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Abstract. We prove a Choquet-type representation and unique- 
ness theorem for noncompact convex sets of transition kernels 
between a measurable space and a separable metrizable Radon 
space. Applications to sets of equivariant kernels and kernels mth 
prescriped values are given. Furthermore, in the framework of 
statistical decislon theory the representation i s  applied to sets of 
decision rules. 

I 1. Iatroductiora. Let (X, g(X), p) be a probability space and let Y be a 
separable rnetrizable Radon space equipped with its Bore1 a-algebra B(Y). 

I 

We will address ourselves to the study of topological and geometrical 
properties of sets of transition kernels from X to Y Our main goal is to give 
a Choquet-type integral representation in closed convex sets 9 of kernels 
(Section 2). To this end the set of all kernels is embedded in a locally convex 
space of bilinear forms on L1(p) x C ( Y ) .  Then each kernel  BE^ is the 
barycenter of a probability measure Q on the extreme boundary ex 9 of 9 in 
the following sense: Q is defined on the cylinder a-algebra on ex 9 and 

holds. In particular, ex $3' # @ if 9 # a. Conversely, the barycenter of each 
probability measure on 9 is contained in 9 (Theorem 2.5). Such results are 
known for the case where I/' is the set of all kernels (see the classical paper sf 
Wald and Wolfowitz 1231 and [I], [Ill, [12], [20]). Related results for 
special sets of kernels occur in E25-281. In Section 3 it is shown that the 
extreme boundary of the sets in question is measurable (Proposition 3.2) 
and an analogue of Choquet's uniqueness theorem holds provided L1 (p) is 
separable (Theorem 3.3). 

In Section 4 the above representation is applied to the set of all 
transition kernels which are equivariant with respect to the action of a 
group. The results of this section, except for Theorem 4.1, specify indications 
of Ferguson (171, Chap. 4.2). 

* This research was supported by the Deutsche Forschungsgemeinschaft. 



7 6 H. Luschgy 

The repr,esentation applied to sets of kernels with prescriped values 
yields an e~tension of Strassen's ([22], Theorem 3) generalization of the 
Blackwell-S tein-Sherman-Cartier theorem (Corollary 5.2). In a statistical 
framework the representation also implies that the risk function of a decision 
rule, equivariant rule, Bayes rule is a mixture of the risk f~~nctions of 
nonrandomized rules, nonrandomized equivariant rules, nonrandomized 
Bayes rules, respectively (Section 5). 

Now we fix some notations and recall some definitions. Let (X, a(@) 
and (Y, g ( Y ) )  be measurable spaces. If Y is a topological space, then 8 ( Y )  
denotes its Borel-a-algebra. X x Y is always equipped with the product a- 
algebra W(X)QW(Y). Let M(P) be the space of all signed finite measures on 
a ( Y )  and M :  (Y) the subset of all probability measures on B (Y). M: (Y) is 
equipped with the ci-algebra 2 ( M :  ( Y)) generated by the functions 
{Q W Q  (C): C EB(Y)}. A transition kernel S from X to Y is a measurable 
map 6: X + M i  (Y). We denote by A? the set of all transition kernels from 
X to Y and by JV the subset of all kernels x HE,(,, arising from measurable 
maps cp: X -t Y E,, is the point measure at y GY: If ( Z ,  g(Z))  is another 
measurable space, A' is the set of all kernels from X to Z .  For each 
v E M  (X) and 6 E A let v 0 6  denote the mixture [ E, @6 (x) dv (x) in M (X x Y), 

Y 

and v ( 6 )  the mixture d (x) dv (4 in M ( Y ) .  If P EM;  (X), denote by P, the inner 
i 

measure formed from P. d ( X ) ,  stands for the universal completion of B(X). 
A separable metrizable space is universally measurable (u.m.) if it is 

universally Borel measurable in its completion with respect to some and 
hence any metric defining the topology. It is well known that a separable 
metrizable space is u.m. if and only if it is a Radon space. A measurable 
space is u.m. if it is isomorphc to a separable metrizable u.rn, space with its 
Borel a-algebra. A Hausdorff topological space is Souslin if it is the conti- 
nuous image of a Polish space; it is Lzasin if it is the continuous injective 
image of a Polish space. A measurable space is Souslin if it is isomorphic to a 
Souslin topological space with its Borel a-algebra. Every Souslin measurable 
space is u.m. ([8], 111. 2.3, and 1211, p. 124, Corollary 1). Note that there are 
Hausdorff topological spaces Y such that the measurable space (Y, B ( Y ) )  is 
Souslin without the topology being Souslin ([4], p. 9). 

2. Integral representation and measure convexity. Fix a nonempty subset 
'$3 of M i  (X). We denote by L ( q )  the band generated by '@ in M (X). Subsets 
9 of .A are always equipped with the a-algebra C(P) generated by the 
functions IG bv(S)(C): v EL('@), C E ~ ( Y ) ) .  Note that E(9)  = 9 nZ(& 
holds. By the monotone class theorem, Z(9) is also generated by the 
functions 

{d H ( udv 08: v EL(!#), u EB(X x Y ) ) ,  
x;r 
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where B(X x Yf denotes the space of all bounded measurable real-valued 
functions on X x Y; A transition kernel 6 E is said to be represented by 
Q E M: (91, 23 c ?A, if 

P @ S = j P @ q d ~ . ( q )  for every P E M : ( x ) ~ L ( ~ )  
8 

A convex subset 9 of .1 is said to have the integral representation 
property if for each kernel 6 E 9 there is a measure Q E M :  (ex 9) which 
represents S. For we obviously obtain ex A!= .N provided W ( Y )  is 
countably generated and contains singletons. A subset 9 of A is called 
measure convex if for each ,orM: (93) there is a kernel 5 €9 which is 

< - represented by Q. 
The following proposition is an immediate consequence of Kirschner's 

[12J extension to Sousljn topological spaces of a result of Wald and 
Wolfowitz [23] on randomization in statistics. It will be needed in Section 4. 

