PROBABILITY AND MATHEMATICAL STATISTICS

Vol. 10, Fasc. 1 (1989), p. 27-44

FIRST HITTING TIMES AND POSITIONS OF CONCENTRIC SPHERES FOR TESTING THE DRIFT OF A DIFFUSION PROCESS

BY

V. GENON-CATALOT (ORSAY)

Abstract. Consider X_t a diffusion process on \mathbb{R}^m , $m \ge 2$, with drift vector $\theta b(u)$ depending of an unknown real parameter θ with small known variance matrix $\varepsilon \sigma(u)$. The aim of this paper is testing $\theta = \theta_0$ vs $\theta > \theta_0$ with $\theta_0 \ge 0$ from the observation of the first hitting times and positions of concentric spheres centered at $x = X_0$ with radii $r \le R$ for given R. We obtain the asymptotic behaviour of this process as $\varepsilon \to 0$ when the trajectory of the corresponding dynamical system leaves any sphere centered at x within finite time. We then construct a test on θ and study its asymptotic properties by means of contiguity. When $\theta_0 > 0$, the test is locally asymptotically most powerful (LAMP). We also consider a test based on the first hitting times of spheres only.

Drift estimation for one-dimensional diffusion processes for which only the first hitting times of increasing levels are observed has been investigated in [4]. In this paper, we consider drift testing for an *m*-dimensional diffusion process $(X_t)_{t\geq 0}$ based on the observation of the first hitting times and positions of concentric spheres centered at X_0 . The diffusion (X_t) is defined as the solution of the stochastic differential equation

$$dX_t = \theta b(X_t) dt + \varepsilon \sigma(X_t) dW_t, \quad X_0 = x,$$

where (W_t) is a standard *m*-dimensional Brownian motion $(m \ge 2)$, θ a real unknown parameter, $x \in \mathbb{R}^m$, $\varepsilon > 0$; the *m*-vector field b(u) and the $(m \times m)$ -matrix field $\sigma(u)$ are known.

Let $T_r = \inf \{t \ge 0; |X_t - x| = r\}$ be the first hitting time of the sphere S(x, r) with center x and radius r. From the observation $(X_{T_r}, T_r)_{r \le R}$, for given R > 0, we study the testing problem H_0 : $\theta = \theta_0$ vs H_1 : $\theta > \theta_0$ with $\theta_0 \ge 0$ and asymptotic framework $\varepsilon \to 0$.

Let $(x_{\theta}(t))$ be the solution of the deterministic system corresponding to $\varepsilon = 0$. Under the (main) assumption that, for $\theta > 0$, $x_{\theta}(t)$ leaves any sphere centered at x within finite time, we obtain a convergence in distribution theorem as $\varepsilon \to 0$ for the process (X_{T_r}, T_r) to a Gaussian process (after suitable centering and normalization). For $\theta = 0$, the asymptotic behaviour of the observed process is not Gaussian. We then construct a test $\tilde{\Phi}_{\varepsilon}$ based on this observation and study its asymptotic properties as $\varepsilon \to 0$ by means of contiguity [7]. For $\theta_0 > 0$, the contiguous alternative is $\theta_0 + \varepsilon z$ and $\tilde{\Phi}_{\varepsilon}$ is locally asymptotically most powerful (LAMP). For $\theta_0 = 0$, $\tilde{\Phi}_{\varepsilon}$ is not LAMP but the contiguous alternative becomes $\varepsilon^2 z$. We also study a test $\bar{\Phi}_{\varepsilon}$ based on the observation of the hitting times $(T_r)_{r \leq R}$ only.

In Section 1 we consider the diffusion X solution of

$$dX_t = b(\varepsilon, X_t) dt + \varepsilon \sigma(X_t) dW_t, \quad X_0 = x.$$

The parameter θ is not introduced in this section. The main assumption is that the solution x(t) of the deterministic equation corresponding to $\varepsilon = 0$ satisfies the inequality (x(t)-x)b(0, x(t)) > 0 for all t > 0. Then, the function n(t) = |x(t)-x| being increasing, one can define its inverse function t(r) for $0 \le r < n(+\infty) = N$. In Theorem 1 and Corollary 1 we show that

 $(\varepsilon^{-1}(X_{T_r}-xt(r)), \varepsilon^{-1}(T_r-t(r)))_{0 \leq r < N}$

converges in distribution as $\varepsilon \to 0$ to a continuous Gaussian proces. In Corollary 2 we obtain that, for smooth φ ,

$$D_{R}(\varphi) = \int_{0}^{T_{r}} \varphi(X_{s}) ds - \int_{[0,R]} \varphi(X_{T_{r}}) dT_{r}$$

satisfies $\varepsilon^{-1} D_R(\varphi) \equiv o_p(1)$. For $b \equiv 0$ the law of $(X_{T_r}, \varepsilon^2 T_r)_{r \ge 0}$ is independent of ε (Proposition 1).

In Section 2 we study the statistical model of diffusion with drift $b(\varepsilon, u) = \theta b(u)$. The law of the diffusion is denoted by P_{θ}^{ε} . We assume that the drift vector b has the form $b = e\nabla V$, where $e = \sigma({}^{t}\sigma)$ and ∇V is the gradient vector of a function V: $\mathbf{R}^{m} \to \mathbf{R}$ such that V(x) = 0. In Theorem 2 we show that, for $\theta_{0} > 0$ and z > 0, $\theta_{\varepsilon} = \theta_{0} + \varepsilon z$, the distributions $(P_{\theta_{0}}^{\varepsilon})$ and $(P_{\theta_{\varepsilon}}^{\varepsilon})$ stopped at T_{R} are contiguous and that $(X_{T_{r}}, T_{r})_{r \leq R}$ is asymptotically sufficient for θ_{0} . When $\theta_{0} = 0$, the contiguous alternative is $\theta_{\varepsilon} = \varepsilon^{2} z$. We then consider the test $\tilde{\Phi}_{\varepsilon}$ based on the statistic (estimator of θ)

$$\tilde{\theta}_{\varepsilon} = V(X_{T_R}) / \int_{[0,R]} v(X_{T_r}) dT_r \quad \text{with } v = {}^t \nabla V e \nabla V.$$

Drift of a diffusion process

The asymptotic properties of $\tilde{\Phi}_{\varepsilon}$ are stated in Corollaries 3 and 4. For $\theta_0 > 0$ this test is LAMP. We also construct a test $\bar{\Phi}_{\varepsilon}$ based on the first hitting times $(T_r)_{r \leq R}$ only, whose asymptotic properties are given in Proposition 2. Some examples are considered in the last section.

