ASYMPTOTIC BEHAVIOUR OF THE INTEGRAL OF A FUNCTION ON THE LEVEL SET OF A MIXING RANDOM FIELD*

Abstract

BY

\section*{ILEANA IRIBARREN (Caracas)}

Abstract. Let $X=\left\{X(t): t \in \boldsymbol{R}^{2}\right\}$ be a centered stationary real random field with a.s. differentiable paths. Let T be a rectangle of \boldsymbol{R}^{2} and let $F(f, T)$ denote the integral of the continuous function f over a level curve \mathscr{C}_{x} of X for a fixed level x, observed in T. We show that if a field X satisfies some mixing condition, then $F(f, T)$, adequately normalized, converges weakly to the Wiener process indexed in T. The limit variance has a precise expression in the Gaussian case and *-mixing case. A geometrical lemma shows cases where the higher order moments of $F(f, T)$ are finite.

1. INTRODUCTION.

In what follows, $X=\left\{X(t): t \in \boldsymbol{R}^{2}\right\}$ denotes an a.s. differentiable centered stationary random field. X is said to be isotropic if, given any $k \in N$ and $t_{1}, t_{2}, \ldots, t_{k} \in \boldsymbol{R}^{2}$, the joint laws of $\left(X\left(t_{1}\right), X\left(t_{2}\right), \ldots, X\left(t_{k}\right)\right)$ and $\left(X\left(Q t_{1}\right), X\left(Q t_{2}\right), \ldots, X\left(Q t_{k}\right)\right)$ are the same when Q is any isometry in $R^{2} . X$ is said to be affine, when it is equal in law to $\left\{Y(A t): t \in \mathbb{R}^{2}\right\}$, where Y is isotropic and $A: \boldsymbol{R}^{2} \rightarrow \boldsymbol{R}^{2}$ is a linear self adjoint transformation. The angle θ_{0} defining the eigenvectors directions $\left(\cos \theta_{0}, \sin \theta_{0}\right)$ and $\left(-\sin \theta_{0}, \cos \theta_{0}\right)$ and the respective eigenvalues λ_{1}, λ_{2} specify the affinity A. There is no loss of generality in assuming $\lambda_{1} \geqslant \lambda_{2}>0, \lambda_{1} \lambda_{2}=1$. Cabaña [2] has proposed estimators of the affinity parameters $k=\left(1-\lambda_{1}^{2} / \lambda_{2}^{2}\right)^{1 / 2}$ and θ_{0} based on the shape of the level curve of X, corresponding to a given level x.

The gradient process $\dot{X}(t)=\|\dot{X}(t)\|(\cos \Theta(t), \sin \Theta(t))$ is determined by the two real stationary processes $\|\dot{X}\|$ and Θ. If X has a.s. differentiable Jacobian and T is an open rectangle of \mathbb{R}^{2}, the set $\mathscr{C}_{x}=\{t \in T: X(t)$ $=x, \dot{X}(t) \neq 0\}$, for a fixed x, is a.s. a C^{1} one-dimensional manifold, as it results from applying the implicit Function Theorem. For $f:(-\pi, \pi] \rightarrow \boldsymbol{R}$

[^0]continuous and bounded we write
$$
F(f, T)=|T|^{-1} \int_{\mathscr{C}_{x}} f(\Theta(t)) d S(t),
$$
where $|T|$ is the area of $T, d S$ is the surface measure of \mathscr{C}_{x}, and the integral is defined for every $\omega \in \Omega$ as the usual integral over a differentiable manifold [3]. $F(f, T)$ is a random variable with respect to the σ-algebra generated by $\{X(t): t \in T\}$. We write
$$
\mathscr{L}(T)=F(1, T), \quad \mathscr{\mathscr { L }}(T)=F(\cos 2 \theta, T), \quad \mathscr{S}(T)=F(\sin 2 \theta, T)
$$

Cabaña [3] and Wschebor [10] have proved by different methods the formulae, known as Rice's Formulae, for the moments of the variable $F(f, T)$ (Theorem 3). Making use of these formulae we obtain

$$
\tan 2 \theta_{0}=\mathrm{E} \mathscr{S} / \mathrm{E} \mathscr{C}, \quad g(k)=\frac{\sqrt{(\mathrm{E} \mathscr{C})^{2}+(\mathrm{E} \mathscr{S})^{2}}}{\mathrm{E} \mathscr{L}}
$$

where g is a certain function of the parameter k. These equations led Cabaña to propose the following estimators for the affinity parameters θ_{0} and k :

$$
\theta_{0}=\frac{1}{2} \arg (\mathscr{C}(\lambda T), \mathscr{P}(\lambda T)), \quad k=g^{-1}\left(\frac{\sqrt{\overline{\mathscr{C}^{2}(\lambda T)+\mathscr{Y}^{2}(\lambda T)}}}{\mathscr{L}(\lambda T)}\right),
$$

where λT is a dilation of T, θ_{0} and k are consistent and asymptotically Gaussian under adequated mixing conditions. Cabaña [2] has proved this assertion when X is δ-dependent, and he has computed the limit variance. The aim of the present paper is to prove the asymptotical normality of $F(f, T)$ under less strict conditions of dependence. We prove, making use of a Functional Central Limit Theorem for strong mixing fields, that adequately normalized $F(f, T)$ converges weakly to a Wiener process indexed by the rectangles of \mathscr{R}^{2}. Generally, the Central Limit Theorem for mixing variables has the inconvenient that the variance is impossible to compute, but here we compute the limit variance in the Gaussian and *-mixing cases and show that this variance has the same expression that in the δ-dependent case (see [2]).