P R O P O S ~ O N  2.1. Let (Y, .49 (Y)) be a Souslin measurable space. Then A! 
has the integral representation property. 

Proof. Let 6 E A'. Since Y can be equipped with a Solrslin topology 
compatible with the given measurable structure, there is a measure 
Q EM: (.N) such that 

v (6) = 1 v (q) d~ (cp) for every v EL( g) 
.k 

(Kirschner [12]). Then 

P @ 6 ( A  xC) = f P O q ( A  x C ) d ~ ( c p )  
k 

for every P  E M :  (X) n L( '$1, A  E &? (X) ,  and C E W  (Y) ,  because 
P ( A  n -) EL(!@). This yields PO6 = 1 P @ q d ~ ( q ) .  So S is represented by Q. 

.I' 

It would be interesting to know whether .I is measure convex for 
arbitrary sets '$3. 

For the rest of this section we assume '$3 = {p) for some probability 
measure p on B(X).  Thqn by the Radon-Nikodym theorem, L('$) 
= (f - p: f EL' (p)}, where f . p (A)  = f f d p  for every A  6 9  (X). Let us identify 

A 
transition kernels that differ only on a p-null set. This corresponds to 
considering the set A ( p )  of all equivalence classes of kernels from X to Z 
For 9 c A let 9(p) be the members of A ( p )  which contains a representant 
in 9. Generally, we will not distinguish in our notation between equivalence 
classes and their representants. It is not hard to verify that ex .A(p) = .,&"(p) 
holds provided B ( Y )  is countably generated and contains singletons. 

Now suppose that Y is a separable metrizable space or a completely 
regular Souslin space. Since 9 ( Y )  is countably generated and coincides with 
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the Baire a-algebra on Y (181, III.2.1), the map from A(p)  to the space 
B (L' (p), C (Y)) of all continuous bilinear forms on L1 (p) u) C(Y) ,  defined by 

is injective, where C(Y) is the space of all bounded continuous real-valued 
functions on Y We thus can identify , X ( p )  with a subset of B(L1(p), C(Y)). 
The locally convex Hausdorff topology a (B(LI (p ) ,  C (Y)), L1 (p) @C(Y)) on 
. B ( L ' ( ~ ) ,  C(Y))) and the induced topology on any subset of .#(p) will be 
denoted by z(Y) OK, simply by r. 

- 

- LEMMA 2.2. i(9) is generated by (~13: u E(B(L' (d, C(Y)), T)') for every 
9' € .M(p). 

Proof. Let Eo(Y) denote the a-algebra on 3 generated by the t- 
continuous linear functionals. Since E ( 9 )  is obviously generated by the 
functions 

we have E ,  (9) c C (9). To prove the converse inclusion, let f E L1 (p) and 

-< 

Then V is a vector space which contains C(Y) and is closed under 
bounded monotone convergence. By the functional form of the monotone 
class theorem ( [ 5 ] ,  p. 15),. this implies V = B ( Y) and hence E (B) c Z0 (9). 

The proof of the following lemma is left to the reader. 
LEMMA 2.3. Let 9 c d ( p ) ,  6 E Ji(p), and Q E M i  (9). Then the following 

statements are equivalent: 

(i) 6 is represented by Q. 

(ii) ~ 0 6  = J ~OrpdQ (d. 
P 

(iii) S = r ( ~ )  in ( 3 ( L ' ( p ) ,  C ~ Y ) ) ,  z), where r ( e )  denotes the barycenter of Q. 

We also need the following information. 

LEMMA 2.4. Let (X, B(X)) and (Y, &?(Y)) be measurable spaces. 

(a) (mu 89 (Y)U (9 (m @B ( Y ) ) U .  

(b) If B E(~(X)@@(Y)) , ,  then the section B, beiongs to & ( Y ) ,  for every 
x EX. 

(c) Let B E(B(X)OB(Y)), and 6 E A!. Then the function X + R, 
x -6 ( x ,  B,) is universally measurable. In particular, x -6 (x, C) is universally 
measurable for every C E &f (Y),, . 

(d) Let 9 c &(p) and B E(B(X) @B(Y)),. Then the function 9 + R, 
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6 w p 0 5 ( 8 )  is universally measurable. I n  particular, 6 ++p(S)(C) is universally 
measurable for every C ESJ(Y),. 

Proof.  The proofs of (a)+) are certainly well known and omitted. 
(d) Let p E M :  (9). There exist B, ,  B, E B ( X ) O W  (Y) such that 

B1 c 3 c B,  and 

f (B, \ B,) de (8) = Q -  
i 

We obtain g ( { 6  €2:  p@6(B2 \El) = 0;) = 1. Since the functions P1 + R, 
6 ~ + p  0 6  (Bi) are measurable (i = 1, 2), we conclude that 6 H p €36 (B) is 
measurable with respect. to the Q-completion of C(3 )  and hence, Q being 
arbitrary; is universally measurable. 

The narrow topology u(M(Y), C ( n )  on M(Y) and the induced topology 
on any subset of M :  (Y) is denoted by w(Y) or, simply, by w. 

We come to the main result of this section. 
THEOREM 2.5. Let Y he a separable rnetrizable u.m. space. Then every 

t (Y)-closed convex subset of . X (p) has the integral representation property and 
is measure convex. 