1. ASYMPTOTICS OF THE FIRST HITTING TIMES AND POSITIONS OF CONCENTRIC SPHERES

1.1. Framework. Let $(W_t)_{t\geq 0}$ be a standard *m*-dimensional Brownian motion defined on the probability space (Ω, \mathcal{F}, P) , adapted to a right-continuous filtration $(\mathcal{F}_t)_{t\geq 0}$. We consider the diffusion X^e solution on Ω of the stochastic differential equation (s.d.e.),

(1)
$$dX_{t}^{\varepsilon} = b(\varepsilon, X_{t}^{\varepsilon}) dt + \varepsilon \sigma(X_{t}^{\varepsilon}) dW_{t},$$
$$X_{0}^{\varepsilon} = x, \quad x \in \mathbf{R}^{m},$$

where the *m*-vector field $b(\varepsilon, u)$ and the $(m \times m)$ -matrix field $\sigma(u)$ satisfy the following conditions:

- (H1) $b: [0, +\infty) \times \mathbb{R}^m \to \mathbb{R}^m$ is C^2 as a function of (ε, u) , $\sigma: \mathbb{R}^m \to \mathbb{R}^m \otimes \mathbb{R}^m$ is C^2 .
- (H2) For all $u, \sigma(u)$ is invertible.
- (H3) There exists a positive constant K such that, for all $u \in \mathbb{R}^m$ and $\varepsilon \ge 0$,

$$|b(\varepsilon, u)|^2 + |\sigma(u)|^2 \le K(1+|u|^2)$$

 $(|\cdot|)$ denotes the usual Euclidian norm).

In matrix products, m-vectors are identified to the column-matrix of their components and \cdot denotes the usual inner product. For $r \ge 0$ let us define

(2)
$$T_r(X^{\varepsilon}) = T_r^{\varepsilon} = \inf \{t \ge 0; |X_t^{\varepsilon} - x| = r\}.$$

Under (H1) and (H3), X^{ε} is a Markov process with continuous sample paths uniquely determined on $[0, \infty)$, $P(T_r^{\varepsilon} < \infty) = 1$ for all $r \ge 0$ and $P(T_0^{\varepsilon} = T_{0^+}^{\varepsilon} = 0) = 1$, where $T_{0^+}^{\varepsilon} = \lim T_r^{\varepsilon}$, (see e.g. [6]).

Let x(t) and n(t) be defined by

(3)
$$dx(t) = b(0, x(t))dt, \quad x(0) = x$$

and

(4)
$$n(t) = |x(t) - x|.$$

The following conditions will be needed:

(H4)
$$\forall_{t>0}$$
 $(x(t)-x) \cdot b(0, x(t)) > 0.$

(H5) $n'(t) = (x(t) - x) \cdot b(0, x(t))/n(t)$ has a positive limit when $t \to 0$.

Under (H4), the trajectory x(t) will leave any sphere centered at x within finite time, and n(t) being increasing, one may define its inverse function

(5)
$$t(r) = n^{-1}(r), \quad 0 \le r < n(+\infty) = N,$$

which is C^1 on (0, N). Under the additional assumption (H5), t will be C^1 on (0, N) (see § 2.4, examples).

In what follows, we shall use the stochastic Taylor expansion of X^{ϵ} which is available under (H1) up to order two (see [1]) and is recorded hereafter.

THEOREM A. Under (H1) and (H3) there exist a continuous Gaussian process $(g(t))_{t\geq 0}$ and processes $R_i^{\varepsilon}(t)$, i = 1, 2, such that, for all $t \geq 0$,

 $X_{t}^{\varepsilon} = x(t) + \varepsilon R_{1}^{\varepsilon}(t)$ $X_{t}^{\varepsilon} = x(t) + \varepsilon q(t) + \varepsilon^{2} R_{2}^{\varepsilon}(t).$

 $\lim_{\substack{k \to 0 \\ k \to +\infty}} \boldsymbol{P}(\sup_{s \leq t} |\boldsymbol{R}_i^{\varepsilon}(s)| \geq k) = 0, \quad i = 1, 2.$

The Gaussian process (g(t)) is defined on Ω by

$$dg(t) = \sigma(x(t)) dW_t + \left(b^{(1)}(0, x(t))g(t) + \frac{\partial b}{\partial \varepsilon}(0, x(t))\right) dt$$

(6)

g(0)=0,

where, for $u = {}^{t}(u^{1}, ..., u^{m})$ in \mathbb{R}^{m} , $b^{(1)}(0, u)$ is the following linear mapping:

$$b^{(1)}(0, u) y = \sum_{i=1}^{m} \frac{\partial b}{\partial u^{i}}(0, u) y^{i}, \quad y = {}^{t}(y^{1}, \ldots, y^{m}).$$

If Q_t is the $m \times m$ invertible matrix such that

(7)
$$dQ_t = -Q_t b^{(1)}(0, x(t)) dt, \quad Q_0 = I,$$

then the solution of (6) is given by

(8)
$$g(t) = Q_t^{-1} \left(\int_0^t Q_s \frac{\partial b}{\partial \varepsilon} (0, x(s)) ds + \int_0^t Q_s \sigma(x(s)) dW_s \right).$$

We may now define the one- and m-dimensional Gaussian processes:

(9)
$$G(r) = -(x(t(r))-x) \cdot g(t(r))/(x(t(r))-x) \cdot b(0, x(t(r))), \quad r > 0$$
$$G(0) = 0,$$

(10)
$$H(r) = g(t(r)) + G(r) b(0, x(t(r))).$$

Under (H1)-(H5) these processes are continuous on [0, N).

1.2. Limit theorem for the process $(X_{T_r}^{\varepsilon}, T_r^{\varepsilon})_{0 \le r \le N}$.

THEOREM 1. For all h > 0 and R_0 , R satisfying $0 < R_0 < R < N$, we have under (H1)-(H4),

(i)
$$\lim_{\varepsilon \to 0} \mathbf{P} \Big(\sup_{R_0 \leq r \leq R} |\varepsilon^{-1} (T_r^{\varepsilon} - t(r)) - G(r)| > h \Big) = 0,$$

(ii)
$$\lim_{\varepsilon \to 0} P\left(\sup_{R_0 \leq r \leq R} |\varepsilon^{-1} \left(X_{T_r}^{\varepsilon} - x(t(r)) \right) - H(r)| > h \right) = 0.$$

We first prove

LEMMA 1. Under (H1)-(H4), for all h > 0 and $R \in [0, N[, ..., N])$

$$\lim_{\varepsilon\to 0} \mathbb{P}(\sup_{0\leq r\leq R} |T_r^{\varepsilon}-t(r)|>h)=0.$$

To simplify notation, let us omit all superscripts ε . Proof. Let $R \in [0,N[$ and $h, h_1, T > 0$ such that $t(R+h_1) < T$. Then

$$A(h) = \{ \sup_{t \le T} |X_t - x(t)| < h \}$$

is included in

$$\{\sup_{0\leq r\leq R}|T_r-t(r)|\leq \omega(h)\},\$$

where

$$\omega(h) = \sup \{ |\mathsf{t}(\mathsf{r}') - \mathsf{t}(\mathsf{r}'')|; |\mathsf{r}' - \mathsf{r}''| \le 2h, \ 0 \le \mathsf{r}', \ \mathsf{r}'' \le R + h_1 \}.$$

From the continuity of (t(r)), fix $\eta > 0$ and h > 0 such that $\omega(h) < \eta$. Lemma 1 then follows from Theorem A.

Proof of Theorem 1.

