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FlRST HITTING TIMES AWD POSITIONS 
6!@ -CONCEWMC SPHERES 

FOR TESTING THE DRIFT OF A DIFFUSION PROCESS 

V. GENON-CATALOT (ORSAY) 

Abstract. Consider X, a diffusion proccss on R"', m 2 2, with 
drift vector 8b(u]  depending of an unknown rcal parameter 0 with 
small known variance matrix EU[U) .  The aim of this paper is testing 
8 = 8, vs B > 8, with 8, 3 0 from the observation of thc first hitting 
times and positions of concentric spheres centered at x = X ,  with 
radii r < R for gven R. We obtain the asymptotic behaviour of this 
process as i: + 0 when the trajectory of the corresponding dynamical 
system leaves any sphere centered at x within finite time. We then 
construct a test on 8 and study its asymptotic properties by means 
of contiguity. When 8, > 0. the test is locally asymptotically most 
powerful (LAMP). We also consider a test based on the first hitting 
times of spheres only. 

Drift estimation for one-dimensional diffusion processes for which only 
the first hitting times of increasing levels are observed has been investigated in 
[4]. In this paper, we consider drift testing for an nz-dimensional diffusion 
process (X, ) , , ,  based on the observation of the first hitting times and 
positions of concentric spheres centered at X,. The diSfusion (X,) is defined as 
the solution of the stochastic differential equation 

dXt=8b(X,)dt+~a(Xt)d&,  X , = x ,  

where (WJ is a standard m-dimensional Brownian motion (m > 2), 8 a real 
unknown parameter, x €Rm, E > 0; the m-vector field b(u)  and the (m x m)- 
matrix field a(u) are known. 

Let = inf It 2 0; IX, - xl = r j  be the first hitting time of the sphere 
S(x, r) with center x and radius r. From the observation ( X T r ,  TIrsR, for 

given R > 0, we study the testing problem H,: 6 = 8, vs H I :  8 > 8, with 
8 , 3  0 and asymptotic framework E -0. 



Let (x,(t)) be the solution of the deterministic system corresponding to c 
= 0. Under the (main) assumption that, for 8 > 0, x,(t) leaves any sphere 
centered at x within finite time, we obtain a convergence in distribution 
theorem as E + O  for the process (XTr, T,) to a Gaussian process (after 
suitable centering and normalization). For 19 = 0, the asymptotic behaviour of 
the observed process is not Gaussian. We then construct a test 6c based 011 

this observation and study its asymptotic properties as c -+O by means of 
contiguity [7]  For 0, > 0, the contiguous alternative is B,+Ez and 6E is 
locally asymptotically most powerful (LAMP). For 8, = 0, 6F 1s not LAMP 
but the contiguous alternative becomes c 2 z .  We also study a test GG based 
on the observation of the hitting times (T,),,, only. 

In Section 1 we consider the diffusion X solution of 

d X ,  = b ( ~ ,  X,) d t + c u ( X , )  d w ,  XX, = x. 

The parameter 8 is not introduccd in this section. The main assumption 
is that the solution x(t) of the deterministic equation corresponding to E = 0 
satisfies the inequality (x (t)  - x) b (0, x (t)) > 0 for all t > 0. Then, the 
function n (t) = Ix ( t )  - xl being increasing, one can define its inverse function 
r ( r )  for 0 6 r < n ( +  co) = N .  In Theorem 1 and Corollary 1 we show that 

converges in distribution as E 4 0  to a continuous Gaussian proces. In 
Corollary 2 we obtain that, for smooth cp, 

satisfies DR(cp) - op( l ) .  For b r 0 the law of (XTr, c2 TJraO is indepen- 
dent of E (Proposition 1). 