Proof. Choose a totally bounded metric inducing the topology of Y. 
Then the completion 2 of Y is compact and B(Y) c 9?(Z), holds. It is 
known that .dZ(p) is a z(Z)compact subset of B(L' (p),  C ( Z ) )  (Farre11 [6]  or 
Luschgy and Mussmann [16]). Since, by Portmanteau's theorem, the map 
i: ( M :  (Y), w ( Y ) )  + ( ( Q  EM!+ (2): Q(Y) = 11, ~ ( 2 ) )  defined by i(Q)(C) 
= Q(Y n C) for every C E&?(Z) is a homeomorphism, it follows that the map 

6 ++equivalence class of io6' for some representant 8' of 6 is also a 
homeomorphism. Note that Lemma 2.4(c) assures that this map is surjective. 
In the following we identify ( A ( ) , ( )  with the subspace 
fs E Aftz (PI: P(~) (Y)  = 1) of (AZ (PI, z (Z)) .  

Now let $2 be a z (Y)-closed convex subset of and 6 €9. Let 9- 
denote the z(Z)-closure of 9 in M(C1). Then $33- is t(Z)-compact and 
convex. From Lemma 2.2 and the Stone-Weierstrass theorem it follows that 
Z(P-) coincides with the Baire a-algebra on 9-. Therefore, by the theorem 
of Bishop-de Leeuw, there exists a @EM: (ex9-)  such that 6 = r ( ~ )  in 
( B ( L ' ( ~ ) ?  C ( Z ) ) ,  ~ ( 2 ) ) .  In view of Lemmas 2.3 and 2.4(a) this implies 

P € ~ S ( B )  = J P @ ~ ( @ d @ ( d  
e x 9 -  

for every B EB (X) @9 (2)". In particular, choosing B = X x Z: we have 
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Since, by Lemma 2.4(d), the function ex 9 - + bP. cp r-+p (9) ( Y) is univer- 
saIly measurable, there is a Q-null set N ~ E f e x  9-) such that p(cp)(Y) = 1 for 
every cp €ex $9- \ N, that is, ex 9- \N c A ( p ) .  Since 3 is z(0-closed in 
.A(p) ,  we have 9- n A ( p )  = 23 and, therefore, ex 9- \N c ex 3. Further- 
more, 9 is an extremal subset of 9- which yields ex 9 = 9 n e x 9 - .  Thus 
we obtain @,(ex 9) = 1. So we can define a probability measure Q, on 
G(m 9) by Q ,  (ex 9 n F )  = Q (F), F &.Z (ex 9-).   hen it is clear that 

. - 
I-lolds, and, by Le-mma 2.3, this implies that Q, represents 6 .  

In order to prove that 9 is measure convex, let Q EM: (9). Thcn 
r (Q) E 9-, where r (Q) denotes the barycenter of p in (B (L1 (p), C (a), z (z)) 
([19], Proposition 1.1). By Lemmas 2.3 and 2.4(a), for the kernel 6 = r ( ~ )  we 
have 

NBs (B)  = J P Qv ( B )  d~ ((PI 
8 

for every B G B  (JJ Oi8 ( Z ) ,  . In particular, 

holds and hence 6 E 9. 
If Y is not u.m., then z-cbsed convex subsets of J.&'(P) do not always 

have extreme points, even when 1x1 = 1 ([24], Counterexample 3). 
For nonmetrizable spaces Y we have the foIIowing version of the 

theorem : 

COROLLARY 2.6.(a) Let Y be a completely regular Sotaslin space. Then 
every z(Y)-closed concex subset of M(p) is measure convex. 

(b) Let Y be a completeiy regular Lusin space. Then every t(Y)-closed 
convex subset of &(p) has the integral representation property. 

Proof .  (a) Let $3' be a z(Y)-closed convex subset of &(p) and 
@EM: (9). Since Y can be equipped with a metrizable Souslira topology 
compatible with the given Borel structure ( [ a ] ,  III.2.3), it follou~s from the 
preceding theorem that there exists a 6 E A ( p )  which is represented by Q. An 
application of the Hahn-Banach theorem yields 5 E 3. . 

(b) Choose a Polish topology on Y finer than the given one and observe 
that it is compatible with the given Borel structure [21], p. 108, Lemma 17). 
Hence, the assertion follows from Theorem 2.5. 

Theorem 2.5 provides, in case '$ = {p), an extension of Proposition 2.1. 

COROLLARY 2.7. Let (Y, B(Y)) be u.m. Then A ( p )  has the integral 
representation property ~ n d  is measure convex. 
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This corollary comprises the representation theorems given in [I], ell], 
and [20]. 

By the way, under the above hypotheses the measure convexity of Ji 
may also be proved as follows. Let Q E M :  (4 and let Q be the probability 

I 

measure [ p @ p d ~ ( p )  on B(X) @B(Y)  with X-marginal p. By a well known 
il 

disintegration theorem, there is a kernel 6 EA? such that Q = ~ 6 5 .  This 
implies that Q represents 6. 

The final resuIt in this section will be needed in Section 4. Let T o  be a 
multifunction from X lo Y whose graph Gr (To) = {(x, y) EX x Y: y E T ,  (x)) 
belongs to (B(X)@@(Y)~-33efine a multifunction I+ from X to M: (Y) by 

f ( x )  = @ E M :  (Y): Q ( r o ( x ) )  = 1;. 
- - . .-- 

r is well defined, since, by Lemma 2.4(b), T o ( ~ )  = Gr (To), E ( Y) ,  . Put 

A, = 16 E .X: 6 (x) ET (x) for p-almost every x EX) 

and d.t ', = .N' n A,. 
COROLLARY 2.8. Let (Y, .g(Y)')) be u.m. Then d r ( p )  has the integral 

representation property and is measure convex. Furthermore, ex , d , ( p )  
= N , ( p )  holds. 