Since the existence of higher order moments plays a fundamental.role, we improve Wschebor's results [11], giving conditions under which the p-th order moment of $F(f, T)$ is finite.

2. FRAMEWORK

We begin with
Definition 1. Let $\xi=\left\{\xi(t): t \in \mathbb{R}^{d}\right\}$ be a stationary random field. We say that ξ is strongly mixing with coefficient α, or α-mixing, if for any Borelian
sets U and V

$$
\sup \{\mid \mathrm{P}(A \cap B)-\mathrm{P}(A) \mathrm{P}(B): A \in \sigma(U), B \in \sigma(V)\} \leqslant \alpha(p(U, V))
$$

and $\alpha(p) \rightarrow 0, p \rightarrow \infty$. Here $p(U, V)$ is the Euclidean distance and $\sigma(U)$ $=\sigma\{\xi(t): t \in U\}$. In the same manner, we say ξ satisfies $a{ }^{*}$-mixing condition with coefficient ψ if

$$
\sup \left\{\left|\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(A) \mathrm{P}(B)}-1\right|: A \in \sigma(U), B \in \sigma(V)\right\} \leqslant \psi(p(U, V))
$$

and $\psi(p) \rightarrow 0, p \rightarrow \infty$.
Let $\xi=\left\{\xi(t): t \in Z^{d}\right\}$ be a discret strong mixing stationary centered real random field and

$$
S_{n}=\sum_{1 \leqslant j \leqslant n} \xi_{j},
$$

where $j \leqslant n$ means $j_{1} \leqslant n_{1}, j_{2} \leqslant n_{2}, \ldots, j_{d} \leqslant n_{d}$. We prove
Lemma 1. If $\mathrm{E}\left|\xi_{0}\right|^{2+\delta}<\infty$ and the mixing satisfies

$$
\sum_{r=1}^{\infty} r^{d-1} \alpha^{\delta /(2+\delta)}(r)<\infty,
$$

then
(i)

$$
\sum_{j \in Z^{d}} \mathrm{E}\left(\xi_{0} \xi_{j}\right)<\infty
$$

$$
\begin{equation*}
|n|^{-1} \mathrm{E} S_{n}^{2} \rightarrow \sum_{j \in Z^{d}} \mathrm{E}\left(\xi_{0} \xi_{j}\right)=\sigma^{2} \quad \text { when } n \rightarrow \infty, \tag{ii}
\end{equation*}
$$

where $n \rightarrow \infty$ means $\min _{1 \leqslant j \leqslant d} n_{j} \rightarrow \infty$ and $|n|=n_{1} n_{2} \ldots n_{d}$.
Proof. Lemma 3 of Billingsley [1], p. 172, and the inequality of moments for strong mixing fields [7] give the proof.

Let T^{d} be a Cartesian product of $[0,1] \subset \boldsymbol{R}$. We will denote by C_{d} the set of continuous functions on T^{d} provided with the uniform metric, and D_{d} is the Skorohod function space on T^{d}. A subset B of T^{d}, $\dot{B}=\left\{u=\left(u_{1}, \ldots, u_{d}\right): s_{j} \leqslant u_{j} \leqslant t_{j}\right\}$ is called a block, and increment $\xi(B)$ of ξ around a block B is given by

$$
\xi(B)=\sum_{\left.\varepsilon \in|0,1|\right|^{d}}(-1)^{d-|\varepsilon|} \xi(s+\varepsilon(t-s))
$$

where $|\varepsilon|=\varepsilon_{1}+\ldots+\varepsilon_{d}$ if $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{d}\right)$.
The Wiener process $W=\left\{W(t): t \in T^{d}\right\}$ on T^{d} is characterized by
(a) $P\left\{W \in C_{d}\right\}=1$;
(b) if $B_{1}, B_{2}, \ldots, B_{k}$ are pairwise disjoint blocks in T^{d}, then the incre-
ments $W\left(B_{1}\right), W\left(B_{2}\right), \ldots, W\left(B_{k}\right)$ are independent normal variables with means zero and variances $\left|B_{1}\right|,\left|B_{2}\right|, \ldots,\left|B_{k}\right|$, where $|\cdot|$ denotes the d-dimensional Lebesgue measure in T^{d}.

If \mathscr{A} is a class of sets, the Wiener process indexed in \mathscr{A}, W $=\{W(A): A \in \mathbb{C}\}$, is the Gaussian centered process with covariances $\operatorname{cov}(W(A), W(B))=|A \cap B|$ for $A, B \in \mathscr{A}$. If α is the class of the blocks in T^{d}, denoted by $\mathscr{P}^{d},\left\{W(B): B \in \mathscr{M}^{d}\right\}$ is the increments process of $\left\{W(t): t \in T^{d}\right\}$ around the blocks B 's. It results that $W=\left\{W(B): B \in \mathscr{R}^{d}\right\}$ is continuous [8].