(i) From Theorem A, for $r \ge 0$, we have

(11)
$$X_{T_r} - x = x(T_r) - x + \varepsilon g(T_r) + \varepsilon^2 R_2(T_r)$$

and (see (4) and (5))

(12)
$$\varepsilon^{-1}(r - n(T_r)) = r^{-1}(x(t(r)) - x) \cdot g(t(r)) + Y_r + \varphi_r$$
with

(13)
$$Y_{r} = 2(r+n(T_{r}))^{-1}(x(T_{r})-x) \cdot g(T_{r}) - r^{-1}(x(t(r))-x) \cdot g(t(r)))$$

and

(14)
$$\varphi_r = (r + n(T_r))^{-1} (\varepsilon |g(T_r)|^2 + \varepsilon R_2(T_r) \cdot (2(x(T_r) - x) + 2\varepsilon g(T_r) + \varepsilon^2 R_2(T_r)).$$

An application of Taylor's formula yields

(15)
$$T_r - t(r) = (n(T_r) - r)t'(r) + \frac{1}{2}(n(T_r) - r)^2 t''(r^*)$$
 with $r^* \in (r, n(T_r))$.
Thus using (4), (5) and (9), we obtain

(16)
$$\varepsilon^{-1}(T_r - t(r)) = G(r) + \varrho_1(r)$$

with

(17)
$$\varrho_1(r) = -t'(r)(\varphi_r + Y_r) + \varepsilon^{-1} (n(T_r) - r)^2 t''(r^*)/2.$$

Fix R_0 , R such that $0 < R_0 < R < N$. We now check that $\varrho_1(r)$ is uniformly $o_p(1)$ on $[R_0, R]$ as $\varepsilon \to 0$.

Because of Lemma 1, $(r+n(T_r))^{-1}$ converges uniformly on $[R_0, R]$ to $(2r)^{-1}$ in probability. Let T > 0 be such that t(R) < T in order to ensure

$$\lim_{\varepsilon \to 0} \boldsymbol{P}(T_R < T) = 1.$$

On $(T_R < T)$, $\sup_{R_0 \le r \le R} |\varphi_r|$ is bounded from above by a random variable which is $o_p(1)$ in view of (14) and Theorem A. Thus $\sup_{r \ge 0} |\varphi_r| = o_p(1)$.

To see that Y_r is also uniformly $o_p(1)$ on $[R_0, R]$, it remains to show that $\sup_{r \leq R} |Z(T_r) - Z(t(r))|$, with $Z(t) = (x(t) - x) \cdot g(t)$, is $o_p(1)$. This is a straightforward consequence of Lemma 1 and of the continuity of the process (Z(t)). So, in view of (12),

$$\sup_{\mathbf{R}_0 \leq \mathbf{r} \leq \mathbf{r}} \varepsilon^{-1} (n(T_{\mathbf{r}}) - \mathbf{r})^2 = o_p(1).$$

Now to see that $\sup_{\substack{R_0 \le r \le R \\ e < T}} |t''(r^*)|$ is bounded in probability, choose k > 0such that $0 < t(R_0 - k)$ and again t(R) < T. On $C = \{t(R_0 - k) < T_{R_0}, T_R < T\}$, r^* remains in $[R_0 - k, n(T)]$ and $\lim P(C) = 1$. Thus

$$\sup_{R_0 \leqslant r \leqslant R} |\varrho_1(r)| = o_p(1),$$

which (see (16) and (17)) achieves the proof of (i). (ii) Formula (11) and a Taylor expansion for $x(T_r) - x(t(r))$ yield that

$$\varepsilon^{-1}\left(X_{T_r} - x(t(r))\right) = H(r) + \varrho_2(r),$$

where

$$\varrho_{2}(r) = b(0, x(t(r)))\varrho_{1}(r) + \frac{\varepsilon}{2}x''(t_{r}^{*})((T_{r} - t(r))/\varepsilon)^{2} + g(T_{r}) - g(t(r)) + \varepsilon R_{2}(T_{r}),$$

and $t_r^* \in (t(r), T_r)$.

On $(T_R < T)$, $t_r^* \in [0, T]$. So we proceed as in (i) to get

$$\sup_{R_0 \le r \le R} |\varrho_2(r)| = o_p(1)$$

and (ii).

Remark 1. Even when a higher order expansion of X^{ϵ} in powers of ϵ is available (e.g. if b, σ are C^{k} , k > 2), it is not possible to improve the expansion of $(T_{r}^{\epsilon}, X_{T_{r}^{\epsilon}}^{\epsilon})$ to within $o(\epsilon^{2})$ because g(t) is not differentiable ([2], p. 59).

Remark 2. A useful consequence of Lemma 1 and Theorem A is that, for any continuous *m*-vector field ψ ,

$$\int_{0}^{t_{R}^{e}} \psi(X_{s}^{e}) \cdot dW_{s} \xrightarrow{P} \int_{0}^{t(R)} \psi(x(s)) \cdot dW_{s},$$

which can be checked by the classical Lenglart inequalities.

The following two corollaries of Theorem 1 are the basement of the statistical study of Section 2.

COROLLARY 1. Under (H1)-(H4) and the additional assumption (H5), the result of Theorem 1 remains true with $R_0 = 0$.

Proof. Under (H5), the processes (G(r)) and (H(r)) are right-continuous and nul at 0. Since this is also true in probability for T_r , Corollary 1 follows.

COROLLARY 2. Let
$$\varphi: \mathbb{R}^m \to \mathbb{R}$$
 be C^2 . For $\mathbb{R} \in [0, N[$, let

$$D_{R}^{\varepsilon}(\varphi) = \int_{0}^{T_{R}^{\varepsilon}} \varphi(X_{s}^{\varepsilon}) ds - \int_{[0,R]} \varphi(X_{T_{r}^{\varepsilon}}^{\varepsilon}) dT_{r}^{\varepsilon},$$

where the previous integral is a stochastic integral with respect to the increasing left-continuous process (T_r^{ε}) . Under (H1)-(H5), $\varepsilon^{-1} D_R^{\varepsilon}(\phi) \to 0$ in probability as $\varepsilon \to 0$.

Let us fix $R \in [0, N[$, and omit the superscripts ε for the following proofs. First we prove

LEMMA 2. Assume (H1)-(H5).

(i) Let $(f(r, \omega))_{0 \le r \le R}$ be a random continuous function adapted to $(\mathscr{F}_{t(r)})_{0 \le r \le R}$. Then

$$\int_{[0,R)} f(r) dT_r^{\varepsilon} \xrightarrow{R} \int_{0}^{R} f(r) dt(r) \text{ in probability.}$$

(ii) If f is C^1 , then

$$\varepsilon^{-1} \int_{[0,R]} f(r) \left(dT_r^{\varepsilon} - dt(r) \right) \xrightarrow{R} \int_{0}^{R} f(r) dG(r) \text{ in probability,}$$

where the above limit is a stochastic integral with respect to the continuous semi-martingale (G(r)).

