rewritten (with obvious changes) in the Hilbert space case.

Lemma 2. If $\operatorname{conv} U_{\varepsilon} \subset U_{\eta}$ for some $0<\varepsilon<1-\sup P\left(X_{n}=0\right)$ and $\eta>0$, then

$$
\forall_{\delta>0} \exists_{r=r(\delta)>0} \forall_{n \in N} \forall_{t \in R} \quad Q_{n}(t)<\varepsilon \Rightarrow Q_{n}(r t)<\delta
$$

Proof. Let us assume that the implication is false. Then for some $\delta>0$ there exist sequences $\left(n_{k}\right)$ and $\left(t_{k}\right)$ of positive integers such that

$$
Q_{n_{k}}\left(t_{k}\right)<\varepsilon \quad \text { and } \quad Q_{n_{k}}\left(\frac{t_{k}}{k}\right) \geqslant \delta
$$

Since $\varepsilon<1-\sup P\left(X_{n}=0\right)$, we have

$$
\forall_{n \in N} \exists_{t_{n}>0} \forall_{t>t_{n}} \quad Q_{n}(t)>\varepsilon .
$$

Thus the boundedness of $\left(n_{k}\right)$ would entail the boundedness of $\left(t_{k}\right)$. But for $\left(n_{k}\right)$ and $\left(t_{k}\right)$ bounded we would have

$$
\lim _{k \rightarrow \infty} Q_{n_{k}}\left(\frac{t_{k}}{k}\right)=0
$$

Hence we can assume that $\left(n_{k}\right)$ is strictly increasing.

Consider the following sequence of elements of conv U_{ε} :

$$
\begin{aligned}
& Y_{1}=t_{1} X_{n_{1}}, \\
& Y_{2}=\frac{1}{2} t_{2} X_{n_{2}}+\frac{1}{2} t_{3} X_{n_{3}}, \\
& \cdots \cdots \cdots \cdots \\
& Y_{m}=\sum_{k=m}^{2 m-1} \frac{1}{m} t_{k} X_{n_{k}} .
\end{aligned}
$$

It is clear that

$$
\sum_{k=m}^{2 m-1} Q_{n_{k}}\left(\frac{t_{k}}{m}\right) \geqslant \sum_{k=m}^{2 m-1} Q_{n_{k}}\left(\frac{t_{k}}{k}\right) \geqslant m \delta .
$$

This contradicts the assumption of the lemma that Y_{m} belongs to U_{η}. Lemma 3. Let $\varepsilon, \lambda>0$ and let $Z=\sum b_{n} X_{n}, n=1,2, \ldots$, be an element of U_{ε}. If $Q_{n}\left(b_{n}\right)<\lambda$ for every n, then $\lambda Z /(\lambda+\varepsilon)$ is an element of conv U_{λ}.

Proof. Since $Q_{n}\left(b_{n}\right)<\lambda$, there exist positive integers M and $1=n_{0}<n_{1}$ $<n_{2}<\ldots<n_{M}$ such that

$$
\begin{aligned}
& \sum_{n=1}^{n_{1}-1} Q_{n}\left(b_{n}\right)=\lambda_{1}<\lambda \quad \text { and } \quad Q_{n_{1}}\left(b_{n_{1}}\right) \geqslant \lambda-\lambda_{1}, \\
& \sum_{n=n_{1}}^{n_{2}-1} Q_{n}\left(b_{n}\right)=\lambda_{2}<\lambda \quad \text { and } \quad Q_{n_{2}}\left(b_{n_{2}}\right) \geqslant \lambda-\lambda_{2}, \\
& \ldots \ldots \ldots \ldots \\
& \sum_{n=n_{M-1}}^{n_{M}-1} Q_{n}\left(b_{n}\right)=\lambda_{M}<\lambda \quad \text { and } \quad Q_{n_{M}}\left(b_{n_{M}}\right) \geqslant \lambda-\lambda_{M}, \\
& \sum_{n=n_{M}}^{\infty} Q_{n}\left(b_{n}\right)<\lambda .
\end{aligned}
$$