Proof.  Note that 

A , ( p )  = (6 E A ( p )  : pO6 (Gr (To)) = 1 1. 
Since .X,(p) is an extremal subset of A(p), we obtain ex Mr(p) 

I 

= A',-(p). Let 6 E A+%&). By Corollary 2.7, there is a measure Q E M :  (AP(~)L)) 
which represents 6. In particular, we have 

1 = P 0 6  (Gr (Fo)) = [ P @cP (Gr W o ) )  de (44 - 
i ( ~ r )  

Since, by Lemma 2.4(d), the function M ( p )  + R, q w ji@q (Cr (To))  is 
universally measurable, there is a @-null set N E C ( . N ( ~ ) )  such that 
p@q(Gr (T,)) = 1 for every q) E J V ( ~ ) \ N ,  that is, N ( p ) \  N c N , ( p ) .  Thus 
we obtain e * ( N r ( p ) )  = 1. So the probability measure Q ,  on C(A~,(~)), 
defined b y  eo ( ~ l / ' , ( p )  n P )  = Q ( P )  for every F EE ( N ( p ) ) ,  represents S. Now 
let Q EM: ( A r ( p ) ) .  By Corollary 2.7, there is a kernel 6 E &(p) which is 
represented by Q. Since 

6 belongs to .A,(p).  
A more general version of the corollary will be proved in Section 5. 

6 - Probability Vol. 10, Fasc. I 
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3. Uniqueness a d  measurability of the set of extreme..points. In this 
section we assume 'i$ = [p] for some p E M i  (X) such that L' (p) is separable. 
A(p )  is equipped with the topology z. We begin with some topological 
properties of . I (p ) .  

PROPOSITION 3.l.[a) Let Y be a separable metrizable space. Then A ( p )  i s  
also separable metrkable. Further M(p) is compact, respecrielaly Polish, Lusin, 
Sousliq, u.m. if and oralj~ $ Y has the same propmdy. 

(b) Let Y be 'a comglerely reguEur Souslin space. Then &(p) is also 
- Souslin. Further A(p)  is Ltlsi~ if and only if Y is Lush-  

Proof.  (a) Let Z be the compact completion of Y with respect to a 
totally bounded rnetrization. Then by Portmanteau's theorem, . 1 ( p )  is 
homeomorphic with a subspace of the compact space (AZ(,u), ~(2) ) .  Since 
L1 (p) and C ( Z )  are separable, (.Hz (PI, z (Z)) is metrizable and hence A ( p )  is 
separable metrizable. If Y is Polish, so is M(p) ([I], 5.2). If Y is Lusin, 
Souslin respectively, then, by (b), .d(p)  has the same property. If Y is u,m., 
then . 1 ( p )  is homeomorphc with ({S E Mz ( p ) :  p (6) (Y) = I ) ,  t (2)) and, in 
view of Lemmas 2.2 and 2.qd), this implies that is u.m. In order to 
prove the converse, let 6, be the kernel x HE, for y EY Then the map Y 
+@,: y r Yj (p), y  equivalence class of 6, is a homeomorphism and 
IS,: y E Y). (p) is a closed subset of A ( p )  ([la], Lemmas 11.6.1 and 11.6.2). 
Thus, if &(p) has one of the above properties, then Y has the same property 
(1211, p. 95, Theorem 2, p. 96, Theorem 3, p. 118, Proposition 8). 

(b) Let p: Z + Y be a continuous surjection of a Polish space Z onto I.: 
Then the image measure map 

is also a continuous surjection (151, 111.45) and the same is true for the map 
(Az (p), T (2)) 4 A(p), 6 ++equivalence class of pod' for some representant 
6' of 6. Indeed, this map is clearly continuous. Further let cp E &(p) and q' 
be a representant of cp. Since ( M :  (q, w) is Souslin and Z ( M :  (Y)) 
= g(~: (Y), w )  ([21], p. 385, Theorem 7, and p. 387, Theorem 8), p admits 
a universally measurable right inverse q ([S], 111.11.7). Choosing a kernel 
6' 6 # such that 6' = q o tp' p-almost everywhere, we obtain pod' = cp' p- 
almost everywhere. Thus the above map is surjective. In view of (a) this 
implies that A ( p )  is Souslin. Since I.' is homeomorphic with the sequentially 
closed subset id,: y eY](p) of -X(p), Y is Lusian when &(p) has this 
property ([21 J, p. 102, Corollary I, and p. 95, Theorem 2). ~onversel;, if Y is 
Lusin and O a Polish topology on Y finer than the given one, then B(Y, 0 
= d ( Y ) ,  z (Y, 4 is finer than z (Y) and, by (a), (M(p), z (Y, 0) is Polish. 
Hence M ( p )  is Lusin. 

The next proposition deduces the measurability of the set of extreme 
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points of a closed convex subset of A ( p )  from the topological properties of 
=4~)- 

FROP~S~TION 3.2, (a) i f  Y is a separable metrizable space or a completely 
regular Souslin space, then L ( 9 )  = g(9) ,for euery subset .9 of d ( p ) .  

(b) If Y is a completely regular Souslin space, then ex 99 E E ( ~ ) ,  for every 
closed convex subset 9 of .A'(p). 

(c) If Y is a separable metrizable u.m. space or a completely regular Lusin 
space, then ex 5 f C ( 9 )  for every closed convex subset 9 of &(p). 

Proof.  (a) It suffices to prove the assertion for 9 = A ( p ) .  According to 
Proposition 3.1, d ( p )  is strongly Lindelbf. Since the topology z has a base 
consisting - of Z (&(PI)-measurable sets, .Z ( J t ( p } )  = B (-A(@)) follows from 
Lemma 2.2 and the strong Lindellif property. 

(b) Let 9. be a closed convex subset of .A(p).  By Proposition 3.l(b), 
&(p) is ~ouslin. Then Y is also Souslin and hence e x g ~ W ( 9 ? ) ,  (Jayne and 
Rogers [lo]). The assertion now follows from (a). 