3. MAIN THEOREM

Let $T \doteq[-a, a) \times[-b, b)$ be a half-open rectangle in \mathbb{R}^{2}. We divide the plane in a grid $\left\{T_{j}: j \in \mathbb{Z}^{2}\right\}$, where T_{j} s are all rectangles with the same dimension as T, such that if $j=\left(j_{1}, j_{2}\right), T_{j}$ has center $C_{j}=\left(2 a j_{1}, 2 b j_{2}\right)$. For λ $=\left(\lambda_{1}, \lambda_{2}\right) \in Z^{2}$ we define the following dilation of T

$$
\lambda T=\left\{\begin{array}{cl}
T & \text { if } \lambda_{1}=\lambda_{2}=1 \\
\bigcup_{j \in Q_{\lambda}} T_{j} & \text { if } \lambda_{1}>1 \text { or } \lambda_{2}>1
\end{array}\right.
$$

where $Q_{\lambda}=\left\{j \in Z^{2}:-(\lambda-1) \leqslant j \leqslant \lambda-1\right\}$. Note that $|\lambda T|=\left|Q_{\lambda}\right||T|$, where $\left|Q_{\lambda}\right|=\operatorname{card}\left(Q_{\lambda}\right)=\left(2 \lambda_{1}-1\right)\left(2 \lambda_{2}-1\right)$ and

$$
F(f, T)=\left|Q_{\lambda}\right|^{-1} \sum_{j \in Q_{\lambda}} F\left(f, T_{j}\right)
$$

Theorem 1. Suppose that the field X is strongly mixing and
(i) the mixing satisfies $\sum_{k=1}^{\infty} k^{(q+[q / 2])-1} \alpha^{\delta /(q+\delta)}(k)$;
(ii) $\mathrm{E}[F(f, T)]^{q+\delta}<\infty$ for some $q \geqslant 2$ and $\delta>0$;
(iii) the variance defined by Lemma 1 has the form

$$
\sigma^{2}=|T|^{-1} \int_{\boldsymbol{R}^{2}} I(0, t, f) d t>0
$$

where

$$
I(s, t, f)=\int_{-\pi}^{\pi} f(\theta) d \theta \int_{-\pi}^{\pi} f(\varphi) H_{s t}(x, \theta, \varphi) d \varphi
$$

with

$$
\begin{aligned}
& H_{s t}(x, \theta, \varphi)=\mathrm{P}_{X(s), X(t), \mathscr{P}(s), \mathscr{P}(t)}(x, x, \theta, \varphi) \times \\
& \times \mathrm{E}[\|\dot{X}(s)\|\|\dot{X}(t)\| / X(s)=X(t)=x, \Theta(s)=\theta, \Theta(t)=\varphi]- \\
& -\mathrm{P}_{X(s), \Theta(s)}(x, \theta) \mathrm{E}[\|\dot{X} X(s)\| / X(s)=x, \Theta(t)=\theta] \times \\
& P_{X(t), \mathscr{X}(t)}(x, \varphi) \mathrm{E}[\|\dot{X}(t)\| / X(t)=x, \Theta(t)=\varphi],
\end{aligned}
$$

where $P_{X, \Theta}$ denotes the joint density of X and Θ.

Then the field $\left\{Z_{\lambda}(T): T \in R^{2}\right\}$, defined by

$$
Z_{\lambda}(T)=\left[\frac{\left|Q_{\lambda}\right||T|}{\sigma^{2}}\right]^{1 / 2}[F(f, \lambda T)-\mathrm{E} F(f, T)]
$$

converges weakly to the Wiener process indexed in $\mathscr{R}^{2},\left\{W(T): T \in \mathscr{R}^{2}\right\}$.
Proof. We can define the following discret random field: for every $j \in Z^{2}, Y_{j}=F\left(f, T_{j}\right)-\mathrm{E} F\left(f, T_{j}\right)$. It is not difficult to see that if the field X is strongly mixing, then so is $Y=\left\{Y_{j}: j \in Z^{2}\right\}$, and the mixing coefficient of Y is less than $\alpha(k-h)$, where α is the strong mixing coefficient of X and h is the length of the diagonal of T. In fact, if $N \in Z^{2}$, because $F(f, T)$ is measurable we have

$$
\sigma\left\{Y_{j}: j \in N\right\} \subset \sigma\left\{X(t): t \in \bigcup_{j \in N} T_{j}\right\}
$$

and, therefore,

$$
\sup \left\{|\mathrm{P}(A \cap B)-\mathrm{P}(A) \mathrm{P}(B)|: A \in \sigma(N), B \in \sigma\left(N^{\prime}\right)\right\} \leqslant \alpha\left(p\left(\bigcup_{j \in N} T_{j}, \bigcup_{j \in N^{\prime}} T_{j}\right)\right)
$$

We conclude that Y is strong mixing and its mixing coefficient satisfies (i).

On the other hand,

$$
Z_{\lambda}(T)=\frac{|T|^{1 / 2}}{\left(\left|Q_{\lambda}\right| \sigma^{2}\right)^{1 / 2}} \sum_{j \in Q_{\lambda}} Y_{j}=\left(|n| \sigma^{2}\right)^{-1 / 2} \sum_{-[n t] \leqslant j \leqslant[n t]} Y_{j} .
$$

The last equation results from the change $\lambda-1=[n t]$. Accordingly, this suggests making use of a Functional Central Limit Theorem for mixing multiparametric processes.