Consequently, random variables

$$
Z_{k}=\sum_{n=n_{k}-1}^{n_{k}-1} b_{n} X_{n}(k=1,2, \ldots, M) \quad \text { and } \quad Z_{M+1}=\sum_{n=n_{M}}^{\infty} b_{n} X_{n}
$$

are elements of U_{λ} such that $Z_{1}+Z_{2}+\ldots+Z_{M}+Z_{M+1}=Z$.
Obviously $M+1 \leqslant \varepsilon / \lambda+1$. Thus $\lambda Z /(\lambda+\varepsilon) \in U_{\lambda}$.

Lemma 4. If

$$
\sum_{n=1}^{\infty} P\left(X_{n} \neq 0\right)<\infty
$$

then $\left(L_{X}, \tau_{P}\right)$ is isomorphic to R^{∞}.
Proof. We have to prove that:
(a) for every sequence of real numbers $\left(a_{n}\right)$ the series $\sum a_{n} X_{n}$, $n=1,2, \ldots$, converges in probability;
(b) the sequence

$$
\left(\sum_{n=1}^{\infty} a_{n, k} X_{n}\right)_{k=1}^{\infty}
$$

of elements of L_{X} converges to zero in probability iff

$$
\lim _{k \rightarrow \infty} a_{n, k}=0 \quad \text { for every } n
$$

Both (a) and (b) follow immediately from the Borel-Cantelli Lemma.
Proof of the Theorem 1. (i) \Rightarrow (ii) is obvious.
\sim (iii) $\Rightarrow \sim$ (ii). Let (n_{k}) be an increasing sequence of positive integers such that $P\left(X_{n_{k}}=0\right)>1-1 / 2^{k}$. By Lemma 4, the closed linear span of $\left(X_{n_{k}}\right)$ is ismorphic to R^{∞}.
(iii) \Rightarrow (i). It is enough to prove the existence of a bounded neighborhood of zero. Thus, by Lemma 1, it is enough to show that

$$
\exists_{\varepsilon>0} \forall_{n>0} \exists_{s>0} \quad s U_{\varepsilon} \subset U_{\eta}
$$

Let us take $\delta>0$. Local convexity of (L_{X}, τ_{P}) and Lemma 1 imply the existence of an $\varepsilon>0$ such that $\operatorname{conv} U_{\varepsilon} \subset U_{\delta}$. We can assume that $\varepsilon<1-\sup P\left(X_{n}=0\right)$.

Let us fix an $\eta>0$ and let us take a $\lambda>0$ such that $\operatorname{conv} U_{\lambda} \subset U_{\eta / 2}$. By Lemma 2 there exists an $r=r(\eta \lambda / 2 \varepsilon)$ such that

$$
\forall_{n \in N} \forall_{t \in R} \quad Q_{n}(t)<\varepsilon \Rightarrow Q_{n}(r t)<\frac{\eta \lambda}{2 \varepsilon}
$$

We claim that

$$
\begin{equation*}
s U_{\varepsilon} \subset U_{\eta} \quad \text { for } s=\min \left(\frac{1}{r}, \frac{\lambda}{\lambda+\varepsilon}\right) \tag{*}
\end{equation*}
$$

Let $Y=\sum_{n=1}^{\infty} a_{n} X_{n}$ be an element of U_{ε}. Let $N_{\lambda}=\left\{n \in N: Q_{n}\left(a_{n}\right) \geqslant \lambda\right\}$. Since $Q_{n}\left(a_{n}\right)<\varepsilon$, we have $Q_{n}\left(r a_{n}\right)<\eta \lambda / 2 \varepsilon$. Obviously card $N_{\lambda} \leqslant \varepsilon / \lambda$. Hence

$$
\sum_{n \in N_{\lambda}} Q_{n}\left(r a_{n}\right)<\frac{\eta}{2}
$$

On the other hand, by Lemma 3, we have

$$
\frac{\lambda}{\lambda+\varepsilon} \sum_{n \notin N_{\lambda}} a_{n} X_{n} \in \operatorname{conv} U_{\lambda} \subset U_{\eta / 2}
$$

Thus

$$
\sum_{n=1}^{\infty} Q_{n}\left(s a_{n}\right)<\eta
$$

q.e.d.