(c) If Y is separable metrizable u.m., then the assertion follows from (a), 
Proposition 3.l(a), and Proposition 1.3 in [19] by embedding . A ( p )  in 
(.Az(p), z(Z)) for some compact metrizable space 2. If Y is completely 
regular Lusin, then the assertion follows from the preceding (see the proof of 
Corollary 2.6(b)). 

Now we show that in the situation of Theorem 2.5 an analogue of 
Choquet's uniqueness theorem holds. 

THEOREM 3.3. Let P be a separable metrizable u.m. space and 53 a closed 
convex subset of Jt(p) .  Then, far each kernel in 9 ,  there is a dnique 
representing measure in M i  (exg)  if and only if 29 is a simplex. 

Proof.  The "only if' part. By Theorem 2.5, T ( Q ) E ~  holds for each 
Q 6 M i  (ex 9). The barycentric map r: M i  (ex 9) -+ 9 is an affine bijection. 
This implies that 9 is a simplex. 

The "if' part. Choose a totally bounded metric on Y defining the 
topology and let Z be the (compact) completion of Z We can identify &(p) 
with the subspace (S E Afz(p): p(6) (Y} = 1) of ( A z ( p ) ,  z (2)). Let 9- denote 
the ~(2)-closure of 9. Then by Proposition 3.l(a), 9- is ~(2)-compact 
metrizable and convex. Note that 9- is contained in the z(Z)-closed 
hyperplane { T E B ( L ~ ( ~ ) ,  C(Z) ) :  lX@lZ(T') = 1). Let 6 ~ 9 .  We denote by 
K, the cone generated by 9 ,  and by K ,  the coAe generated by 9-. Further 
let Gi denote the induced orderings on K,, i.e. $ G i  q if and only if 
c p - $ ~ K ~ ,  i = 1 , 2 .  Since P-nA(p)=P, ~ E K ,  and + E # ,  ( $ < , q )  
imply $ EK, and both orderings coincide on K, . Thus 

{ ~ E K , :  q = {vEKZ:  cp G z 6 ) .  

By assumption, K, is a lattice (in the ordering 6 , )  and so 
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{ ~ E K , :  (p  S1 6) is a lattice. Hence { ~ E K , :  q 6 , 5 )  is a lattice (in the 
ordering d z) In particular, {rp E K ? :  cp < , a )  has the Riesz decomposition 
property. Furthermore, by Proposition 3.2(a), Z(9-) = g ( P - )  holds. Now 
the stage has been set for an application of the Loomis uniqueness theorem: 
there is a unique measure ~~M:(ex23- )  such that 6 = r ( ~ )  in 
(B(L ' (~) ,  C(Z)), : ( ~ j )  ([17], 33.24, and the prod  of X1.29). By Theorem 2.5, 
there is a measure Q, EM\ (ex9)  such that S = r ( ~ , )  in 
(B (L1 ( p ) ,  C (Y)), T ( Y)). Since ex B = 9 n ex 9-, we can define a probability 

. measure el on 2i (ex 9-) by el (F)  = Q ,  (ex $3 n F). Then 6 = r (el) in 
(B(L' (p), ~ ( ~ ) ) , _ z _ ( g )  and hence Q ,  = Q. This yields the uniqueness of co (cf. 
Lemma 2.3). 

I 

By the way, the separability of L1 jp) is not used in the "only if' part of 
the theorem. This part also holds for completely regular Souslin spaces Y 
The "if' part is also valid for completely regular Lusin spaces Y Simple 
examples show that . A ( p )  is no simplex. 

4. Integral repressentation in the set of quivadant transition kernels. This 
section was inspired by Ferguson ([7], Chap. 4.2). Let G be a group which 
acts (from the left) on X and E: G is equipped with a 0-algebra B(G) and we 
assume that the maps G+G, y ~ y - I ,  G x X + X ,  (g, X ) H ~ X ,  G x Y - + Z :  
(g, y) b g y  are measurable. Then G acts on M: (Y) by the map (g, Q) wgQ, 
gQ(q = Q(gP1 C) for every C E J ( Y ) ,  and one easily verifies that this map is 
measurable. A transition kernel 6 from X to Y is said to be equiuariant if 
S(gx)  = g6(x) for every g E G ,  x EX. We denote by MG the set of all 
equivariant kernels from X to Y and by Jlr, the subset AG nM. Note that 
if B(Y)  is separated, then NG is the set of all kernels x  HE^(,) arising from 
equivariant measurable maps cp: X -t E: A probability measure p on B(X)  is 
said to be quasi-inuariant if [gp: g EG) << p. We shall appIy the results 
of Section 2 to the set . idG.  

THEOREM 4.1. Let Y be a separable rnetrizable u.m. space, G a locally 
compact a-compact group, and '$ = {p} for some quasi-invariant probability 
measure p. Further assume that G acts continuously on Y (by which it is meant 
that the induced maps on Y are continuous). Then d G ( p )  has the integral 
representation property and is measure convex. 
- Proof .  According to Theorem 2.5, it suffices to show that the convex 

set ,#YG(/i) is a t-closed subset of &(PI. We may assume AG # 0. Since p is 
quasi-invariant, G acts on A ( p )  by g6 = equivalence class of g6' for some 
representant 6' of 6, where (gdl)(x) = gGf(g-I x) for every x EX. Further, G 
acts on L1(p) by af(x) = f (g-l x)(dgpjdp)(x), XEX,  and on C ( Y )  by gk(y) 
= k(g-ly), y E Y  We have 
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for every S E A%'(,@, f EL' (p), k E C ( Y ) .  Thus the map b w g 6  is z-continuous 
for every g EG. This implies that the set .&(p), of all fixed points in ,H(p) 
under the action of G is z--closed. Furthermore, .AG (p)  = A%?'(& holds (see 
Berk and Bickel [2]). This completes the proof. 

