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Abstract. In this note we study large deviations of invariant 
measures for stable dynamical systems under small noise perturha- 
tions of white noise type. The systems are modelled by diffusion 
equations with a diffusion term ca(x,), which we allow to be degcne- 
rated. The corresponding invariant measures converge to a measure 
concentritcd at the stable point and their logarithms are compared 
with the optimal values of linear deterministic control problems with 
quadratic functionals. 

1. Introduction. Suppose X" = (xi) are, for E >- 0, the solutions to the - 
diffusion equation 

where f (x) ER' and cr ER* x R' satisfy the Lipschitz condition, f (0) = 0, 
a(0) # 0, the matrix a(x) is bounded and (w,) stands for the r-dimensional 
Brownian motion. 

As E +O, ;YE converge in probability to the solution of the deterministic 
system 

(2) a = f ( x ) .  

If system (2) is stable, one could expect that there exists a finite invariant 
measure n, corresponding to XE. In this paper we want to fmd the limit 
E~ Inn, ( -) as E 4 0. Such a problem has been solved for a non-degenerate 
diffusion, i.e. when the eigenvalues of matrix ao*(x) are uniformly with 
respect to x bounded away from zero, in Theorem 4.2 [4]. We wilI consider 
the case of degenerate diffusions in which the above condition may be 
violated. This complicates an adaptation of Freidlin-Wentzell results, since 
then XE is not necessary the strong Feller process and, as a consequence, 
formula 4.3 f6] for the invariant measure is not true. Moreover, the rate 



function for Iarge deviations of X" which can be obtained through Legendre 
transformation, requires additional assumptions and usually does not have 
an explicit form. We overcome these difficulties. Namely, from [7] and [a] 
we obtain the existence and estimates for invariant measures of (I). Follo- 
wing El] and [9] we apply the estimations comparing Xe to the solutions 
of the controlled linear system 

and then we can calculate the limit E' Inn,( .) in terms of the optimal values 
of quadratic functiqnal corresponding to system (3). The final steps more or 
less coincide with the sketch of the proof in the non-degenerate case given in 
[43. Since the assumptions we impose, written in a form of special kind 
controllability of (3) and ergodic properties of (I), look at first glance 
restrictive, we formulate in section 4 sufficient conditions under which they 
are satisfied. 

2. Preliminary results. Denote by #(g) the ball with center at the origin 
and radius q. Let q, for a Borel set A ER', be a first entry time of XVo A, 
1.e. 

7'' = inf (s 2 0: x: E A ) .  

Suppose there exists an r ,  < r ,  such that, for y = dK(r,j and r 
= aK (r ,  j, we have 

where zE = Ti+ ?", o O,",s the first time in which XE, starting from y, hnts r 
and returns to y, and Ex T," < co for any x €Rr. 

The pair (y, I') for which (4) holds will be called a cycle of XE. 
The following lemmas play a fundamental roIe in our paper. 
LEMMA 1.  Suppose ( y ,  r )  form a cycle for XE.  Then, for any Bore1 set A, 

x E Rr, 

and 

where c, =infE,z,, and Ce =supE,z,. 
XEY XEY 

Proof.  From Lemma 3 [7] we get c, > 0. The proof of (5) follows from 
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-Lemma 4 [7]. Estimation (6) can be obtained in a similar way. 
The next corollaries explain the importance of (5) and (6). 
COROLLARY 1. There exists an inuariclnt probabiliry measure n8 for Xe. 
Proof.  Because of (61, for a sufficiently large compact set F, 

t .  

l i m i n f t - l ~ , [ J ~ F ( g ) d s ) > O  for any X E ~ .  
t + m 0 

Since, due to Theorem I 7.2 [6], XE is Feller, we can apply Theorem 2 
[8] to -get an invariant measure x,. 

COROLLARY 2. If n, -is an illvariant probability measure for XE, then, for 
any   or el set A c R: 

Proof. It suffices to use the definition of the invariant measure and the 
Fatou lemma to estimate (5) and (6). In fact, 

< c,-I supE, (JxA(XE,)ds)- 
XEY 0 

The estimates from below we can get in an analogous way. 
Remark. It should be pointed out that we have above only the . 

existence of the invariant measure result. The question of uniqueness is not 
clear. If the cycle measures 

are equivalent, then, by the similar methods as in the proof of Proposition 3 
[8], we get the uniqueness of invariant measures. Nevertheless this condition 
seems to be far too strong. 

Later we will need a weaker versibn of (7) which can be obtained with 
the use of the strong Markov property of XE.  