3 - Probability Vol. 10, Fasc. 1

Proof. (i) Consider

$$f_n(r) = \sum_{k=0}^{\lfloor 2^n R \rfloor} f(2^{-n}k) \mathbf{1}_{\lfloor 2^{-n_k} \leq r < 2^{-n_{\lfloor k+1 \rfloor \land R \rfloor}}}.$$

By Lemma 1

$$\int_{(0,R)} f_n(r) dT_r \xrightarrow{\kappa} \int_{0}^{K} f_n(r) dt(r) \text{ in probability.}$$

Now, on $(T_R < T)$ with t(R) < T,

$$\left| \int_{[0,R)} f_n(r) \left(dT_r - dt(r) \right) \right| \leq 2T\omega \left(f, 2^{-n} \right) + \left| \int_{[0,R)} f_n(r) \left(dT_r - dt(r) \right) \right|,$$

where $\omega(f, \delta) = \sup \{ |f(r) - f(r')|; |r - r'| \le \delta, 0 \le r, r' \le R \}$. Result (i) follows from the continuity of f and Lemma 1.

(ii) Since f is C^1 , by Theorem 1 and Corollary 1,

$$\varepsilon^{-1} \int_{[0,R]} f(r) \left(dT_r - dt(r) \right) = \varepsilon^{-1} \left(f(R) \left(T_R - t(R) \right) - \int_0 f'(r) \left(T_r - t(r) \right) dr \right)$$

R

converges in probability to

$$f(R) G(R) - \int_{0}^{R} f'(r) G(r) dr = \int_{0}^{R} f(r) dG(r)$$

because the integration by parts formula is also valid for the semi-martingale G(r).

Proof of Corollary 2. The random variable $D_R(\phi)$ may be written as $D_R(\phi) = A + B + C$ with

$$A = \int_{[0,R]} \varphi(X_{t(r)}) \left(dt(r) - dT_r \right),$$

$$B = \int_{[0,R]} \left(\varphi(X_{t(r)}) - \varphi(X_{T_r}) \right) dT_r, \quad C = \int_{t(R)}^{T_R} \varphi(X_s) ds.$$

An application of Taylor's formula to $\varphi(X_{t(r)}) - \varphi(x(t(r)))$ and $\varphi(X_{T_r}) - \varphi(x(t(r)))$ yields, by (10),

(18)
$$\varepsilon^{-1} A = -\int_{0}^{R} \varphi(x(t(r))) dG(r) + o_{p}(1)$$

and

(19)
$$\varepsilon^{-1}B = -\int_{0}^{R} \nabla \varphi \left(x \left(t \left(r \right) \right) \right) \cdot G \left(r \right) b \left(0, x \left(t \left(r \right) \right) \right) dt \left(r \right) + o_{p} \left(1 \right),$$

when $\nabla \varphi$ is the gradient vector of φ . Also

(20) $\varepsilon^{-1} C = \varphi \left(x \left(t \left(R \right) \right) \right) G \left(R \right) + o_p(1).$

In the three above equalities we have used Theorem A, Theorem 1 and Corollary 1, and Lemma 2 to see that the remainder terms are $o_p(1)$. Now,

$$d\varphi(x(t(r))) = \nabla\varphi(x(t(r))) \cdot b(0, x(t(r))) dt(r)$$

and

$$\varphi\left(x(t(R))\right)G(R) = \int_{0}^{R} \varphi\left(x(t(r))\right)dG(r) + \int_{0}^{R} G(r)\,d\varphi\left(x(t(r))\right).$$

together with (18)-(20), achieve the proof of Corollary 2.

Thus under (H1)-(H5) we have obtained an asymptotically Gaussian behaviour with rate ε for the process $(X_{T_r}^{\varepsilon}, T_r^{\varepsilon})$ and the main consequence of this result is, in view of Corollary 2, that the whole information carried (on the drift vector b) by the observation $(X_s^{\varepsilon}, s \leq T_R^{\varepsilon})$ will be contained in $(X_{T_r}^{\varepsilon}, T_r^{\varepsilon})_{0 \leq r \leq R}$ as is seen in Section 2. For the purpose of testing $b \equiv 0$ from the observation $(X_{T_r}^{\varepsilon}, T_r^{\varepsilon})$, we also need to specify its behaviour under this hypothesis.

PROPOSITION 1. Let $b \equiv 0$ in (1) and assume (H1)-(H3).

The distribution of the process $(X_{T_r}^{\varepsilon}, \varepsilon^2 T_r^{\varepsilon})_{r\geq 0}$ is independent of ε . (This law is on the space of left-continuous with right-hand limits function on $[0, +\infty)$, taking values in $\mathbb{R}^m \times [0, +\infty)$ endowed with the Skorokhod Borel σ -algebra).

Proof. The process $B_t^{\varepsilon} = \varepsilon W_{\varepsilon^{-2}t}$ is a standard Brownian motion and $Y_t^{\varepsilon} = X_{\varepsilon^{-2}t}^{\varepsilon}$ satisfies

$$Y_t^{\varepsilon} = x + \int_0^t \sigma(Y_s^{\varepsilon}) \, dB_s^{\varepsilon}.$$

Thus the law of Y^{ε} does not depend on ε . Since

$$\varepsilon^2 T_r(X^{\varepsilon}) = \inf \{t \ge 0; |Y_t^{\varepsilon} - x| = r\} = T_r(Y^{\varepsilon})$$

and $X_{T_r(X^{\varepsilon})}^{\varepsilon} = Y_{T_r(Y^{\varepsilon})}^{\varepsilon}$, we obtain the result of Proposition 1.

2. CONTIGUITY PROPERTIES AND APPLICATIONS TO DRIFT TESTING

2.1. Assumptions and notations. We now assume that the drift $b(\varepsilon, u) = \theta b(u)$ does not depend on ε and depends on an unknown linear parameter $\theta \in [0, +\infty)$. Let $(C, \mathscr{C}, (\mathscr{C}_t)_{t \ge 0}, (X_t)_{t \ge 0}, P_{\theta}^{\varepsilon})$ be the canonical diffusion solu-

tion of the s.d.e. (1) with drift $\theta b(u)$, where $C = C(\mathbf{R}^+, \mathbf{R}^m)$, (X_i) are the canonical coordinates of C,

$$\mathscr{C}_t = \bigcap_{s>t} \mathscr{C}_t^0, \quad \mathscr{C}_t^0 = \sigma(X_s, s \leq t), \quad \mathscr{C} = \bigvee_{t \geq 0} \mathscr{C}_t.$$

Let $T_r(X) = T_r$, $(x_\theta(t))$ be the solution of $x'_\theta(t) = \theta b(x_\theta(t))$, $x_\theta(0) = x$ and $n_\theta(t) = |x_\theta(t) - x|$.

We assume

(K1) For all $\theta > 0$, the functions $\theta b(u)$, $\sigma(u)$ and $x_{\theta}(t)$ satisfy (H1)-(H5).

(K2) $b = e\nabla V$, where $e = \sigma(t\sigma)$, V: $\mathbb{R}^m \to \mathbb{R}$ is C^3 and V(x) = 0.

Clearly,

(21)
$$x_{\theta}(t) = x(\theta t), \quad n_{\theta}(t) = n(\theta t),$$

where $x(t) = x_1(t)$ and $n(t) = n_1(t)$ correspond to $\theta = 1$. Thus, for $\theta > 0$,

(22)
$$n_{\theta}(+\infty) = n(+\infty) = N, \quad t_{\theta}(r) = \theta^{-1} t(r)$$

with $t_{\theta} = n_{\theta}^{-1} t = n^{-1}$, r < N and $x_{\theta}(t_{\theta}(r)) = x(t(r))$.