By Corollary 2.6, the measure convexity of A G ( p }  also holds for 
completely regular Souslin spaces Y and the integral representation property 
for completely regular Lusin spaces E 

For statistical applications it is desirable that kernels in dlG have a 
representing measure which is supported by JIfG. This is not always-possible. 
Let G ,  be the isotropy group of x G X  in G, Yi = CY EY: gy = y for every 
g E K ]  for -K c G, and Y, = YGx. Then in order for 6 E .A& to be represented 
by a measure in M y  ( 1. ,) it is necessary that 6(x, YX) = 1 P-almost every- 
where for every P E T (  since q ( x ,  Ys) = 1 for every q E f C;, XEX, provided 
((x, y) EX x Y: y E Yxj E(.# ( X )  @:&(Y)F)),, and .d (Y) is separated. To prove that 
this condition is also sufficient we need the following assumptions: 

(A4.1) There is a measurable map S: X + G  such that the (measurable) 
map T X +X, defined by T(x) = S (XI- l x, is invariant, i.e. T(gx)  = T ( x )  
for every g E G, x EX. 

(A4.2) The action of the isotropy group G ,  on Y is trivial for every 
x €X. 

(A4.3) G, = H for some subgroup U of G and every x ET(X) .  
Let Z = T ( X ) ,  93 ( Z )  = Z n 28 (X),  and, if Y, ~g (Y), for every x EX, 

9, = { ~ E A ~ :  6(x, Y,i = 1 for every XEX) .  

THEOREM 4.2. Let (X, %?(x)) or (G,  B(G)) be u.m. and assume (A4.1). 
(a) Let (Y, a ( Y ) )  be a Souslin measurable space and assume (A4.2). Then 

MG has the integral representatiotz property and ex AG = X, holds. 
(b) Let (Y, LB(Y)) be a Souslin measurable space. Assume (A4.3) and 

YH EB(Y). Then 9, has the integral representation property and ex 3, = Jlr, 
holds. 

(c) Let (Y, B(Y)) be u.m., J1/, $. 8, and '$3 = { p )  for some probability 
measure p. Assume [ ( t ,  y) E Z  x Y: y E I ; )  E ( ~ ( Z ) O ~ ( Y ) ) ,  . Then 9G (p) has the 
integral representation property and is measure convex. Furthermore, ex 9, (p)  
= Jlr, (p) holds. - 

Proof.  Assume Y, E .~(Y) ,  for every x EX. Let . denote the set of all 
transition kernels from Z to Y and A'', the subset of all kernels t HE@(,) 

arising from measurable maps $: Z + Y.  We put 

g1 = { rp~A%'~ :  q ( t ,  k;) = 1 for every ~ E Z ) .  

For each q ~3~ the kernel x H S ( X )  ~ ( T x )  belongs to 9,. In fact, since 
T/Z = id, and T is invariant, we have S(g t ) - '~EG,  for every t €2, ~ E G .  
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Furthermore, q(t) is a G,-invariant probability measure-on &(Y) for every 
t E Z .  This yields S(gx) cp (Tx) = S (gS (x) T(x)) cp (73)  = gS(x) cp (Tx) for every 
x EX, q FG, and from Yx = S(x) YT(,, follows 

for every XEX. Thus we can define a map i :  9, 49, by i ( q ) ( x )  
= S(x) cp(Tx) for every x EX. Then i is an affine bijection with i(9, nN,) 
= NG and i - l ( 6 )  = 6 1 Z for every 6 E PG. Considering T as a map from X 
onto Z we obtain 

. - 

m i ( ~ ) o ) ( ~ Y = - j  j 1, (x, Y) ~ ( V I  tx, d ~ )  dp(x)  
X Y 

= j I ls(st, ~ Y I  Q,(t, dsjdPT @ ~ ( t ,  Y )  
Z x Y G  

for every- q ~ 9 , ,  P E M :  (X), and 3 E~~(X)@B(Y) ,  where Qp denotes the 

I 
regular T-conditional distribution of S under P. 

Subsets 2 of A, are equipped with the a-algebra Z(g) defined with 
respect to vT = {pT: p E '$3). We claim that i is an isomorphism between the 
measurable spaces ( P I ,  Z(gl)) and (&,, Z(gG)). If P is a probability measu- 
re in L('$), then PT€L(QT). If Q is a probability measure in L ( Y ~ ) ,  then 
there is a countable subset (p,: n €1) of +@, I c N,  such that Q << '(p;f: n E I) 
([14], k m m e  1). Let A = 2-" p,, n E I .  Then by the Radon-Nikodym . 
theorem, Q = f -AT for some f €L1(RT) and for the measure P = f o T - l  on 
&(X) we obtain pT = Q and P  EL(^). Thus 

Therefore, i is measurable, since . . 

P(i(cp)) (C )  = J 1 lc  ( S Y )  QP (t, ds) dPT QV It, Y ) ,  
Z x Y G  

(t, Y )  HJ~c( sY)QP(~ ,  ds )eB(Z  x Y )  
G 

for every cp € g l ,  P EM: ( X )  n LC'@), C E ~ C Y ) ,  and i - I  is measurable, since 

PT(i-l(d))(C) = j lc(S(x)-l y)dPQS(x, y), 
X X Y  

t 
(x, y ) ~ l ~ ( S ( x ) - ' y ) ~ B ( X x y )  for every 6 € g G ,  PEM:(X) nL(v ) ,  
CEB(Y). Clearly, the restriction i,: 9, n N ,  +& of the map i to 
9, nM1 is also an isomorphism between the measurable spaces 
(91 n N 1 7  E(91 n a )  and (43 Z(XG1). 
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Assuine that g ( Y )  is countably generated and contains singletons. Since 
PI is an extremal subset of A, and ex ,#, = M,,  we obtain exg ,  
= 3, n N1. From i (ex 9,) = ex i (2 , )  follows ex 9, = NG. 