Proposition 1. Suppose $Y=\left\{Y_{j}: j \in \boldsymbol{Z}^{d}\right\}$ is a strongly mixing centered stationary real random field such that, for some even number $q \geqslant 2$ and $\delta>0$,

$$
\begin{equation*}
\sum_{k=1}^{\infty} k^{d(3 / 2) q-1} \alpha^{\delta /(q+\delta)}(k)<\infty, \tag{i}
\end{equation*}
$$

(ii)

$$
\mathrm{E}\left|Y_{0}\right|^{q+\delta}<\infty .
$$

If σ^{2}, defined by Lemma 1, is positive, then, for $t \in T^{d}$,

$$
Z_{n}(t)=\left(|n| \sigma^{2}\right)^{-1 / 2} \sum_{0 \leqslant j \leqslant[n t]} Y_{j}
$$

converges weakly to the d-parameter Wiener process $\left\{W(t): t \in T^{d}\right\}$.
Proof. The technics used in this proof are essentially those of Billingsley [1] (Theorem 20.1) in the generalization made by Deo [5] for multiparametric processes. The conditions $\mathrm{E} Z_{n}(t) \rightarrow 0$ and $\mathrm{E} Z_{n}^{2}(t) \rightarrow|t|$ as $n \rightarrow \infty$ are

[^1]trivially seen to be satisfied. It remains, therefore, to be proved the uniform integrability of $Z_{n}^{2}(t)$ and its tightness.

In order to prove that we will make use of the following property: if the assumptions of Proposition 1 hold, then

$$
\begin{equation*}
\mathrm{E}\left|\sum_{j \in A} Y_{j}\right|^{q} \leqslant K|A|^{q / 2} \tag{1}
\end{equation*}
$$

for some even integer, where K is a finite constant only depending on q and d, the moments of Y and α [9].

The uniform integrability of $Z_{n}^{2}(t)$ is a consequence of the previous property and the following inequality:

$$
\mathrm{E}\left(S_{n}^{2}| | S_{n}^{2} \mid>a\right) \leqslant a^{(2-q) / 2}|n|^{-q / 2} \mathrm{E}\left|S_{n}\right|^{q}
$$

The tightness condition comes from the following Oscillation Lemma, due to Doukhan-Portal [6]. This lemma is more powerful than the one we require because it gives a precise rate for oscillation, and we need to modify it a little, since originally it is referred for empirical process.

Lemma 2. With the same assumption of Proposition 1, for $p \in \mathbf{N}$ and some $0<\delta<1$ such that $p(1-\delta)>d$ we get

$$
\mathrm{P}\left\{\sup \left\{\left|Z_{n}(s)-Z_{n}(t)\right|:\|s-t\| \leqslant n^{\beta-1}\right\} \geqslant k n^{-\theta}\right\} \leqslant k n^{-\theta},
$$

where $\theta=[p(1-\beta(1-\delta))-d(1-\beta)] /(2 p+1)$ and k is a constant depending only on p and d, the moments of Y and α. Here $\|s\|=\sum_{1 \leqslant j \leqslant d}\left|s_{j}\right|$.

Proof. The proof comes from the inequality

$$
\mathrm{E}\left|S_{[n]}-S_{[n s]}\right|^{q} \leqslant \mathrm{E}\left|\sum_{[n n] \leqslant j \leqslant[n s]} Y_{i}\right|^{q} \leqslant K|n|^{q / 2}| | t-s| |^{q / 2}
$$

that is a consequence of (1) and the proper definition of $Z_{n}(t)$. Lemma III. 4 of Doukhan-Portal [6] holds trivially in this case and the rest of the proof follows without change.

The proof of Theorem 1 is completed by making use of Proposition 1 (taking $d=2$) and noting that $Z_{\lambda}(T)$ can be expressed
$Z_{\lambda}(T)=\left(|n| \sigma^{2}\right)^{-1 / 2}\left[\sum_{0 \leqslant j \leqslant[n t]} Y_{j}+\sum_{[n(-t)] \leqslant j \leqslant 0} Y_{j}+\sum_{\substack{0 \leqslant j_{1} \leqslant\left[n_{1} t_{1}\right] \\\left[n_{2}\left(-t_{2}\right]\right) \leqslant j_{2} \leqslant 0}} Y_{j}+\sum_{\substack{\left.\left[n_{1}\left(-t_{1}\right)\right] \leqslant j_{1} \leqslant 0 \\ 0 \leqslant j_{2} \leqslant n_{2} t_{2}\right]}} Y_{j}\right.$
which converges weakly to

$$
W\left(t_{1}, t_{2}\right)+W\left(-t_{1},-t_{2}\right)-W\left(t_{1},-t_{2}\right)-W\left(-t_{1}, t_{2}\right)=W(T) .
$$

4. APPLICATIONS STUDY OF THE VARIANCE $\boldsymbol{\sigma}^{2}$

The expression for the variance σ^{2} in Theorem 1 (iii) is a consequence of the Rice formulae for the moments of $F(f, T)$. Cabaña [3] has proved that if the field X has a Jacobian a.s. Lipschitz continuous and the Lipschitz
constant does not depend on ω, for every $t \in T$ the probability distribution of $X(t)$ has density $P_{X(t)}$, there is a joint density of X and \dot{X} and it is continuous, and the function f is non-negative and Lipschitz continuous, then the Rice formulae hold even if they are infinite. Moreover, if X is Gaussian, instead of the first condition one can demand that \dot{X} and the derivative of its covariance function satisfy a Lipschitz condition in any compact K.