In Section 2 we study the statistical model of diffusion with drift b ( ~ ,  zd) 

= Ob(u). The law of the diffusion is denoted by Po. We assume that the drift 
vector b has the form b = eVy where e = a('a) and VV is the gradient vector 
of a function I/: Rm -+ R such that V ( x )  = 0. In Theorem 2 we show that, for 
8, > 0 and z > 0, 8, = 8, fez, the distributions (Q,) and (PBE) stopped at TR 
are contiguous and that (XTr,T,) ,<,  is asymptotically sufficient for 8,. When 
6, = 0, the contiguous alternative is 8, = 2. We then consider the test &E 

based on the statistic (estimator of 0) 

gc = V(XTR)/ J v ( X T )  B?; with v = 'VVeVV 
[O,R) 
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The asymptotic properties of 6,: are stated in Corollaries 3 and 4. For 
6, > 0 this test is LAMP. We also construct a test &z based on the first 
hitting times (r),,, only, whose asymptotic properties are given in Proposi- 
tion 2. Some examples are considered in the last section. 

1. ASYMPTOTICS OF THE FIRST IrnTTING TIMES AND POSITIONS OF 
CONCENTRIC SPHERES 

1.1. Framework. Let (w),,, be a standard m-dimensional Brownian 
motion defined on the probability space (a, 9, P), adapted to a right- 
continuous filtration (F;);s-,. We consider the diffusion X%olution on SZ of 
the stochastic differential equation (s.d.e.1, 

where the nz-vector field b ( ~ ,  u) and the (m xm)-matrix field a(u)  satisfy the 
following conditions: 
(HZ) b:  [ O ,  + oo) x Rm -i R" is C2 as a function of (E, u), 

u: Rm + R m @ R m  is C2. 
(H2) For all ed, ~ ( u )  is invertible. 
(H3) There exists a positive constant K such that, for all er sRn' and E 2 0, 

( I  - ( denotes the usual Euclidian norm). 
In matrix products, m-vectors are identified to the column-matrix of their 

components and - denotes the usual inner product. For r 2 0 let us define 

Under (HI) and (H3), X 5 s  a Markov process with continuous sample 
paths uniquely determined on 10, m), P ( r  < a) = 1 for all r 2 0 and 
P(T$ = Ti+ = 0) = 1, where Ti+ = lim 'T;", (see e.g. [6]). 

r l o  
Let x ( t )  and n (t) be defined by 

and 

The following conditions will be needed: 
034) Qt > 0 (x 0) - x) - b (0, x (0) > 0. 
(H5) n'(t) = ( x  ( t )  - x) b (0, x ( t ) ) /n  (t) has a positive limit when t + 0. 
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Under (H4), the trajectory x(t) will leave any sphere centered at x within 
finite time, and n( t )  being increasing, one may define its inverse function 

which is C1 on (0, Nj. Under the additional assumption (H5), t will be C1 on 
[O, N )  (see !j 2.4, examples). 

Tn what follows, we shall use the stochastic Taylor expansion of X" 
whch is available under (HI) up to order two (see [I]) and is recorded 
hereafter. 

THEOREM A. Under (HI) and (H3) there exist a continuous Gaussian 
(8 (t))l, 0 and processes Rl (t), i = 1 ,  2, such rhot, for all f 33 0, 

Xf = x (t) + E R ~  (t) 

The Gaussian process (g  (t))  is defined on 62 by 

where, for u = ' ( u l ,  . . . , u")n Rm, b("(0, u) is the following linear mapping: 

If Q, is the m xrn invertible matrix such that 

' (7) d Q t = - Q b  ( 0, x( t ) )d t ,  Qo = I ,  

then the solution of (6) is given by 

We may now define the one- and m-dimensional Gaussian processes: 

Under (H1)-(H5) these processes are continuous on [0, N). 
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1.2. Emit theorem for the process (X;;, T),,,,,. 
THEOREM 1. For all h > 0 and Ro,  R satisfying 0 < Ro < R < N, we have 

ultdsr (HI)-(H4), 
6 )  l imp(  sup ( E - ' ( y - t ( r ) ) - G ( r ) l  > h ) = O ,  

€4 R O C r d R  

(ii) limp( sup l a p 1 ( ~ 2 - x ( t ( r ) ) ) - H ( ~ . ) I  h)  = 0. 
~ 4 0  R O d r C R  

We first prove 
LEMMA 1. Under (HI)-(H4), for all h > 0 and R E [ O ,  NC, 

limp( sup IT- t ( r ) l  > h) = 0. 
8-3 O S r G R  

To simplify notation, let us omit all superscripts E .  