As a corollary we get
ThEOREM 2. If X_{1}, X_{2}, \ldots are equidistributed and $\left(L_{X}, \tau_{P}\right)$ is locally convex, then
(a) $\mathrm{E}\left\|X_{1}\right\|^{p}<\infty$, for every $0<p<1$
(b) if, moreover, $P\left(X_{1}=0\right)=0$, then

$$
\left\{Y \in L_{X}: P\left(\|Y\|>\frac{1}{201}\right)<\frac{1}{201}\right\}
$$

is a bounded neighbourhood of zero in (L_{X}, τ_{P}).
Proof. (a) From Theorem 1 we know that $\left(L_{X}, \tau_{P}\right)$ is a Banach space. Thus, by a theorem of Nikishin ([5], Theorem 1) ${ }^{1}$) there exists an $A \in \mathscr{F}$, $P(A) \geqslant \frac{1}{2}$, such that $\mathrm{E}\left\|X_{n}\right\|^{p} \chi_{A} \leqslant c_{p}$. Since X_{n} are equidistributed and independent, it follows that $\mathrm{E}\left\|X_{1}\right\|^{p}<\infty$ for every $0<p<1$.
(b) In view of Lemma 1 it is enough to prove that

$$
\forall_{\eta>0} \exists_{s>0} \quad s U_{\varepsilon} \subset U_{\eta}, \quad \text { where } \varepsilon=\frac{200}{201} .
$$

Let us fix $\eta>0$ and let us take $\lambda>0$ such that $\operatorname{conv} U_{\lambda} \subset U_{\eta / 2}$. Since $Q_{1}=Q_{2}=\ldots$ and $\lim _{t \rightarrow \infty} Q_{1}(t)=1$, there exists an $r>0$ such that

$$
Q_{n}(t)<\varepsilon \Rightarrow Q_{n}(r t)<\frac{\eta \lambda}{2 \varepsilon}
$$

Now we can rewrite the part of the previous proof starting from (*).
Remarks. The case of $H=R$ and X_{1}, X_{2}, \ldots equidistributed symmetric random variables is better known.

1. It is proved in [1] that, for equidistributed real symmetric random variables, "locally convex" and "Banach" is the same for (L_{X}, τ_{P}) (see also [2] for a survey of results).

[^0]2. The case of X_{1}, X_{2}, \ldots real symmetric equidistributed, with $P\left(X_{1}\right.$ $=1)=P\left(X_{1}=-1\right)=\frac{1}{2}$, shows that $\left\{Y \in L_{X}: P\left(\|Y\|>\frac{1}{2}\right)<\frac{1}{2}\right\}$ is not, in general, a bounded neighbourhood for a locally convex τ_{P}. However, in this real case $\frac{1}{2}-\varepsilon$ works for every $\varepsilon>0$. The last statement follows from the following estimate (obtained from Inequality II, p. 6, in [3] and from [6]): for every $0<\lambda<\frac{1}{2}$, if $P\left(\left|\sum a_{n} X_{n}\right|>\varrho\right)<\lambda$, then
$$
\sqrt{\sum a_{n}^{2}}<4 \frac{\varrho}{1-2 \lambda}
$$
3. For every $1 \leqslant p<2$ there exists a sequence X_{1}, X_{2}, \ldots of equidistributed symmetric independent real r.v.'s such that $\mathrm{E}\left|X_{1}\right|^{p}<\infty$, but $\left(L_{X}, \tau_{P}\right)$ is not locally convex $\left({ }^{2}\right)$.