4.1. Gaussian case.

Lemma 3. Suppose X is a Gaussian field with covariance function Γ. Suppose also X satisfies the assumptions of the previous section. If Γ has two derivatives, and $\Gamma(u), \dot{\Gamma}(\vec{u})$ and $\Gamma^{\prime}(u)$ tend to zero as $|u| \rightarrow \infty$, then the variance has the form (iii) of Theorem 1 .

Proof. Making use of Lemma 1, we have

$$
\left|Q_{\lambda}\right| \operatorname{Var} F(f, \lambda T)=\left|Q_{\lambda}\right|^{-1} \mathrm{E}\left|\sum_{j \in Q_{\lambda}} Y_{j}\right|^{2} \rightarrow \sum_{j \in Z^{2}} \mathrm{E}\left(Y_{0} Y_{j}\right)=\dot{\sigma}^{2}
$$

as $|\lambda| \rightarrow \infty$ and, therefore, we have to prove that
$\left|\left|Q_{\lambda}\right| \operatorname{Var} F(f, \lambda T)-\sigma^{2}\right|$
tends to zero as $\lambda \rightarrow \infty$. Here $(\lambda T)^{\prime}$ is the complement of λT in \boldsymbol{R}^{2}, and the equation follows from Theorem 2, the expression of the variance σ^{2} and stationarity of the field.

In order to prove that we will see that

$$
\begin{equation*}
\left|\mathbf{P}_{X(s, X(t)}(x, x)-\mathbf{P}_{X(s)}(x) \mathbf{P}_{X_{(t)}}(x)\right| \rightarrow 0 \quad \text { as } p(s, t) \rightarrow \infty \tag{A}
\end{equation*}
$$

and
(B) $\quad \mid \mathrm{P}\{X(s) \in I, X(t) \in J / X(s)=X(t)=x\}-\mathrm{P}\{X(s) \in I / X(s)=x\} \times$

$$
\times \mathrm{P}\{X(t) \in J / X(t)=x\} \mid \rightarrow 0
$$

as $p(s, t) \rightarrow \infty$, where I and J are both rectangles of \boldsymbol{R}^{2}. The proof will follow from (A) and (B) arguing as in the last part of the proof of Lemma 4.

We can assume without loss of generality that X is normalized in such a way that $\Gamma(0)=-\Gamma(0)=1$. We see that (\mathbf{B}) is less than or equal to

$$
\begin{aligned}
& \mid \mathrm{P}\{\dot{X}(s) \in I, \dot{X}(t) \in J / X(s)=X(t)=x\}-\mathrm{P}\{\dot{X}(s) \in I / X(s)=x\} \times \\
& \times P\{\dot{X}(t) \in J / X(s)=X(t)=x\} \mid+ \\
& +\mid \mathrm{P}\{\dot{X}(s) \in I / X(s)=X(t)=x\}-\mathrm{P}\{\dot{X}(s) \in I / X(s)=x\}+ \\
& +|\mathbf{P}\{\dot{X}(t) \in J / X(s)=X(t)=x\}-\mathrm{P}\{\dot{X}(t) \in J / X(t)=x\}| .
\end{aligned}
$$

Since X is Gaussian, X and \dot{X} conditioned by X are Gaussian as well, and we can write the first term as

$$
\begin{equation*}
|\mathrm{P}\{Z(s) \in I, Z(t) \in J\}-\mathrm{P}\{Z(s) \in I\} \mathrm{P}\{Z(t) \in J\}| \tag{b}
\end{equation*}
$$

where $Z(s)$ and $Z(t)$ are two Gaussian variables with parameters $m_{s}=-m_{t}$ $=\Gamma(u) x /(1+\Gamma(u))$, where $u=s-t$,

$$
\begin{gathered}
\operatorname{Var} Z(s)=\operatorname{Var} Z(t)=1+\frac{\Gamma(u) \dot{\Gamma}^{t}(u)}{1-\Gamma^{2}(u)} \\
\operatorname{cov}(Z(s), Z(t))=-\ddot{\Gamma}(u)+\frac{\Gamma(u) \dot{\Gamma}(u) \dot{\Gamma}^{t}(u)}{1-\Gamma^{2}(u)}
\end{gathered}
$$

If Σ denotes the covariance matrix of the joint distribution of $Z(s)$ and $Z(t)$, we denote by Λ the matrix which coincides with Σ in the diagonal and has zeros as other elements, and by m the column vector which has m_{s} and m_{t} as coordinates. Hence (b) can be written as

$$
\begin{aligned}
& \left\lvert\, \frac{(\operatorname{det} \Sigma)^{-1 / 2}}{2 \pi} \int_{I \times J} \exp \left\{-(y-m) \Sigma^{-1}(y-m)^{\prime}\right\} d y-\right. \\
& \left.\quad-\frac{(\operatorname{det} \Lambda)^{-1 / 2}}{2 \pi} \int_{I \times J} \exp \left\{-(y-m) \Lambda^{-1}(y-m)^{\prime}\right\} d y \right\rvert\, \\
& \left.\leqslant\left|\frac{(\operatorname{det} \Sigma)^{-1 / 2}-(\operatorname{det} \Lambda)^{-1 / 2}}{2 \pi}\right|_{I \times J} \exp :-(y-m) \Lambda^{-1}(y-m)^{\prime}\right\} d y+ \\
& \left.\left.\quad+\frac{(\operatorname{det} \Sigma)^{-1 / 2}}{2 \pi} \int_{I \times J} \right\rvert\, 1-\exp :-(y-m)\left[\Sigma^{-1}-\Lambda^{-1}\right](y-m)^{t}\right\} \mid d y
\end{aligned}
$$

Now according to the assumption and to the form of the variance and covariance, (b) tends to zero as $|u| \rightarrow \infty$.