Proof,  Let R E[O,N[ and h, h l ,  T > 0 such that t ( R + h l )  < 7: Then 

I is included in 
I 

I ( sup lT- t (r) l  < ~ ( h ) ) ,  
I O S r S R  

where 
I 
1 
I w(h) = sup [It (r')-t (rU)J; /r'-r"l < 2h, 0 < r', r" < R + I ? , ]  

From the continuity of ( t  (r)), fix q > 0 and h > 0 such that o ( h )  < q.  
Lemma 1 then follows from Theorem A. 

Proof  of Theorem 1. 
(i) From Theorem A, for r  3 0, we have 

and (see (4) and (5)) 

(1 2) ~ - " ( r - n ( T ) )  = r - l  ( x ( t ( r ) ) - x ) - g ( t ( r ) ) +  x+qr 
with 

An appIication of Taylor's formula yields 

(15) T , - t ( r )  = ( n ( ~ , ) - r ) t f ( r ) + $ ( n ( ~ ) - r ) 2 t " ( r * )  with r* ~ ( r ,  n(T,)). 

Thus using (4),  (5)  and (9), we obtain 

(16) ~ - ' ( T , - t ( r ) )  = G ( r ) + e l  (r) 
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with 

Fix Ro, R such that 0 < Ro < R < N .  We now check that Q, ( r )  is 
uniformly o,(l) on [R,, R ]  as E 4 0 .  

Because of Lemma 1, (r + n(T,))-' converges uniformly on [R, ,  R] to 
(279-l in probability. Let T > O be such that t (R )  < T in order to ensure 

. On (TR < q1 - -  sup jqrl is 'bounded from above by a random variable 
R o S r Z R  

which is o,(l) in view of (14) and Theorem A. Thus sup jy,( = o,(l). 
RO<'QR 

To see that Y, is also uniformly o,(l)  on [R,, R], ~t remains to show 
that sup 12 (T)  - z (t (r))j, with Z(r )  = *(x (t) - x) . g  ( t ) ,  is o,(l). This is a 

r < R  

straightforward consequence of Lemma 1 and of the continuity of the process 
( ~ ( t ) ) .  So, in view of (12), 

sup ~ - ' ( n ( T , ) - p ) ~  = op(l). 
R 0 6 r < r  

Now to see thal sup \f"'r*)J is bounded in probability, choose k > 0 
R 0 < * d R  

such that 0 c t (R, - k) and again t (R) < 7: On C = { t  (R,  - k) c TROY TR , 

< TI,  r* remains in [ R , - k ,  n(T)] and limP(C) = 1. Thus 
E +O 

which (see (16) and (17)) achieves the proof of (i). 
(ii) Formula ( I  I) and a Taylor expansion for x ( T , )  - x (t (r)) yield that 

where 

and tf  E(~(P) ,  T,). 
On (TR < T), t: E[O, TI. So we proceed as in (i) to get 

and (ii). 
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Remark  1. Even when a higher order expansion of X 9 n  powers of E is 
available (e.g. if b, a are Ck, k > 2), it is not possible to improve the 
expansion of IT, XP) to within o (c2)  becuase g( t )  is w t  differentiable ([2] ,  

p. 59). 
Remark 2. A useful consequence of Lemma 1 and Theorem A is that, 

for any continuous rrt-vector field $, 

which can be checked by the classical Lenglart inequalities. 
The following two corollaries of Theorem 1 are the basement of the 

statistical study of Sectio~ 2. 

COROLLARY I .  Under (HI)-(H4) and the additional assumption (H.51, the 
result of Theorem 1 remains true with 87, = 0. 

Pr o sf. Under (H5), the processes (G (r)) and (If (r)) are nght-continuous 
and nu1 at 0. Since this is also true in probabiIity for T,, Corollary 1 follows. 

CORO~.LARY 2. er?r p: Rm + R  be C2.  Pior R E LO, N [ ,  k t  

where the previous integral is a stochastic integral with respect to the increas- 
ing left-continuous process (TI. Under (MI)-(HS), E -  DL (q) -+ 0 in probability 

Let us fix W E[O, N [ ,  and omit the superscripts E for the foIlowing proofs. 