Indeed, let $\left(l_{i}\right)$ be an increasing sequence of positive integers such that

$$
\begin{equation*}
\sum_{i=1}^{\infty} l_{i}\left(\frac{l_{i-1}}{l_{i}}\right)^{2 / p} i^{2 / p}<\infty, \quad l_{0}=1 \tag{*}
\end{equation*}
$$

(e.g. $l_{i}=2^{c^{i+i_{0}}}, c>p /(2-p)$).

We put $a_{i}=\left(l_{i-1} / l_{i}\right)^{2} i^{2}, i=1,2, \ldots$ Then

$$
\begin{equation*}
\sum_{i=1}^{\infty} l_{i} a_{i}^{1 / p}<\infty \tag{**}
\end{equation*}
$$

Let g_{1}, g_{2}, \ldots be a sequence of independent symmetric random variables with distribution

$$
P\left(g_{i}=l_{i}\right)=P\left(g_{i}=-l_{i}\right)=a_{i}=\frac{1}{2}-\frac{1}{2} P\left(g_{i}=0\right)
$$

and let $\left(g_{i 1}\right)_{i=1}^{\infty},\left(g_{i 2}\right)_{i=1}^{\infty}, \ldots$ be independent copies of the sequence $\left(g_{i}\right)_{i=1}^{\infty}$. We put

$$
X_{j}=\sum_{i=1}^{\infty} g_{i j}
$$

It follows from (**) that $\mathrm{E}\left|X_{j}\right|^{p}<\infty$.
Let

$$
A_{i}=\frac{i}{l_{i}}, \quad k_{i}=\frac{1}{a_{i} i}=\left(\frac{l_{i-1}}{l_{i}}\right)^{-2} i^{-3}
$$

$\left({ }^{2}\right)$ We owe this remark to S. Kwapień.

For $0<\delta<1$ we have

$$
\begin{aligned}
P\left(\left|A_{i} \sum_{j=1}^{k_{i}} X_{j}\right|>\delta\right) \leqslant P\left(\left|A_{i} \sum_{j=1}^{k_{i}} \sum_{s=i}^{\infty} g_{s j}\right|>\right. & \left.\frac{\delta}{2}\right)+ \\
& +P\left(\left|A_{i} \sum_{j=1}^{k_{i}} \sum_{s=1}^{i-1} g_{s j}\right|>\frac{\delta}{2}\right)=\mathrm{I}+\mathrm{II}, \\
\mathrm{I} \leqslant \sum_{j=1}^{k_{i}} \sum_{s=i}^{\infty} P\left(\left|g_{s j}\right| \neq 0\right)= & k_{i} \sum_{s=i}^{\infty} a_{s} \leqslant 2 M k_{i} a_{i}=\frac{2 M}{i} \rightarrow 0
\end{aligned}
$$

((*) implies that $\sum_{s=i}^{\infty} a_{s} \leqslant M a_{i}$ for some constant M),

$$
\begin{aligned}
\left.\mathrm{II} \leqslant\left(\frac{2}{\delta}\right)^{2} \mathrm{E} \right\rvert\, A_{i} \sum_{j=1}^{k_{i}} & \left.\sum_{s=1}^{i-1} g_{s j}\right|^{2}=\frac{4}{\delta^{2}} A_{i}^{2} k_{i}\left(\sum_{s=1}^{i-1} l_{s}^{2} a_{s}\right) \\
& =\frac{4}{\delta^{2}} A_{i}^{2} k_{i}\left(\sum_{s=1}^{i-1} l_{s-1}^{2} s^{2}\right) \leqslant \frac{4}{\delta^{2}} M_{1} A_{i}^{2} k_{i} l_{i-1}^{2}=\frac{4}{\delta^{2}} \frac{M_{1}}{i} \rightarrow 0
\end{aligned}
$$