The other terms have a similar behaviour, since both can be thought as $\mid \mathrm{P}\left\{Z_{1} \in I_{1}-\mathrm{P}\left\{Z_{2} \in J\right\} \mid\right.$, where Z_{1} and Z_{2} are two Gaussian variables with parameters

$$
m_{1}=\frac{\dot{\Gamma}(u) x}{1+\Gamma(u)}, \quad m_{2}=0, \quad \operatorname{Var} Z_{1}=1+\frac{\dot{\Gamma}(u) \dot{\Gamma}^{t}(u)}{1-\Gamma^{2}(u)}, \quad \operatorname{Var} Z_{2}=1
$$

Finally, (A) is deduced easily from the assumption, since the variables are centered, and the covariance matrix of $(X(s), X(t))$ has the form

$$
\left(\begin{array}{cc}
1 & \Gamma(u) \\
\Gamma(u) & 1
\end{array}\right)
$$

which tends to the identity for $|u| \rightarrow \infty$.

4.2. The ${ }^{*}$-mixing case.

Lemma 4. Suppose that X satisfies the Cabaña's assumptions (see the beginning of section 4) and also
(ii) $\mathrm{P}_{X(t)}(x)$ and $\mathrm{E}[\|\dot{X}\| / X=x]$ are uniformly bounded in a neighbourhood V of x; then the variance σ^{2} has the form (iii) of Theorem 1.

Proof. Like Lemma 3 we have to prove that expression (2) tends to zero as $|\lambda| \rightarrow \infty$. This expression is smaller than

$$
K^{2}\left|Q_{\lambda}\right|^{-1}|T|^{-2} \int_{\lambda T \times(\lambda T)^{\prime}} d s d t \int_{-\pi}^{\pi} \int_{-\pi}^{\pi}\left|H_{s t}(x, \theta, \varphi)\right| d \theta d \varphi .
$$

It is not difficult to see that

$$
H_{s t}(x, \theta, \varphi)=\lim _{\varepsilon \rightarrow 0} \varepsilon^{-4}{ }_{i} \mathrm{E}\left[Z_{s}(x, \theta, \varepsilon) Z_{t}(x, \varphi, \varepsilon)\right]-\mathrm{E} Z_{s}(x, \theta, \varepsilon) \mathrm{E} Z_{t}(x, \varphi, \varepsilon)!,
$$

where

$$
Z_{s}(x, \theta, \varepsilon)=\|\dot{X}(s)\| \mathbb{1}_{\{x \leqslant X(s) \leqslant x+\varepsilon\}} \mathbf{1}_{\{\theta \leqslant \Theta(s) \leqslant \theta+\varepsilon\}} .
$$

Since the integrands are positive, an application of Fatou's Lemma and the inequality of moments for ${ }^{*}$-mixing variables [7] give

$$
\begin{aligned}
& \int_{-\pi}^{\pi} \int_{-\pi}^{\pi}\left|H_{s t}(x, \theta, \varphi)\right| d \theta d \varphi \\
& \quad \leqslant \psi(p(s, t)) \liminf _{\varepsilon \rightarrow 0}^{-4} \int_{-\pi}^{\pi} \mathrm{E}\left|Z_{s}(x, \theta, \varepsilon)\right| d \theta \int_{-\pi}^{\pi} \mathrm{E}\left|Z_{t}(x, \varphi, \varepsilon)\right| d \varphi
\end{aligned}
$$

Making use of the conditional expectation properties and Fubini's Theorem, we obtain that each integral of the right-hand member of the previous inequality is majorated by $\varepsilon^{2} C C^{\prime}$, where C and C^{\prime} are bounds of $P_{X(0)}(x)$ and $\mathrm{E}[\|X(s)\| / X(s)=x]$ respectively, both uniform in a neighbourhood of x which contains the interval $[x, x+\varepsilon]$. Hence, substituting in the last expression, the limit in ε disappears and the proof will be completed if we show that
(c)

$$
\left|Q_{\lambda}\right|^{-1}|T|^{-2} \int_{\lambda T \times(\lambda T)^{\prime}} \psi(p(s, t)) d s d t \rightarrow 0 \quad \text { as }|\lambda| \rightarrow \infty .
$$