First we prove 
&EMMA 2. Assume (HI)-(H5). 
(i) Let (f (r, w)),G,cR be a randorn continuous function adapted to 

( .Ft(r))o s r < ~ .  Then 
R 

f (r) d7;" f f  (r) dt (r) in probability. 
b 

(ii) I f f  is CL, then 
- 

R 

E- [ f (r)  (d T,E - d t  ( r  [ f (7) d 6  (r) in probability, 
[o:R) b 

where the above limit is  ra stochastic integral with respect to the continuous 
semi-martingale (6; (r)). 

3 - Probability Vol. 10, Fasc. I 
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P r o  of. (i) Consider . 

By Lemma 1 
R 

( f;, (r) d T, -{ f, (rj dt (rj in probability 
CO;R) o 

Now, on (TR_< T )  with t(R) < 7; 

where o (f, 6) = sup { I f  (r )  -f{rr)l ; Ir - r'( 4 6, 0 < r, I' < R]  . 
Result (i) foIlows from the continuity off and Lemma 1. 
(ii) Since f is C', by Theorem 1 and Corollary 1, 

. converges in probability to 

because the integration by parts formula is also valid for the semi-martingale 
G (r). 

P r o  of o f  C o  r o 1 lar  y 2. The random variable D, (cp) may be written as 
D,(qf = A + B + C  with 

A = [ u7(Xtcr,) (d t ( r ) -  d T ) ,  
[ o : R )  

TR 

B =  J (rp(Xt(r,)-cp(XT*))dT,, C =  r cp(Xs)ds. 
I0.R) t k )  

An application of Taylor's formula to go (Xto) - cp (x ( t  (r))) and rp  ( X T r )  

- cp ( x  ( t  I T ) ) )  yields, by (101, 

and 



Drifr 01' a diBsion process 

when V q  is the gradient vector of q. Also 

In the three above equalities we have used Theorem A, Theorem 1 and 
Corollary I, and Lemma 2 to see that the remainder terms are 0,(1). Now, 

and 

R R 

rp (x (t ( ~ 1 ) )  G ( R )  = J Y (x (t PI)) dG (r)  + G (4 d9J (x (t (r ) } ) .  
0 0 

together with (18)-(20), achieve the proof of Corollary 2. 
Thus under (Hl)iH5) we have obtained an asymptotically Gaussian 

behaviour with rate c for the process (FT:, T )  and the main consequence of 

this result is, in view of Corollary 2 that the whole information carried (on 
the drift vector b) by the observation {Xi, s < Ti) will be contained in 
(X?, ,)osrGR as is seen in Section 2, For the purpose of testing b = 0 
from the observation (X%e, T), we also need to specify its behaviour under 
this hypothesis. 

PROPOSITION 1. k t  b = 0 in ( 1 )  and assume (H1)-(H3). 
The distribution of the process (X2, c2 T,"),.,, is independent of E. (This 

law is on the space of left-continzro~rs with right-hand limits function on 
[0, +a), taking values in RM xIO, +m) endowed with the Skorokhod 
Bore1 a-algebra). 

Proof.  The process Bf = is a standard Brownian motion and Y," 
= X;- ,f satisfies 

Thus the law of Y E  does not depend on E .  Since 

E' T, ( X e )  = inf ( t  2 0: I Z;e - xl = r) = T,(YE) 

and X&) = Y;r(,9, we obtain the result of Proposition 1. 

2. CONTlGUlTY PROPERTmS A N D  APPLICATIONS TO DRIFT TESTING 

2.1. Assumptions and notations. We now assume that the drift b (c ,  u) 
= Bb(u) does not depend on E and depends on an unknown linear parameter 
f3 E [0, + GO). Let (C, 'Ti, [gt),,  ,, (Xt) , ,  ,, P",) be the canonical diffusion solu- 
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tion of the s.d.e. (I] with drift Bb(u), where C = C ( R L ,  Rm), (XI) are the 
canonical coordinates of C, 

Let T, (X) = T,, (x , ( t ) )  be the solution of xh(t) = 8b (xQ(t)) ,  xo (0)  = x and 
no(t) = Ixn(r)-xI. 

We assume 
(Kl) For a1 0 > 0, the functions Bb(u), o(u)  and x,(t) satisfy (H1)-(H5). 
(K2) b = e V y  wheree=o('u). V: Wn'-+Ris C3 and V ( x ) = 0 .  