Let $(G_{\theta}(r))$ and $(H_{\theta}(r))$ be the processes defined in (9) and (10), associated to the drift $\theta b(u)$ ($\theta > 0$). They are continuous centered (because $\partial b/\partial \varepsilon \equiv 0$) Gaussian processes and the covariance function of $(G_{\theta}(r))$ has, in view of (6) -(9), the following form:

$$\operatorname{Cov}(G_{\theta}(r), G_{\theta}(r')) = \theta^{-3} \gamma(r, r').$$

From Section 1, under P_{θ}^{ε} , $\theta > 0$,

$$\sup_{r \leq R} |T_r - \theta^{-1} t(r)| \xrightarrow{\varepsilon \to 0} 0, \quad 0 \leq R < N,$$

and

$$\left(\varepsilon^{-1}\left(T_{r}-\theta^{-1}t\left(r\right)\right), \varepsilon^{-1}\left(X_{T_{r}}-x\left(t\left(r\right)\right)\right)\right) \xrightarrow{\mathscr{D}} \left(G_{\theta}(r), H_{\theta}(r)\right)$$

in the Skorokhod space D([0, N[)).

Let us define:

(23)
$$\alpha(r) = V(x(t(r))), \quad r < N,$$
$$v(u) = {}^{t}\nabla V(u) e(u) \nabla V(u), \quad u \in \mathbb{R}^{m}.$$

(Note that $\alpha'(r) = v(x(t(r)))t'(r)$).

2.2. Testing θ from the observation $(X_{T_r}, T_r)_{0 \le r \le R}$. For given $R \in [0, N[$, the first hitting times and positions of the spheres S(x, r) with $r \le R$ are observed. We are concerned with the testing problem:

$$H_0: \theta = \theta_0$$
 vs $H_1: \theta > \theta_0$ with $\theta_0 \ge 0$.

Under (K1)-(K2), for all $\theta \ge 0$, the distributions $P_{\theta}^{\varepsilon}/\mathscr{C}_{T_R}$ and $P_{0}^{\varepsilon}/\mathscr{C}_{T_R}$ are equivalent and the likelihood of $(X_t)_{t \le T_R}$ is given by

(24)
$$(dP_{\theta}^{\varepsilon}/dP_{0}^{\varepsilon})/\mathscr{C}_{T_{R}} = L_{T_{R}}(\theta)$$

with

(25)
$$L_{T_R}(\theta) = \exp\left[\varepsilon^{-2}\left(\theta\int_0^{T_R} \nabla V(X_s) \cdot dX_s - \frac{\theta^2}{2}\int_0^{T_R} v(X_s) ds\right)\right].$$

We set:

(26)
$$t(\theta, \theta_0) = \log(L_{T_R}(\theta)/L_{T_R}(\theta_0)),$$

(27)
$$\widetilde{\varDelta}_{R}(\theta_{0}) = \varepsilon^{-1} \left(V(X_{T_{R}}) - \theta_{0} \int_{[0,R]} v(X_{T_{r}}) dT_{r} \right).$$

THEOREM 2. Assume (K1)-(K2).

(i) For
$$\theta_0 > 0$$
, $z > 0$, $\theta_{\varepsilon} = \theta_0 + \varepsilon z$, under $P_{\theta_0}^{\varepsilon}$, as $\varepsilon \to 0$, we have

(28)
$$l(\theta_{\varepsilon}, \theta_{0}) = z \tilde{\Delta}_{R}(\theta_{0}) - \theta_{0}^{-1} \alpha(R) z^{2}/2 + o_{p}(1)$$

with

(29)
$$\widetilde{\Delta}_{R}(\theta_{0}) \xrightarrow{\mathscr{D}} \mathcal{N}(0, \theta_{0}^{-1} \alpha(R)).$$

So, the distributions $(P_{\theta_0}^{\varepsilon})$ and $(P_{\theta_{\varepsilon}}^{\varepsilon})$, considered on \mathscr{C}_{T_R} , are contiguous as $\varepsilon \to 0$.

(ii) For $\theta_0 = 0$, z > 0, $\theta_{\varepsilon} = \varepsilon^2 z$, under P_0^{ε} , the distribution of $l(\theta_{\varepsilon}, 0)$ is independent of ε . The distributions (P_0^{ε}) and $(P_{\theta_{\varepsilon}}^{\varepsilon})$, considered on \mathcal{C}_{T_R} , are contiguous as $\varepsilon \to 0$.

Proof. (i) Let

(30)
$$\Delta_{R}(\theta_{0}) = \varepsilon^{-1} \int_{0}^{T_{R}} \nabla V(X_{s}) \cdot (dX_{s} - \theta_{0} e(X_{s}) \nabla V(X_{s}) ds).$$

From (25)-(26) we get

(31)
$$l(\theta_{\varepsilon}, \theta_{0}) = z \varDelta_{R}(\theta_{0}) - (z^{2}/2) \int_{0}^{T_{R}} v(X_{s}) ds.$$

An application of Ito's formula yields

(32)
$$\Delta_R(\theta_0) = \widetilde{\Delta}_R(\theta_0) + \theta_0 \varepsilon^{-1} \left(\int_{[0,R]} v(X_{T_r}) dT_r - \int_0^{T_R} v(X_s) ds \right) + \varepsilon \int_0^{T_R} h(X_s) ds,$$

where

$$h(u) = \frac{1}{2} \sum_{1 \leq i,j \leq m} \frac{\partial^2 V}{\partial u^i \partial u^j}(u) e_{ij}(u).$$

By Theorem 1 and its corollaries we get

(33)
$$\Delta_R(\theta_0) - \tilde{\Delta}_R(\theta_0) = o_p(1) \text{ under } P_{\theta_0}^{\varepsilon} \text{ as } \varepsilon \to 0$$

By remark 2 (at the end of Theorem 1),

$$\Delta_{R}(\theta_{0}) \xrightarrow{P_{\theta_{0}}^{\varepsilon}} \int_{0}^{\theta_{0}^{-1} t(R)} \nabla V(x(\theta_{0} s)) \cdot \sigma(x(\theta_{0} s)) dW_{s},$$

which is a centered Gaussian variable with variance (see (23))

$$\frac{\theta_0}{\int_0^{t_1(R)}} \frac{1}{\sigma} \left(x(\theta_0 s) \right) \nabla V \left(x(\theta_0 s) \right)^2 ds = \theta_0^{-1} \alpha(R).$$

Moreover, $\int_{0}^{\infty} v(X_s) ds$ and $\int_{[0,R)}^{\infty} v(X_{T_r}) dT_r$ converge in $P_{\theta_0}^{\varepsilon}$ -probability to

(34)
$$\int_{0}^{\theta_{0}-t(R)} v(x(\theta_{0} s)) ds = \theta_{0}^{-1} \int_{0}^{R} v(x(t(r))) dt(r) = \theta_{0}^{-1} \alpha(R).$$