Let us denote by m_{λ} and M_{λ} the sets

$$
\begin{aligned}
& m_{\lambda}=\left\{(s, t) \in \mathbb{R}^{4}: s \in \lambda T, t \notin \lambda T, p(s, t) \leqslant \mu(\lambda)\right\}, \\
& M_{\lambda}=\left\{(s, t) \in \mathbb{R}^{4}: s \in \lambda T, t \notin \lambda T, p(s, t)>\mu(\lambda)\right\},
\end{aligned}
$$

where $\mu(\lambda)=o\left[\left(z \lambda_{1}-1\right)\left(z \lambda_{2}-1\right)\right]$ and $\mu(\lambda) \rightarrow \infty$ as $\lambda \rightarrow \infty$. If L is a bound of ψ, then

$$
\iint_{m_{\lambda}} \psi(p(s, t)) d s d t \leqslant L\left|m_{\lambda}\right|=L \times o\left[\left|Q_{\lambda}\right||T|\right] .
$$

On the other hand,

$$
\iint_{n_{\lambda}} \psi(p(s, t)) d s d t=\int_{i T} d s \int_{\{p(s, t)>\mu(\lambda)\}} \psi(p(s, t)) d t=\left|Q_{\lambda}\right||T| \int_{\| u \mid>\mu(\lambda)\}} \psi(|u|) d u
$$

therefore (c) is less than

$$
\left|Q_{\lambda}\right|^{-1}|T|^{-2} L \times o\left[\left|Q_{\lambda}\right||T|\right]+|T|^{-1} \int_{\| u \mid>\mu(\lambda)\}} \psi(|u|) d u
$$

which tends to zero as $\lambda \rightarrow \infty$.

5. EXISTENCE OF THE MOMENT OF $\boldsymbol{F}(f, T)$

Assumption (ii) in Theorem 1 requires the finiteness of the $q+\delta$ order moment. The Wschebor Theorem for the Rice formula [11] gives conditions for the validity of the formulae and also guarantees their finiteness. However the following lemma, suggested by Wschebor, shows in a geometrical way how the problem of moments existence can be studied without looking at the complicated integrals in the Rice formulae.

Let $T=T_{1} \times T_{2}$ be the Cartesian product of two intervals of \boldsymbol{R}. We call 1 -section of X determined by t_{1}, which will be denoted by $X_{t_{1}}^{1}$, the uniparametric process

$$
X_{t_{1}}^{1}: T_{2} \rightarrow \boldsymbol{R}, \quad t \rightarrow X_{t_{1}}^{1}(t)=X\left(t_{1}, t\right)
$$

In the same way we can define $X_{t_{2}}^{2}$. Obviously, the 1 -sections are all measurable for every $t_{i}(i=1,2)$. Since X is stationary, it is sufficient to consider the i-sections X^{i} determined by $t_{i}=0$. If X is a.s. of class C^{p}, then a.s. every i-section is a.s. of class C^{p}.

In what follows we will take $f \equiv 1$ and write $\mathscr{L}\left(\mathscr{C}_{x}\right)=F(1, T)$. Let $N_{x}^{i}\left(T_{j}\right)$ be the number of crossing of the process X^{i} with the level x in the interval T_{j}, where $i \neq j, i, j=1,2$. Moreover, let

$$
Z_{p}^{i}=\sup _{t_{j} \in T_{j}}\left|\left(X^{i}\right)^{(p)}\left(t_{j}\right)\right|
$$

Lemma 5. Suppose that the field X and its derivative \dot{X} have a.s. continuous paths. Then

$$
\mathscr{L}\left(\mathscr{C}_{x}\right) \leqslant \int_{T_{1}} N_{x}^{1}\left(T_{2}\right) d t_{1}+\int_{T_{2}} N_{x}^{2}\left(T_{1}\right) d t_{2}
$$

Corollary 1. With the same assumptions

$$
\left\{\mathrm{E}\left[\mathscr{L}\left(\mathscr{C}_{x}\right)\right]^{p\}_{1}^{1 / p}} \leqslant\left|T_{1}\right|\left\{\mathrm{E}\left[N_{x}^{1}\left(T_{1}\right)\right]^{p, 1 / p}+\left|T_{2}\right|\left\{\mathrm{E}\left[N_{x}^{2}\left(T_{2}\right)\right]^{p}\right\}^{1 / p} .\right.\right.
$$

Corollary 2. Suppose that X is a Gaussian field, with covariance function Γ, which is normalized $(\Gamma(0)=-\ddot{\Gamma}(0)=1)$. If, for $u, v \in \boldsymbol{R}$,

$$
\begin{aligned}
& \Gamma((0, u),(0,0))=\mathrm{E}(X(0, u) X(0,0))=1+\frac{u^{2}}{2}+\frac{C|u|^{3}}{6}+o\left(u^{3}\right) \\
& \Gamma((v, 0),(0,0))=\mathrm{E}(X(v, 0) X(0,0))=1+\frac{\mathrm{v}^{2}}{2}+\frac{C^{\prime}|v|^{3}}{6}+o\left(v^{3}\right)
\end{aligned}
$$

for u and v in a neighbourhood V of 0 and C and C^{\prime} positive constants, then $\mathrm{E}\left[\mathscr{L}\left(\mathscr{8}_{x}\right)\right]^{k}<\infty$ for every $k=1,2, \ldots$

Proof. The proof follows from Lemma 5 and Theorem 4.1 in [4].
Corollary 3. Suppose X has a.s. class C^{p} paths ($p \geqslant 2$) and (i) For every $t_{2} \in T_{2},\left(X^{2}\left(t_{1}\right), \dot{X}^{2}\left(t_{1}\right)\right)$ has joint density uniformly bounded by C and for every $t_{1} \in T_{1},\left(X^{1}\left(t_{2}\right), \dot{X}^{1}\left(t_{2}\right)\right)$ has joint density uniformly bounded by C.
(ii) Let $m<2 p-2$ if there is an $r>2 m /(2 p-2-m)$ such that $\mathrm{E}\left|Z_{p}^{i}\right|^{r}<\infty$ for every $p=1,2, \ldots$ and $i=1,2$.