.. - -  
. Clearly, 

(21) xe ( t )  = ~ ( e t ) ,  n ,  ( t )  = n(8t), 

where 'x (t) = x ,  (I) and !I ( t )  = n,  ( t )  correspond to 0 = 1. 
Thus, for 0 > 0, 

(22) n,(+m) = I Z ( + W )  = N ,  t,(r) = 0-'r(r) 

with to = n; t = H l,  r < N and xe(tQ(r))  = x ( t  (r)). 
Let (Go(r)) and (H,(r)) be the processes defined in (9) and (lo), associated 

to the drift Ob (u) (0 > 0). They are continuous centered (because ab/dz = 0 )  
Gaussian processes and the covariance function of ('Go(r)) has, in view of (6) 
-(9), the following form: 

Cov(G,(r), GB(rr)) = K3 y (r ,  r'). 

 om Section 1, under P",, 8 > 0, 

and 

in the Skorokhod space D([O,  N [ ) .  
Let us defme: 

(Note that r' (r) = v (x (t (r))) t' (r)). 
2.2. Testing 8 from the observation (XTr, T,) ,,,,,. For given R E[O, N [ ,  

the first hitting times and positions of the spheres S ( x ,  r) with r < R are 
observed. We are concerned with the testing problem: 

H,:  8 = 8, vs HI: 8 > 8, with 0 , 2 0 .  
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Under (Ki)4K2), for all 0 2 0, the distributions B;/%,, and Po/%TR are 
equivalent and the likelihood of (X,),,,, is given by 

with 

fl2 T R  

(25) VV(X,).dX,-- [ v ( X , ) d s  
2 b 

We set: 

THEOREM 2. Assume ( K  I)-(K2). 
(i) For 0, > 0, z > 0, OE = 8, +EZ, under Po,, as s -+ 0, we have 

with 

So, the distributions (6,) and (PQ, considered on VT,, are contiguous as 
E --to. 

(ii) For 0, = 0, z > 0, 8, = E'Z, under Po, the distribution of 1(0,, 0) is 
independent of E. The distributions ( P i )  and (&,I, considered on (hTR, are 

contiguous as E -+ 0. 
Proof. (i) Let 

TR 

From (25)-(26) we get 

T R  

(31) I ( $ , ,  8,) = 24, (8,) - ( z2 /2)  1 WS) ds .  
0 

An application of Ito's formula yields 

TR TR 

where 
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I By Theorem 1 and its corollaries we get 
I 
! .  (33) AR ( B 0 )  - iR (80) = o, (I) under Go as e -+ 0. 
I 

By remark 2 (at the end of Theorem l), 
I 

which is a centered Gaussian variable with variance (see (23)) 
e i  'z(R) 

-[ I t  a ( ~ ( 0 ,  s)) VV(X (0, s))(" ds = 86' a (R) .  . . 

0 

T R 

Moreover, [ v (X , )d s  and [ u(X,)  d7; converge in Pc,o-probability to 
0 [ o : R ~  

In view of (30)-(32) we obtain the first part of (i). The contiguity follows 
I 

from the fact that 

l ( O , ,  0,) + ~ , ' ( - a ~ 2 ~ / 2 ,  u2zZ] 

with a2 = 0; ' a (R)  under P",, (see [7], chap. I ) .  
(ii) When 0, = c2z, we have 

T R  T R  

(35) I ( &  0 )  = z (V(XT, )  - E~ [ h (Xs) as)-(z2 ~'/2) 5 v (X , )  ds  
0 0 

where I.;" = X E - Z t ,  ZX = TR (YE)  = c2 TR ( X ) .  
Under Po, the law of YE is independent of E (see the proof of 

Proposition I), which yields (ii). 
Theorem 2 leads us to consider the following estimator 8, of 8 and the 

test of level a, 0 < a < 1, based on 8,: 

where EE(a, 8,) and Fc(a, 80) are determined by the equality Eio Ge = a. (We 
denote by N ( x )  the distribution function of the normal law N(0, 1)) .  
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I 

I COROLLARY 3. Let do > 0, z > 0, 0, = Q0+&z and assume (Kl)-(KZ). For 
testing O0 US 0 > 8,, 6& is locally asymptoticalfy most powerful ( L A M P )  of 
level a, i.r., ,for any other WT,-meusurable test fitnetion @, of level a, 

lim inf E ~ ~ ~ - E ; @ ~ > O  
c-0 B o < 8 < B o + ~ ~  

(see e.g. 151, Def. 1.4.1, p. 17). 
Moreover, 

(38) zF(a, 8,) = 8 0 + ~ ( 8 0 u ( ~ ) - 1 ) 1 / 2 d ~ t " - ' ( ~ ) + o ( ~ )  

and . . 