In view of (30)-(32) we obtain the first part of (i). The contiguity follows from the fact that

$$l(\theta_{\varepsilon}, \theta_{0}) \xrightarrow{\mathcal{G}} \mathcal{N}(-\sigma^{2} z^{2}/2, \sigma^{2} z^{2})$$

with $\sigma^2 = \theta_0^{-1} \alpha(R)$ under $P_{\theta_0}^{\epsilon}$ (see [7], chap. 1). (ii) When $\theta_{\epsilon} = \epsilon^2 z$, we have

(35)
$$l(\theta_{\varepsilon}, 0) = z \left(V(X_{T_R}) - \varepsilon^2 \int_0^{T_R} h(X_s) ds \right) - (z^2 \varepsilon^2/2) \int_0^{T_R} v(X_s) ds$$
$$= z \left(V(Y_{\tau_R}^{\varepsilon_{\varepsilon}}) - \int_0^{\varepsilon_R} h(Y_s^{\varepsilon}) ds \right) - (z^2/2) \int_0^{\varepsilon_R} v(Y_s^{\varepsilon}) ds,$$

where $Y_t^{\varepsilon} = X_{\varepsilon^{-2}t}, \ \tau_R^{\varepsilon} = T_R(Y^{\varepsilon}) = \varepsilon^2 T_R(X).$

Under P_0^{ε} , the law of Y^{ε} is independent of ε (see the proof of Proposition 1), which yields (ii).

Theorem 2 leads us to consider the following estimator $\tilde{\theta}_{\varepsilon}$ of θ and the test of level $a, 0 \le a \le 1$, based on $\tilde{\theta}_{\varepsilon}$:

(36)
$$\tilde{\theta}_{\varepsilon} = V(X_{T_R}) / \int_{[0,R)} v(X_{T_r}) dT_r,$$

(37)
$$\tilde{\Phi}_{\varepsilon} = \mathbf{1}_{(\tilde{\theta}_{\varepsilon} > \tilde{c}_{\varepsilon}(a, \theta_0))} + \tilde{\gamma}_{\varepsilon}(a, \theta_0) \, \mathbf{1}_{(\tilde{\theta}_{\varepsilon} = \tilde{c}_{\varepsilon}(a, \theta_0))},$$

where $\tilde{c}_{\varepsilon}(a, \theta_0)$ and $\tilde{\gamma}_{\varepsilon}(a, \theta_0)$ are determined by the equality $E_{\theta_0}^{\varepsilon} \tilde{\Phi}_{\varepsilon} = a$. (We denote by $\mathcal{N}(x)$ the distribution function of the normal law $\mathcal{N}(0, 1)$).

Drift of a diffusion process

COROLLARY 3. Let $\theta_0 > 0$, z > 0, $\theta_{\varepsilon} = \theta_0 + \varepsilon z$ and assume (K1)-(K2). For testing θ_0 vs $\theta > \theta_0$, $\tilde{\Phi}_{\varepsilon}$ is locally asymptotically most powerful (LAMP) of level a, i.e., for any other \mathscr{C}_{T_R} -measurable test function Φ_{ε} of level a,

$$\lim_{\varepsilon \to 0} \inf_{\theta_0 < \theta < \theta_0 + \varepsilon z} E_{\theta}^{\varepsilon} \tilde{\Phi}_{\varepsilon} - E_{\theta}^{\varepsilon} \Phi_{\varepsilon} \ge 0$$

(see e.g. [5], Def. 1.4.1, p. 17).

Moreover,

(38)
$$\widetilde{c}_{\varepsilon}(a, \theta_0) = \theta_0 + \varepsilon \left(\theta_0 \alpha(R)^{-1}\right)^{1/2} \mathcal{N}^{-1}(a) + o(\varepsilon)$$

and

(39)
$$\lim_{\varepsilon \to 0} E^{\varepsilon}_{\theta_{\varepsilon}} \tilde{\Phi}_{\varepsilon} = \mathcal{N} \Big(z \big(\theta_0^{-1} \alpha(R) \big)^{1/2} + \mathcal{N}^{-1}(a) \Big).$$

Proof. From (34) and (36) we infer that

(40)
$$\varepsilon^{-1}(\tilde{\theta}_{\varepsilon} - \theta_0) = \theta_0 \alpha(R)^{-1} \tilde{\Delta}_R(\theta_0) + o_p(1)$$
 under $P_{\theta_0}^{\varepsilon}$.

This equality together with Theorem 2 (i) yield that Φ_{ε} is LAMP according to Theorem 1.4.1, p. 18, of [5]. It also implies that, under $P_{\theta_0}^{\varepsilon}$,

$$\varepsilon^{-1}(\tilde{\theta}_{\varepsilon}-\theta_0) \xrightarrow{\mathscr{D}} \mathcal{N}(0, \theta_0 \alpha(R)^{-1}).$$

Thus $(\tilde{c}_{\varepsilon}(a, \theta_0) - \theta_0)\varepsilon^{-1}(\alpha(R)/\theta_0)^{-1/2}$ must converge to $\mathcal{N}^{-1}(a)$ because $\tilde{\Phi}_{\varepsilon}$ has the level *a*, whereas $P_{\theta_0}^{\varepsilon}(\tilde{\theta}_{\varepsilon} = \tilde{c}_{\varepsilon}(a, \theta_0)) \to 0$ as $\varepsilon \to 0$, yielding (38).

Using (28) and (40), we get that $(l(\theta_{\varepsilon}, \theta_0), \varepsilon^{-1}(\tilde{\theta}_{\varepsilon} - \theta_0))$ converges under $P_{\theta_0}^{\varepsilon}$ to the degenerate two-dimensional Gaussian law

$$\mathcal{N}_{2}\left(\begin{pmatrix} -z^{2}\theta_{0}^{-1}\alpha(R)/2\\ 0 \end{pmatrix}, \begin{pmatrix} z^{2}\theta_{0}^{-1}\alpha(R) & z\\ z & \theta_{0}/\alpha(R) \end{pmatrix}\right).$$

By the contiguity, it follows that

$$\varepsilon^{-1}(\tilde{\theta}_{\varepsilon} - \theta_0) \xrightarrow{\mathcal{D}} \mathcal{N}(z, \theta_0 / \alpha(R))$$

under the contiguous alternative $P_{\theta_{\varepsilon}}^{\varepsilon}$ (see [7], Chap. 1, Theorem 7.2) which by (38) leads to (39).

Remark 3. The locally asymptotically normal representation (28) of the loglikelihood ratio shows that the observation $(X_{T_r}, T_r)_{r \leq R}$ is asymptotically sufficient for θ_0 when $\theta_0 > 0$. By Corollary 2, this is also true for general drift $b(\theta, u)$ depending on an unknown parameter $\theta \in \mathbb{R}^k$ if $b(\theta, u)$ satisfies (H1)-(H5) and smoothness assumptions with respect to (θ, u) .

Corollary 4. Let $\theta_0 = 0$, z > 0, $\theta_{\varepsilon} = \varepsilon^2 z$.

The distribution of $\varepsilon^{-2} \tilde{\theta}_{\varepsilon}$ under P_0^{ε} and $P_{\theta_{\varepsilon}}^{\varepsilon}$ is independent of ε .