COROLLARY 3. Suppose D c R\K'(rJ is an open set and, for S > 0, D - ,  
= {x  ED: ~ ( x ,  aD) > 6) .  Then 
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As we have suggested in the introduction, the behaviour of X" will be 
studied with the use of trajectories of the controlled deterministic system (3). 
Denote by yn~"(-) ,  for u an integrable control, the solution of (3) with initial 
condition yU*" (0) = a. Let 

T 

So,(u) = 2- jlu(s)12 ds, 
0 

(9) 
d d  

VT(a,  b) = inf {S,,<(u), ya."(0) = a, f3"(T) = b,  T' < T )  
-. 

and 

v ia ,  b) %' inf VT(a, b). 
T >a  

Following [4] and 191 we call V ( a ;  b) quasipotential. 
Define 

Similarly as in [9], the following two propositions, the proof of which 
can be found in [l], are basic in large deviations of degenerated diffusions: 

PROPOSITION 1. For an arbitrary compact set F c R: T > 0, q > 0, o! > 0, 
and l > 0 there exists an EO > 0 such that, for all x EF, u EL'([O, TI, R3, and 

T 

2-I [ju(s)J2ds < q,  
0 

we have 

(12) P ( Q ~ ~ ( X ~ ~ ~ ,  yXsU) < a}  2 exp { -E- '  (SOT (e0 + C)) 
provided E < E,, where e o ~  denotes the distance in C ([0,  T 1). 

PROPOSITION 2. For arbitrary compact set F c Rr, T > 0, q > 0, o: > 0, 
and [ > 0 there exists an E ,  > 0 such that, for ail E < E ,  and x EF,  

3. Main theorem. The following theorem contains the main result of the 
paper: 

THEOREM 1. Suppose D is an open bounded set, O $ D  and the following 
sequences of assumptions is satisjed: 

(AO) there exists a ji > 0 such that, for any p < Cl, one can Jind an E ,  such 
that, for E <E,, y = aK(2-I  p) and r = a K ( p )  form a cycle for k, and 
supE,,{?;E) < 03; 
yefi  

(A l )  controlled system (3)  is uniformly attracted to 0, i.e., for any compact 
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set F ,  constant L > 0 and r > 0, there exists a time T such that, for any 
control u, SOT(u) < L, ~ ~ F f o r  the controlled trajectory yXPU, yx?"(0) = x EF, we 
have (y"pU (t)l < r for some t 6 T; 

(A2) v F ~ ~ m P ~ t  vfl 2036 20 v ~ ~ ~ a =  ~ 4 z . P )  < 6 ) 3 u , ~  

So,T (u)  < Q and y'pu (7') EF ; 

(A3) for each #I > 0 there exists a po such that, for p < po and z ~r 
= dK(p) ,  one can .find a control u and T > 0 such that y O s " ( T )  = z and 
SOT (u) < b;  

(A4) & > O  gcrO vp 3 T 0  vx,rEr 3u .T<T0 SOTIU) < p, Y ~ " ( T )  = Z and in 
the time interual [O, TI the controlled trajectory does not enter K (2- ' p); 

(A5) V, (x) !! inf V(x,  y) is continuous in the neighbowhood qf the origin; 
Y€D 

(A6) for each r,~ > 0, F compact, F n D = 0, there exists a S > 0 such that, 
for x EF,  

inf V ( x , y ) < V o ( x ) + q ,  whwe D - , =  ( y ~ D , e ( y , d D ) > S )  f 0; 
YED-6 

(A7) fir any S > 0 

lim sup1 i d  VT(x ,  y)- inf V ( x ,  y)l -0. 
T - + m  X E ~   ED-8 Y&- 6 

(15) l i m ~ ~ l n n , ( ~ )  = -inf V(0,  x). 
e -0 XED 

Proof.  The proof is based on Corollary 3. Namely, we estimate the 
term of inequality (8) from above and from below. 

We get first the approximation of limit (15) from above. For a given 
arbitrary small h, 

o < h < id V ( O ,  x )  v ~ ,  
XED 

there exists a pb such that, for p < pb, assumption (A3) with P = 3-I h is 
satisfied. We fix p < pb A ji for which e (0,  D) > 2p and (AO) holds. Then 
take S from (A2) with F = and /I = 3-' h. 

The following result will be useful in our estimations: 
FACT 1. Let D, = ( x :  p ( x ,  D) ,< 6 ) .  Then, for any T > 0, there are no 

control u for which the controlled trajectory, starting from T, enters D in the 
finite time interval [0,  77 and SOT (u). < v0 -$ h. 