(39) lim q & = .N (z (8; z (R))"' + K-' (a)) .  
s +O 

Proof .  From (34) and (36) we infer that 

(401 E -  ( f i e  - eo) = o0 a (R)-' Jp (oo) + n,, (1) under 6,. 

This equality together with Theorem 2 (i) yield that GE is LAMP 
according to Theorem 1.4.1, p. 18, of [Sj. It also implies that, under Po,, 

Thus (Zc (a, 19,) - O , ) E - ~  (a (R)/Bo) ' I 2  must converge to . I f F -  (n) because 
6E has the level a, whereas 6, (8, = (a, 0,)) 0 as E 4 0, yielding (38). 

Using (28) and (40), we get that ( I (@.,  O,), e- (gE - 8,)) converges unaer 
P",, to the degenerate two-dimensional Gaussian law 

By the contiguity, it follows that 

E -  (& - 0,) AP(z ,  OO/a (R ) )  
. - 

under the contiguous alternative PBE (see [7], Chap. 1, Theorem 7.2) which 

by (38) leads to (39). 
i Remark  3. The locally asymptotically normal representation (28) of the 

loglikelihood ratio shows that the observation ( X T r ,  T,),,, is asymptotically 

sufficient for 8, when 8, > 0. By Corollary 2, this is also true for general drift 
b(8, u) depending on an unknown parameter 8 €Rk  if b(8 ,  U) satisfies (HI)-  
(H5) and smoothness assumptions with respect to (0, u). 

COROLLARY 4. Let 8, =_0, z > 0, = E'Z. 

The distribution of E - ~ O ,  under P b n d  d& is itdependent of E .  

Proof.  It is a consequence of Proposition 1 and Theorem 2 (ii). 
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Thus, 6 can be used for testing 8 = 0 vs 8 > 0, with %(a, 0) = E' c (a), 
ye (a, 0) = y (a) and the power EEc 6c at the contiguous alternative 8, = E~ z is 
independent of E. The optirnality properties of are lost, but the separating 
rate E~ of No and H ,  is improved. 

2.3. Testing 6 from the observation (p0,,,,. From (22), the limit x (t (r)) 
of XTr  is independent of the unknown 8. Replacing XTr by its limit in (361, 
we define 

(41) aE = ff (RY 1 v (X (i (~1)) La T, 
. . 

[O,R) 

and the test of 8, vs 0 > BO, based on 6 ,  
* 

@e = ya,eo,, + Ve (a, 80) l~a,=qn,so1, with P,, $E = a.  

PROPOSITION 2. Assume (K1)-(K2). 
(i) Let O0 > 0, z > O and 9, = eo +EZ. There exists a J (R) > 0, Q ( R )  E 

[- 1 ,  11, not depending on do such that 

and 

(43) lim EiE se = JV' [ re (R) (8; a (R))'i2 + &"- (a ) ] .  
e +O 

The test *& is LAMP e ( R )  = 1. 
(ii) La 8, = 0, z > 0, 0, = E' Z .  The distribution of E -  under Po a d  % 

is independent of E .  

Proof.  Let 

By Theorem 1, its Corollaries and Lemma 2, we have (see (30)), 
under Po,, 

where (G,, (r)) is the limiting process of [T, - 9, ' t ( r ) ) .  From (41) and the fact 

that 
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under Po, (see (23) and Lemma 2), we get 

1461 E -  (Ot - e,) = 6 ,  a ( ~ j - -  dR (6;) + 0 ~ 1 ) .  

We have already obtained (see (28) and (33)) 

(471 I(B, ,  0,) = ZA, (a,) - e; I cx (R)  z2/2-t  ~ ~ ( 1 ) .  