Then
$\left.\left\{\mathrm{E}\left|\mathscr{L}\left(\mathscr{C}_{x}\right)\right|^{m}\right\}^{1 / m} \leqslant L_{1}\left|T_{1}\right|\left\{\mathrm{E}\left|Z_{p}^{2}\right|^{r}\right\}^{1 / m}+L_{2}\left|T_{2}\right|\left\{\mathrm{E}\left|Z_{p}^{1}\right|^{r}\right\}\right]^{1 / m}+L_{3}<\infty$,
where L_{1}, L_{2} and L_{3} depend only on $p, m, r,|T|$ and C.
Corollary 4. If X has a.s. class C^{∞} paths, if (i) of Corollary 3 holds and $\mathrm{E}\left|Z_{p}^{i}\right|<\infty$ for every $p=1,2, \ldots$ and $i=1,2$, then

$$
\mathrm{E}\left[\mathscr{L}\left(\mathscr{C}_{x}\right)\right]^{m}<\infty \quad \text { for every } m=1,2, \ldots
$$

Proofs of Corollaries 3 and 4 follow from Lemma 4 and Corollaries 3 and 4 of Wschebor [11] (p. 36).

Proof of Lemma 5. The proof is completely geometrical and the same idea can be extended for more general situations (dimension >2).

Suppose ψ_{x} is a polygonal. Every segment of ψ_{x} has length less than the sum of the lengths of its projections over the coordinates axes. If we take a partition in every interval T_{1} and T_{2}, the length of every semi-interval contributes to the sum every time the i-th section process determined by t_{i} in the semi-interval, crosses the level x in the interval $T_{j}(i \neq j)$. Therefore

$$
\mathscr{L}\left(\mathscr{C}_{x}\right) \leqslant \sum_{k=1}^{N} N_{x}^{1}\left(T_{2}\right)\left[t_{1}^{k}-t_{1}^{k-1}\right]+\sum_{h=1}^{M} N_{x}^{2}\left(T_{1}\right)\left[t_{2}^{h}-t_{2}^{h-1}\right]
$$

where $\left\{t_{1}^{0}, t_{1}^{1}, \ldots, t_{1}^{N}\right\}$ and $\left\{t_{2}^{0}, t_{2}^{1}, \ldots, t_{2}^{M}\right\}$ are both partitions of T_{1} and T_{2}, respectively. Lemma 5 follows by taking the limit when the sizes of the partitions tend to zero.

Acknowledgement. I am greatly indebted to my thesis adviser, Enrique Cabaña, who formulated this problem and suggested many crucial ideas. Also, I would like to thank J. R. León, M. Wschebor and J. Ortega for many helpful discussions. The improvement in section 5 of Wschebor's results were suggested by him. I thank P. Doukhan who gave me invaluable advise in the organization of this paper.

REFERENCES

[1] P. Billingsley, Convergence of probability measures, Wiley, New York 1969.
[2] E. Cabaña, Affine processes, a test of isotropy (to appear in SIAM (1984)).
[3] - Esperanza pära integrales sobre conjuntos de nivel aleatorios, Actas del II Congreso Latinoamericano de Probabilidades y Estadistica Matemática, 1985, p. 65-82.
[4] J. Cuzick, Conditions for finite moments of the number of zero crossing for Gaussian processes, Ann. Probab. 5.3 (1975), p. 849-858.
[5] Ch. M. Deo, A functional central limit theorem for stationary random fields, ibidem 4.3 (1975), p. 708-715.
[6] P. Doukhan et F. Portal; Principe d'invariance faible pour la fonction de répartition empirique dans un cadre multidimensionnel et mélangeant (to appear).
[7] P. Doukhan et J. R. León, Quelques notions de mélanges et des exemples de processus mélangeants, Prépublication 85 T20, Université Paris-Sud, Orsay 1985.
[8] R. M. Dudley, Sample functions of the Gaussian processes, No. 1, Vol. 1 (1973), p. 66-103.
[9] X. Guyon et S. Richardson, Vitesse de convergence du théorème de la limite centrale pour des champs faiblement dépendants, Z. Wahrsch. verw. Gebiete 66 (1984), p. 297-314.
[10] M. Wschebor, Formule de Rice en dimension d, ibidem 60 (1982), p. 393-401.
[11] - Surfaces aléatoires. Mesures géométriques des ensembles de niveau, Lecture Notes in Math. 1147 (1985), Springer.

Departamento de Matematicas
Instituto Venezolano de Investigaciones Cientificas (IVIC)
Apartado 21201
Caracas 1020-A
Venezuela

[^0]: * Some of the results presented here are part of the author's Doctoral dissertation at Universidad Central de Venezuela.

[^1]: 4 - Probability Vol. 10, Fasc. 1