Indeed, suppose that there exists a control u,  and the corresponding 
trajectory yl (0) ~ r ,  yl Itl) ED*, for which Sotl (u l )  < Vb -5 h. Then, by (A3) 
and (A2), there are controls u, and u3 such that the corresponding trajecto- 

7 - Probability Vol. 10, Fasc I 
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ries satisfy Y, (0) = 0, Y 2  ( t 2 )  = Y ,  (O), Y ,  (0) = Y ,  (t1)Y Y ,  (t ,)  ED and S,,,Cu,) 
< 3 - '  h, Sot, (1.4,) < 3 - I  h. Thus for a control us = ts,(s) for s E[O, t,], us 
= u , ( s - r 2 )  for s ~ r t , ,  r ,+ t , ]  and uS=u3(s-t1-r2) for s ~ [ t ~ + t , ,  t l + t 2  
+ t,], the trajectory starting from 0 enters D and Sml + r 2 + r ,  (u) < SOtl (ul) 
+ S o , ,  (u,) + S,, (14,) c Vo, a contradiction. 

We continue the proof of Theorem 1. From (AO), for E < E,, (y, F) form 
a cycle for Xe. Therefore there exists an invariant measure x, and, in view of 
estimates (81, we have 

n, (D) < (inf E, T,")- sup P,, [Ti  < sup E,  { T ) .  
YET  YE^ y ~ 6  

Moreover, for any T 3 0, 

From (Al), for F = T, L = Vo, r = 4-'  ,LL, there exists a T > 0 such that, 
for any control u, So,(u) 4 L and XGT, there is a t  6 T such that the 
controlled trajectory enters K(4-I p) at time t. Thus, for such a T, 

and, by Proposition 2 for F = T, y = Vo, ct = 4-I p, 5 = 2-I h and E < E ~ ,  we 

In a similar way, applying Fact 1, we have 

(G < Tj c {eoT(Xx9=, BXT(V0-54) > 8 )  

and, again from Proposition 2 for F = r, vj = Vo-3 h, ( = 6-I h, for E < E~ 

we get 

(19) supP, {Ti < q) G exp { - ~ - ~ ( v ~ - $ h ) } .  
YET 

Summarisng (17), (18) and (19), for E < E, = E, A E, A E, we have 

(20) supP,{?", < < exp { - ~ - ~ ( ~ ~ - ~ h ) } + e x p { - ~ - ~ ( ~ ~ - ~ h ) } .  
YET 

But, for a, b, [ > 0, theie exists an E > 0 such that, for E < E, e x p ( - a ~ - ~ )  
+exp(-b&-') < e x p ( - ~ - ~ ( a  A b-l)), so, finally, for E <E,, 

(21) sup Py (Ti < T }  < exp { - ~ - ~ ( v ~ - h ) ) .  
YET 

Since f and a satisfy Lipschitz condition and B is bounded, Proposi- 
tion 6 [9] implies that XQonverges in probability uniformly on compact 



intervals and uniformly with respect to initial values from compact sets to 
the solutions of the deterministic system (2) as E +O. Therefore, there exist a 
constant a > 0 and ES > 0 such that, for E < E , ,  

Finally, from (20)-(22), since (AO) implies 

and h could be chosen arbitrarily small, we obtain - -- 

(23) - lim sup In z, (D)  6 - Vo . 
E +O 

Consider now the estimation from below. First we need an upper 
estimate for C,. Namely 

(24) C, d sup Ex T{ + sup E, 7;8, 
XEY YET 

Let yO(q) = closure { y  ER': y = yOIU(t)  for some t < T and u such that 
So,(u) < qj. From Theorem 1 (i) [9], for a11 x e K ( p ) ,  

I 

(25) l i m s u p ~ ~ I n E ~ T ~ ~ s u p { g :  yo(?) c K ( p ) ) .  
E -+O 

An analysis of the proof from 191 shows that limit (25) is uniform with 
respect to x E y. Thus 

(26) lim sup c 2  In sup Ex T", < sup { v :  ( v )  c K (P)) 
E -0 xeY 

Since a(0) # 0 for an arbitrarily small h > 0, we can find a pb such that, 
for p <pb, r n D = @  and supiq: yo(q) c K ( p ) )  6 4 - l h .  Therefore, for 
P < ~ b ,  

Next we estimate the second term of the left-hand side of (8). From (A5), 
for p < p: and x ~ r ,  we have 

(28) lVo(x)- Vo1 < 12-I h. 