Proof. It is a consequence of Proposition 1 and Theorem 2 (ii).

Thus, $\tilde{\Phi}_{\varepsilon}$ can be used for testing $\theta = 0$ vs $\theta > 0$, with $\tilde{c}_{\varepsilon}(a, 0) = \varepsilon^2 c(a)$, $\tilde{\gamma}_{\varepsilon}(a, 0) = \gamma(a)$ and the power $E^{\varepsilon}_{\theta_{\varepsilon}} \tilde{\Phi}_{\varepsilon}$ at the contiguous alternative $\theta_{\varepsilon} = \varepsilon^2 z$ is independent of ε . The optimality properties of $\tilde{\Phi}_{\varepsilon}$ are lost, but the separating rate ε^2 of H_0 and H_1 is improved.

2.3. Testing θ from the observation $(T_r)_{0 \le r \le R}$. From (22), the limit x(t(r)) of X_{T_r} is independent of the unknown θ . Replacing X_{T_r} by its limit in (36), we define

(41)
$$\overline{\theta}_{\varepsilon} = \alpha(R) / \int_{[0,R]} v(x(t(r))) dT_r$$

and the test of θ_0 vs $\theta > \theta_0$, based on $\overline{\theta}_{\varepsilon}$,

$$\tilde{\Phi}_{\varepsilon} = \mathbb{1}_{(\bar{\theta}_{\varepsilon} > \bar{c}_{\varepsilon}(a, \theta_0))} + \bar{\gamma}_{\varepsilon}(a, \theta_0) \mathbb{1}_{(\bar{\theta}_{\varepsilon} = \bar{c}_{\varepsilon}(a, \theta_0))} \text{ with } E^{\varepsilon}_{\theta_0} \bar{\Phi}_{\varepsilon} = a.$$

PROPOSITION 2. Assume (K1)-(K2).

(i) Let $\theta_0 > 0$, z > 0 and $\theta_e = \theta_0 + \varepsilon z$. There exists a J(R) > 0, $\varrho(R) \in [-1, 1]$, not depending on θ_0 such that

(42)
$$\overline{c}_{\varepsilon}(a, \theta_0) = \theta_0 + \varepsilon \left(\theta_0 J(R)\right)^{1/2} + o(\varepsilon)$$

and

(43)
$$\lim_{\varepsilon \to 0} E^{\varepsilon}_{\theta_{\varepsilon}} \bar{\Phi}_{\varepsilon} = \mathcal{N} \left[z \varrho \left(R \right) \left(\theta_{0}^{-1} \alpha \left(R \right) \right)^{1/2} + \mathcal{N}^{-1} \left(a \right) \right].$$

The test $\overline{\Phi}_{\varepsilon}$ is LAMP iff $\varrho(R) = 1$.

(ii) Let $\theta_0 = 0$, z > 0, $\theta_{\varepsilon} = \varepsilon^2 z$. The distribution of $\varepsilon^{-2} \overline{\theta}_{\varepsilon}$ under P_0^{ε} and $P_{\theta_{\varepsilon}}^{\varepsilon}$ is independent of ε .

Proof. Let

(44)
$$\overline{\Delta}_{R}(\theta_{0}) = \varepsilon^{-1} \theta_{0} \int_{[0,R)} v\left(x\left(t\left(r\right)\right)\right) \left(\theta_{0}^{-1} dt\left(r\right) - dT_{r}\right).$$

By Theorem 1, its Corollaries and Lemma 2, we have (see (30)), under $P_{\theta_{0}}^{\epsilon}$,

$$(45) \qquad \left(\Delta_{R}(\theta_{0}), \, \bar{\Delta}_{R}(\theta_{0})\right) \xrightarrow{\mathscr{D}}_{\varepsilon \to 0} \left(\int_{0}^{\theta_{0}^{-1} t(R)} \nabla V(x(\theta_{0} s)) \cdot \sigma(x(\theta_{0} s)) dW_{s} - - \theta_{0} \int_{0}^{R} v(x(t(r))) dG_{\theta_{0}}(r) \right),$$

where $(G_{\theta_0}(r))$ is the limiting process of $(T_r - \theta_0^{-1} t(r))$. From (41) and the fact that

$$\int_{[0,R)} v(x(t(r))) dT_r \xrightarrow{\varepsilon \to 0} \theta_0^{-1} \alpha(R)$$

under $P_{\theta_0}^{\epsilon}$ (see (23) and Lemma 2), we get

(46)
$$\varepsilon^{-1}(\bar{\theta}_{\varepsilon}-\theta_{0})=\theta_{0}\alpha(R)^{-1}\bar{\Delta}_{R}(\theta_{0})+o_{p}(1).$$

We have already obtained (see (28) and (33))

(47)
$$l(\theta_{\varepsilon}, \theta_0) = z \varDelta_R(\theta_0) - \theta_0^{-1} \alpha(R) z^2/2 + o_p(1).$$

Formulae (45)-(47) yield that $(l(\theta_{\varepsilon}, \theta_0) + \theta_0^{-1} \alpha(R) z^2/2, \varepsilon^{-1}(\overline{\theta}_{\varepsilon} - \theta_0))$ converges in distribution to a centered Gaussian vector with covariance matrix

$$= \left(\frac{z^2 \theta_0^{-1} \alpha(R) \quad zC(R)}{zC(R) \quad \theta_0 J(R)} \right),$$

where

(48)
$$J(R) = \alpha(R)^{-2} \operatorname{Var}\left(\int_{0}^{R} v\left(x(t(r))\right) d\left(\theta_{0}^{3/2} G_{\theta_{0}}(r)\right)\right)$$

and

(49)
$$C(R) = \alpha(R)^{-1} \operatorname{Cov}\left(\sqrt{\theta_0} \int_{0}^{\theta_0^{-1} t(R)} \nabla V(x(\theta_0 s)) \cdot \sigma(x(\theta_0 s)) dW_s - - \int_{0}^{R} v(x(t(r))) d(\theta_0^{3/2} G_{\theta_0}(r))\right).$$

Introducing the standard Brownian motion $B_t^{\theta_0} = \sqrt{\theta_0} W_{\theta_0^{-1}t}$, we deduce from (7)-(9), with $b(\varepsilon, u)$ replaced by b(u),

(50)
$$\theta_0^{3/2} G_{\theta_0}(r) = -\zeta(r) \cdot Q_{t(r)}^{-1} \int_0^{t(r)} Q_u \sigma(x(u)) dB_u^{\theta_0},$$

where Q_t satisfies $dQ_t = -Q_t b^{(1)}(x(t)) dt$, $Q_0 = I$, and the first random variable appearing in C(R) is equal to

(51)
$$\int_{0}^{t(R)} \nabla V(x(u)) \cdot \sigma(x(u)) dB_{u}^{\theta_{0}}.$$

So $\overline{J(R)}$ and C(R) do not depend on θ_0 . Let

$$\varrho(R) = C(R)/(J(R)\alpha(R))^{1/2}$$

be the limiting correlation coefficient. Since

 $\varepsilon^{-1}(\overline{\theta}_{\varepsilon} - \theta_0) \xrightarrow{\mathscr{D}} \mathscr{N}[0, \theta_0 J(R)]$

under $P_{\theta_0}^{\varepsilon}$ and $E_{\theta_0}^{\varepsilon} \bar{\Phi}_{\varepsilon} = a$, we get (42). The previous joint convergence in

distribution yields

$$\varepsilon^{-1}(\overline{\theta}_{\varepsilon} - \theta_{0}) \xrightarrow[\varepsilon \to 0]{\mathscr{Q}} \mathcal{N}\left(z\varrho(R) \left(J(R)\alpha(R)\right)^{1/2}, \theta_{0}J(R)\right)$$

under the contiguous alternative $P_{\theta_{\varepsilon}}^{e}$ ([7], Theorem 7.2, Chap. 1) from which (43) is obtained, together with the fact that $\overline{\Phi}_{\varepsilon}$ is LAMP iff $\varrho(R) = 1$. (ii) is a consequence of Proposition 1 and Theorem 2 (ii).