Formulae (451447) yield that ( I  (O,, 0,) + 8, ' cx (R)  z2/2, E '  (gE - Bo)) con- 
verges in distribution to a centered Gaussian vector with covariance matrix 

z20; 'a (R)  zC(R)  
.. . ( 

zC(R)  0,J (R)  

where 
R 

(48) J (R )  = a (R) - Var ( [ II (X (f 0.))) d ( 0 6 ~ ~  Goo (T I ) )  
0 

and 

Introducing the standard Brownian motion BY" = ,/& W,; I , ,  we dedu- 
ce from (7)-(91, with b ( ~ ,  u)  replaced by b(u), 

where Q, satisfies dQ, = - Q, b(') (x( t ) )  dt, Q ,  = I,  and the first random va- 
riable appearing in C ( R )  is equal to 

So J (R) and C ( R )  do not depend on 8,. Let 

e = C (R)/(J a (Rl)'/2 

be the limiting correlation coefficient. Since 

E - ~ ( Q ~ - ~ O )  +N[O, 6, J(R) ]  

under P",, and E;, 6E = a, we get (42). The previous joint convergence in 
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distribution yields 

E - '  ( ~ - B o j ~ ~ ~ ( z e ( ~ ) ( ~ ( ~ ) u  ( R ) ) ~ ~ ~ ,  8 0 ~  ( R ) )  

under the'contiguous alternative Pic (171, Theorem 7.2, Chap. 1) from which 
(43) is obtained, together with the fact that 6, is LAMP iff Q ( R )  = 1. (ii) is a 
consequence of Proposition 1 and   he or em 2 (ii). 

R e m a r k  4. The limiting variance and correlation coefficient J ( R )  and 
Q ( R )  can be calculated using definitions (6)-(9) and formulae (48)-(51), but no 
simple expressions are available unless Q ( R )  = 1. The limiting distribution of 
E - ~ ( O ~ - O ~ )  under GE, Bb = OO+~z,  can also be obtained by Theorem 1 with 
bte ,  U) = 0, b(u) .  

2.4. Examples. 

2.4.1. Brownian motion with drgt. 
The model X,  = Oih + E W  stopped at TR has been studied in [3]. In this 

case, the last observation (X,,, TR) is (exactly) sufficient and has an explicitly 

known distribution. The test based on 8, = R/TR is LAMP. 

2.4.2. Linear drifr. 
For the model, d ~ i = 8 X I d t + ~ d W , ' ,  X b = x ! ,  = ,  m 'x 

= '(x', . . . , xm) # 0, 8 > 0, we have: 

x ( t )  = x exp (t), 

x ( t ( r ) )  = x(l+IxI-l r) ,  
I 

Thus, G,(r) = 2, (13- ' t (r ) )  with 

The statistics 8, and 8, are given by: 

In this case, as (G,(r)) is a Gaussian martingale, easy computations yield 
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c -  ' (Be -6) = o,(l) under P,,, 8, > 0 as E + O .  Both tests &F and 6. are 
LAMP. 

The model dXi = -OX: dt - t ~ d W ; ,  X', = xi, i = 1, . . . , m 'x = '(xi, . . ., xW) 
# 0, 0 > 0 leads to: 

t ( r )  = -8 - ' l og ( l - - l~ l -~r . )  for O , < r  <Ixl = N  

For R < 1x1, the tests 6c and 6, based on the observation ( X T , ,  TJrGR or 
(T,),,, are also LAMP. - 

2.4.3; Bilinear diffusion. 
Consider: 

dXf'= B X l d t i -  €X,'dWi, Xi = x i ,  i = 1, ..., rn, 0 > 0. 

When xi >O, i =  1, ..., m, Xj > Ofor all t 2  Oa.s.for i =  1 ,  ..., m. Thus 

is as. invertible and we can define 

We obtain: 

G ( r )  = Ze(8-l t ( r ) )  with z,(t) = --8-.l 1 (xi)* w., 
i= 1 

m 

( = 1 log (X;,/*)/rnT,, 
i =  1 

i 41112 ~ , = ~ o g ( l + l x l - ~ R ) / T ,  and e ( R ) = l x t Z / I ~ ( x ) ,  . 
i =  1 
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