((*) implies that $\sum_{s=1}^{i-1} l_{s-1}^{2} s^{2} \leqslant M_{1} l_{i-1}^{2}$ for some constant $\left.M_{1}\right)$.
Thus for every $0<\delta<1$ there exists an i such that

$$
P\left(\left|A_{i} \sum_{j=1}^{k_{i}} X_{j}\right|>\delta\right)<\delta
$$

On the other hand, for every i we have

$$
\begin{aligned}
& P\left(\frac{1}{i}\left|A_{i} \sum_{j=1}^{k_{i}} X_{j}+A_{i} \sum_{j=k_{i}+1}^{2 k_{i}} X_{j}+\ldots+A_{i} \sum_{j=(i-1) k_{i}+1}^{i k_{i}} X_{j}\right| \geqslant \frac{1}{5}\right) \\
& \quad=P\left(\frac{A_{i}}{i}\left|\sum_{j=1}^{i k_{i}} X_{j}\right| \geqslant \frac{1}{5}\right) \geqslant \frac{1}{2} P\left(\frac{A_{i}}{i}\left|\sum_{j=1}^{i k_{i}} g_{i j}\right| \geqslant \frac{1}{5}\right) \\
& \quad \geqslant \frac{1}{4} P\left(\max _{1 \leqslant j \leqslant i k_{i}}\left|\frac{A_{i}}{i} g_{i j}\right| \geqslant \frac{1}{5}\right)=\frac{1}{4}\left(1-\left(1-2 a_{i}\right)^{i k_{i}}\right) \\
& \quad \geqslant \frac{1}{4}\left(1-e^{-2 i a_{i} k_{i}}\right)=\frac{1}{4}\left(1-e^{-2}\right) \geqslant \frac{1}{5},
\end{aligned}
$$

which shows that (L_{X}, τ_{P}) is not locally convex.
4. In this case we can give a simple sufficient condition to have (L_{X}, τ_{P}) locally convex, namely, for $t>t_{0}, t P\left(\left|X_{1}\right|>t\right)$ is decreasing.

It can be obtained by the calculating derivative of $Q(x) / x$. This condition
is sufficient for $Q(x) / x$ to be decreasing in some small neighbourhood of zero, so that Q can be replaced by an equivalent convex function Q_{1}.

Acknowledgement. We would like to thank S. Kwapień for his helpful advice.

REFERENCES

[1] J. Bretagnolle and D. Dacunha-Castelle, Formes linéaires aléatoirés et espaces d'Orlicz, Ann. Sci. Ec. Norm. Sup., Série 4, 2.4 (1969), p. 437-480.
[2] D. Dacunha-Castelle, Principe de dualité pour des espaces de suites associés à une suite - de variables aléatoires, Lecture Notes in Math. 124, p. 47-59, Springer, Berlin 1970.
[3] J.-P. Kahane, Some random series of functions, Lexington 1968.
[4] S. Kwapień and W. A. Woyczyński, Double stochastic integrals random quadratic forms and random series in Orlicz spaces, Ann. of Prob. 15.3, p. 1072-1096.
[5] E. M. Nikishin, Resonance theorems and superlinear operators, Uspekhi Mat. Nauk 25.6 (1970), p. 129-191.
[6] S. J. Szarek, On the best constant in the Khinchine inequality, Studia Math. 58 (1976), p. 197-208.

Department of Mathematics
Warsaw University
PKiN, 9p.
00-901 Warsaw, Poland

Institute of Mathematics Warsaw Technical University

Pl. Jedności Robot. 1
00-661 Warsaw, Poland

Received on 9. 12. 1986

[^0]: $\left.{ }^{(1}\right)$ It is stated for $H=R$ and $\Omega=[0,1]$ but, again, the proof can be just re-written to get what we want.