Remark 4. The limiting variance and correlation coefficient J(R) and $\varrho(R)$ can be calculated using definitions (6)-(9) and formulae (48)-(51), but no simple expressions are available unless $\varrho(R) = 1$. The limiting distribution of $\varepsilon^{-1}(\bar{\theta}_{\varepsilon} - \theta_0)$ under $P_{\theta_{\varepsilon}}^{\varepsilon}$, $\theta_{\varepsilon} = \theta_0 + \varepsilon z$, can also be obtained by Theorem 1 with $b(\varepsilon, u) = \theta_{\varepsilon} b(u)$.

2.4. Examples.

2.4.1. Brownian motion with drift.

The model $X_t = \theta \vec{u}t + \varepsilon W_t$ stopped at T_R has been studied in [3]. In this case, the last observation (X_{T_R}, T_R) is (exactly) sufficient and has an explicitly known distribution. The test based on $\bar{\theta}_{\varepsilon} = R/T_R$ is LAMP.

2.4.2. Linear drift.

For the model, $dX_t^i = \theta X_t^i dt + \varepsilon dW_t^i$, $X_0^i = x^i$, i = 1, ..., m, $x^i = t(x^1, ..., x^m) \neq 0$, $\theta > 0$, we have:

$$x(t) = x \exp(t),$$

$$t(r) = \log(1+|x|^{-1}r), \quad 0 \le r < +\infty = N,$$

$$x(t(r)) = x(1+|x|^{-1}r),$$

$$g_{\theta}(t) = \int_{0}^{t} \exp(\theta(t-s)) dW_{s}.$$

Thus, $G_{\theta}(r) = Z_{\theta}(\theta^{-1}t(r))$ with

$$Z_{\theta}(t) = -\theta^{-1} x \int_{0} \exp(-\theta s) dW_{s}/|x|^{2}.$$

The statistics $\tilde{\theta}_{\varepsilon}$ and $\bar{\theta}_{\varepsilon}$ are given by:

$$\tilde{\theta}_{\varepsilon} = \frac{1}{2} (|X_{T_R}|^2 - |x|^2) / \int_{[0,R]} |X_{T_r}|^2 dT_r,$$
$$\bar{\theta}_{\varepsilon} = \frac{1}{2} ((|\mathbf{x}| + \mathbf{R})^2 - |\mathbf{x}|^2) / \int_{[0,R]} (|\mathbf{x}| + r)^2 dT_r$$

In this case, as $(G_{\theta}(r))$ is a Gaussian martingale, easy computations yield

 $\varepsilon^{-1}(\tilde{\theta}_{\varepsilon}-\bar{\theta}_{\varepsilon})=o_p(1)$ under $P_{\theta_0}^{\varepsilon}, \ \theta_0>0$ as $\varepsilon \to 0$. Both tests $\tilde{\Phi}_{\varepsilon}$ and $\bar{\Phi}_{\varepsilon}$ are LAMP.

The model $dX_t^i = -\theta X_t^i dt + \varepsilon dW_t$, $X_0^i = x^i$, $i = 1, ..., m^t x = t(x^1, ..., x^m) \neq 0$, $\theta > 0$ leads to:

$$x(t) = x \exp(-t),$$

$$t(r) = -\theta^{-1} \log(1 - |x|^{-1}r) \quad \text{for } 0 \le r < |x| = N.$$

For R < |x|, the tests $\tilde{\Phi}_{\varepsilon}$ and $\bar{\Phi}_{\varepsilon}$ based on the observation $(X_{T_r}, T_r)_{r \leq R}$ or $(T_r)_{r \leq R}$ are also LAMP.

2.4.3: Bilinear diffusion.

Consider:

$$dX_t^i = \theta X_t^i dt + \varepsilon X_t^i dW_t^i, X_0^i = x^i, \quad i = 1, ..., m, \theta > 0.$$

When $x^i > 0$, i = 1, ..., m, $X_t^i > 0$ for all $t \ge 0$ a.s. for i = 1, ..., m. Thus $\sigma(X_t) = \text{diag}(X_t^i, i = 1, ..., m)$

is a.s. invertible and we can define

$$V(X_t) = \sum_{i=1}^m \log(X_t^i/x^i).$$

We obtain:

$$G_{\theta}(r) = Z_{\theta}(\theta^{-1} t(r)) \text{ with } Z_{\theta}(t) = -\theta^{-1} |x|^{-2} \sum_{i=1}^{m} (x^{i})^{2} W_{t}^{i},$$
$$\tilde{\theta}_{\varepsilon} = \sum_{i=1}^{m} \log (X_{T_{R}}^{i}/x^{i})/mT_{R},$$
$$\bar{\theta}_{\varepsilon} = \log (1+|x|^{-1}R)/T_{R} \text{ and } \varrho(R) = |x|^{2}/\{\sum_{i=1}^{m} (x^{i})^{4}\}^{1/2}.$$

REFERENCES

- [1] R. Azencott, Formule de Taylor stochastique et développement asymptotique d'intégrales de Feynmann, Séminaire de Probabilités XVI, 1980/81. Supplément: Géométrie différentielle stochastique, Lecture Notes in Mathematics, 921, Springer Verlag, 1982, p. 237-285.
- [2] M. I. Freidlin and A. D. Wentzell, Random perturbations of dynamical systems, Springer Verlag, New York 1984.
- [3] V. Genon-Catalot, Test sur la dérive d'un mouvement brownien arrêté au temps d'atteinte d'une sphère, C. R. A. S. Paris, Série I, 304.8, 1987.
- [4] and C. Laredo, Limit theorems for the first hitting times process of a diffusion and statistical applications, Scand. J. Stat. 14 (1987), p. 143-160.

- [5] Yu. A. Kutoyants, *Parameter estimation for stochastic processes*, Heldermann Verlag Berlin, Research and Exposition in Mathematics 6 (1985).
- [6] H. P. MacKean Jr., Stochastic integrals, Academic Press, 1969.
- [7] G. G. Roussas, Contiguity of probability measures: some applications in statistics, Cambridge University Press, 1972.

Received on 17. 2. 1987

U. A. 743 Statistique Appliquée Mathématique Bât. 425 Université Paris-Sud 91405 ORSAY Cedex FRANCE