{a) By  (A4.2), = Y for every x EX. Hence $;?, = A!, and 9, = AG 
hold. Let 6 ~ ~ 4 ~ .  According to Proposition 2.1, there is a measure 
Q, E M :  (Nl )  which represents the kernel i-I (6) with respect to FpT.  Then, by 
(*) and (*a), the image measure g E M :  (. .t of Q, under i, represents S. 

(b) By (A4.3) we have Y, = S{x) YH and hence Y, E.# (Y)  for every x E X .  
Since C/, = \q E .l, : cp ( t ,  Y ,  = 1 for every t €21, we can identify 9,  with 
the set of all kernels from Z to YH, where YH is'equipped with the a-algebra 
J ( Y H )  =. E;, n :#(Y). Since (YH, 8 ( Y H ) )  is a Souslin measurable space ([21], 
p. 96, Theorem 31, the integral representation property of 9, follows from 
Proposition 2.1 as in (a). -- 

(c) 1n.view'of Lemma 2.4(b) we have E.B(Y),  for every t EZ and hence 
Y, EB(Y) ,  for every x EX. Define j: 9, (pT)  + PG ( p )  by j (q )  = p-equivalence 
class of i ( r p f )  for some representant rp' EP,  of q. Then j is affine and an 
isomorphism between the measurable spaces ( p T )  p T  and 
(gG (p), E(YG (p)) with j ( 3 ,  n . Y ;  (pT)) = +; (p), Define a multifunction r 
from Z to Ad: (Y) by r(t) = { Q  E M i  (Y ) :  Q (x) = 1). Since Fl n Nl # 0, 
we obtain 9, ( p T )  = Alr(/tT) and 9, n N, (pT)  = N l r ( p T ) .  By (*) and (**), 
the assertion now follows from Corollary 2.8. 

The following corollary is an immediate consequence of part (c). 

COROLLARY 4.3. Let (x,  B(X)) or ( G ,  B(G)) be u.m., let (Y, B ( Y ) )  be u.m., 
and = (pj  for some probability measure p. Assume (A4.1) and (A4.2). Then 
AG(p) has the integral representation property, is measure concex, and 
ex AG (p)  = NG (p) holds. 

Remarks. ( 1 )  The measurability condition in Theorem 4.2(c) is satisfied 
if B(X) is countably generated and contains singletons and (G, B(G))  is a 
Souslin measurable space. 

-To see this put 3, = ((g, t ,  y) EG X Z  x Y: gt = t )  and B, = l(g, t ,  y) E 

G xZ x Y: gy = y ) .  Then we have B,, B 2 ~ d ( G ) @ . & ( Z ) @ d ( Y )  ( [ 5 ] ,  1.12) 
and ',(t, ~ ) E Z  x Y: Y E T ] '  is the projection of 3, nE2 to Z x k: From a 
projection theorem ([3], 111.23) it immediately follows that ( ( t ,  y) E Z  x X 
Y E X j  ~ ( d ( Z ) @ g ( Y ) ) u .  

(2) In Theorem 4 4 a )  the assumption (A4.2) is essential for ex d, = JtT, 
to hold. Let X = Y =  { -  1, 0, 11 and G = {e ,  g )  with identity e, g-I = g, 
and the action gx = - X, gy = - y. Define S :  X + G by S ( - 1) = g and S (0) 
= S (1) = e. Then (A4.1) is satisfied, but (A4.2) does not hold. We obtain 9, 
= {d  E A',: S(0,  {O)) = I}, ex 9, = NG, and ex AG = Jl', u (a , ,  62, a,), 
where S,(x)  =E,, d2(x)  = E - , ,  a3{x) = E,, for x = f I and Si(0) = ( E , + E - , ) / ~  

for i = 1, 2 ,  3. 
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(3) For Polish groups G and cIosed subgroups H of 6; the assumptions 
(A4.1) and (A4.3) are equivalent to a product representation X = G / H  xZ. 
To see this observe that, if the space G / H  of left cosets of H is equipped with 
the quotient topology, the canonical surjection n: G + G / H  admits a Bore1 
measurable right inverse $. This follows from a selection theorem of Kura- 
towski and RyII-Nardzewski C13J. Let X = G / H  x Z  and &(XI 
= 9? (G/W @.49(Z) for an arbitrary measurable space (Z, L&? (2)). G acts on X 
by 6,  ( g ' H ,  2)) w ( g g ' H ,  z) and this map is measurable. Define S: X + G  
by S ( ( g H ,  2)) = #(gH). Then (A4.1) and (A4.3) are satisfied. Conversely, if 
these conditions hold, put Z = T(%) and BIZ) = Z nA?(X). Then the map 
X .+ G / H  x 2, x H(n o S(x), T(x)) is an equivariant isomorphism between the 
measurable spaces (x, a (X)) and (G/H x Z, 9?J ( G / H )  (2)). 

5. Applications. At first we treat transition kernel; with prescriped 
values. Let Y be a metrizable Souslin space and  EM: (X). Let r be a 
multifunction from X to M :  (Y) such that T(x) is nonempty w-closed and 
corivex for every x EX and Gr (0 E..~B(X), OZ (M ( Y)). We denote by 
ex r the multifunction x Hex r (x). 

THEOREM 5.1. A P . ( p )  is a nonempty Z-closed meusrare convex subset of 
A(p)  and has the integral representation property with respect to '$3 = {h). 
Furthermore, ex A,(p) = .kc,, (p) holds. 

Proof.  Since (M:(Y), w )  is a Souslin space and ,T(M:(Y)) 
= B ( M :  (Y), w) holds, it follows from a selection theorem ([3], 111.22) that 
kr # Q). Clearly, k r ( p )  is convex. The assertion ex &,(p) = Ae, ,(p) 001- 
lows from Theorem IV.15 of [3]. According to Theorem 2.5, it remains to 
show that is a zclosed subset of &(p). (For constant rnultifunctions 
this has been proved in [9].) Let 6 E A ( ~ ) \  M,(p} and put 

A = {xEX: a(x)$T(x)). 
Then A' is the projection of Cr(G) n G r ( 0  E L ~ ( X ) , @ C ( M :  (Y)) to X, 

hence, by a projection theorem (131, III.23), A EB(X),. Choose a totally 
bounded metric inducing the topology of Y and denote by U ( Y )  the space of 
all bounded uniformly continuous real-valued functions on I: Using Port- 
manteau's theorem we conclude that r(x) is a a(M (Y), U(Y))-closed subset 
of M ( Y )  for every x EX. Therefore, by the Hahn-Banach theorem, for each 
x E A there is a function k, E U (Y) such that 

We can assume k,  E V for some countable norm dense subset V of U(Y). 
Setting 

A(n, k) = {xEX: sup{fkdQ: Q€T(x)) < Jkdd(x)-lln) 
i. Y 
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for n E N  and k E V yields 
A = U A(n,  k ) .  

ndV 
~ E V  

The function 

is universally measurable (t31, 111.39) and hence A(n, k) E ~ ( X ) ,  for every 
n EN and k E K Because p ( A )  > 0, there exist n EN and k E V such that 
p(A(n, k)) > 0. Now for each member rp of the z-closure d , ( p ) -  of MI (p) 
in .A(p) we have . . 

f jk(~lrp(x,  d ~ ) d ~ ( x )  J ,fkGv)J(x, d ~ ) d ~ ( x ) - ~ ( A ( n ,  k))ln 
A(;$) Y A(n.k) Y 

and thus 5 4 A,(p)-. 
We can infer the following version for metrizable Souslin spaces of a 

result due to Strassen ([22], Theorem 3). Strassen proved the equivalence of 
(i) and (ii) for Polish spaces Y (under a slightly weaker measurability 
assumption on r). 

COROLLARY 5.2. Let R EM: (Y). Then the following statements are equiva- 
lent: 

(i) There is a kernel S EA, such that 1 = p(6) .  
(ii) 1 kdA< 1 sup (1 kdQ : Q E r(x))  d p  (x) for etrery k EC ( Y) .  

i X Y 

(iii) (kd1 < Isup {I kdQ: Q €ex f ($1 dp(x) for every k EC(Y). 
i X t 

Proof .  (i) =+ (iii) follows from the integral representation property of 
and (iii) (ii) is obvious. 

(ii) e. (i). The set K = {p (6): 6 E d r ( p ) )  is convex. We claim that K is a 
w-closed subset, of M (Y). Suppose (6,) is a net in &,(PI such that p(S,) -+Q 
for some Q EM(Y). Then the set IS,} is reIatively 2-compact in d ( p ) .  This 
fact is known and easily seen by embedding &(p) in k z ( p )  for some 
compact metrizable space 2. Therefore (6,) has a cluster point 6 which 
belongs to k,(p) since, by the preceding theorem, &,(p) is z-closed in 
&(p). Clearly Q = p(6). Thus Q EK and our claim is proved. Now by the 
Hahn-Banach theorem, A E K  if 

[ kd1 < sup ( [ kdp (6): 8 E Ar(CL>) 
j. i 

for every k EC (Y). But the right-hand side of this inequality equals the right- 
hand side of (ii). Indeed, let k  E C ( Y )  and E > 0 and consider the multifunc- 
tion f, from X to M: (Y) defined by 
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Then T, (x) # 0 for every x EX and Gr (I-',) EB (X),OZ ( M i  (Y)). Hence, 
according to a selection theorem (133, 111.22), M ,  # 0. 

The second application is concerned with the risk-equivalence of two 
methods of randomization in statistical decision theory. Let O be an index 
set. For each ~ E O ,  let P, be a probability measure on B(X) and 
L(9, -, -): X x Y +LO, co] a measurable loss function. Decision rules are 
transition kernels from X to Y. In the decision problem ({Pa: 9 EO), Y, L) 
the risk function R, defined for 9 EO and 6 E A? is given by 

Assume that [Pa :  9 EO j e p for some g EM: (X) and = ;pi. Let 
9 c A ( p )  and 9, c 9. 9 and M: (9,) are said to be risk-equiualent if for 
each S EY there is a measure Q EM: (gl) such that 

R(9 ,  8 )  = 1 R(9 ,  d d e j c p )  
31 

for every Q E O  and vice versa. Then, under the assumption of Corollary 2.7, 
d ( p )  and M: (N(p))  are risk-equivalent. If a group G acts on X and I: 
then, under the assumptions of Corollary 4.3, dC (p) and M i  (NG (A) are 
risk-equivalent. 

In order to treat Bayes rules, we assume additionally that t9 is equipped 
with a 0-algebra a(@) such that L and (9, x) w(dP,/dp)(x) are measurable. 
We denote by $3 the set of all Bayes rules with respect to a a-finite measure 
A on B(O). Let Y be a metrizable Souslin space and let L(9, x, .) be lower 
semicontinuous for every 9 EO and x EX. 

PROPOSITION 5.3. 9 ( p )  a d  M i  (9 n ~ ( p ) )  are risk-equivalent. 
Proof .  According to Lemma 2 of [15], the Bayes risk function 

FR(9, -)dA(9): -M(P) +CO, a1 
is 

is Iower z-semicontinuous. This implies that P ( p )  is a z-closed subset of 
Z(p) .  Furthermore, g (p)  is a convex extremal subset of &(p)? hence, 
exg(p)  = $3 n N ( p ) .  The assertion now follows from Theorem 2.5. 
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