For B = 12- h and p < py, there exists by (A4) a To such that any 
points x, z ~r can be connected with a controlled trajectory yX*" ( . )  in time 
T, < To for which SOT@) < 1 2 - I  h, and the controlled trajectory does not 
enter in time [0, T,] the set K(2-I  p), 

Fix p < pb A pb: A pg' A ji. We will prove the following 
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FACT 2. For E < cb we have 

Indeed, by (A6), for y = 12-'h, there exists a 6 > 0 such that 

(301 inf V ( x , y ) c ~ ~ ( x ) + 1 2 - ~ h  for XET. 
YED- 28 

Moreover, by (A7), for T > T', 

I (3.1) sup1 inf VT(x ,  y)-  inf V ( x ,  y)l < 12-I h. 
XET YED-26 Y ~ D  - 26 

Fix. T > T'. For a given x ~ r ,  let u, be such a control that 

and the corresponding yX1"(O) = x, yX9"(q)  ED-^^. If the trajectory yxiu enters 
I y, then denote by F the last exit time from y before T, and, using (A4), we 

connect x and y ( 0 .  Otherwise we do not change the trajectory. Then far 
= T+ T,, by Proposition 1 for ( = 1 2 - I  h, s < sb, x EF we get 

I 

2 exp / - ~ - ' ( S , ~ ~ ~ ~ ( . ~ + S ~ ~ ( U ~ ) +  12-' h) ) ,  

where we put ts (s) = C(s) for s < Kfifis u (s) = ax (S - LY,,-, + i) for 
s E [ K y I f i ,  + Tx - fl, and u (s) = 0 elsewhere. Therefore, substituting (30), 
(311, and (32), we get 

3 exp ( - ~ - ~ ( 1 2 - ' h +  inf VT(x ,  y)+l2-lh+12-'  h)) 
Y*- 26 

2 exp { - ~ - ~ ( 4 - ' h +  inf V ( x ,  y)+ 12-' h ) )  
YED- 2.3 

2 e x p { - ~ C ~ ( 4 - l  h+&((x)+12-l h+12-l h))  
I 

exp { - E - ~ ( &  + + - I  1)) 

and Fact 2 is proved. 
To finish the proof of the lower estimation we take (8). For E < E,, 

because of (AO), (y, T )  form a cycle. By the same reasons as in (22), there exist 
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M, a > 0 such that, for E < and a sufficiently small 6 > 0, we have 
=c 

(34) s u p E , T < M  and inf E , , f ~ ~ , ( x , ) d s ) > a > O .  
~ € 1 '  yen-& 0 

From (272, for s < E,, 

Substituting (33), (34) and (35) to (8) and taking into account that h 
could be chosen arbitrarily, we obtain -.. 

which, together with (231, gives identity (151, and the proof is completed. 
Remark. It is easy to see that to get the upper bound we needed 

assumptions (AO)-(A3) only. In the proof of the upper bound we applied (AO) 
and (A4)4A7). 

4. Remarks on assumptions. Let us recall first a Lyapunov stability result 
from [3]: 

PROPOSITION 3. Suppose there exists a continzrously dgerentiable function 
v(x), ~ ( 0 )  = 0, which has a strong infimum for x = 0 and scalar product 
(f, Vv) < 0. Assume, moreover, that for any 6 > 0 there exists a p > 0 such 
that, if 1x1 > S, then 

 the^ the system (2) is asymptotically stable to the point x = 0. 

We can formulate the following sufficient condition for (AO): 
PROPOSITION 4. If there exists a bounded Lyapu~lov function v from 

Proposition 3, which has a bounded second derivatives, then (AO) is satis$ed. 
Proof.  Because aij(xj = ag*(x) is bounded, for any 6 > 0 there exist a 

/3 > 0 and-an E~ > 0 such that, for E < E,, 1x1 > 6 implies 

Applying now Corollary 2, Proposition 1 and Lemma 2 of 171 we get, 
for any p > 0, 

s u p ~ , ( T J ~ < a o  and s u p E , ~ < a o .  
YET(P)  y €6 
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Take ji > 0 such that alx) # 0 for x EK (a. Then from Corollaries 1 
and 2 of 171 for p < ji, 

SUP E,(T;)~ < co . 
X.Y(P) 

Thus, for p < p, (y (p),  r(p)u)) form a cycle for X" with E < 6,. 

~ROPOSITION 5.  If there exists a Lyapunov function v satisfying the 
assumptions of Proposition 3 and, moreouer Vv (x )  is hounded, then CAI) is 
satisfied. -. 

Proof.  Suppose for some compact P, constants L > 0, r > 0 and any 
time T > 0 that there exists an XEF,  a control u and SOT(u) < L such that, 
for any t > 0, ( p u ( t ) (  >, r .  Then from Lyapunov condition (37), for S = r, 
there exists a fl  > 0 such that (f, Vv)(.x) 6 - f l  for 1x1 2 r. Therefore, since 
(a(  <-M, (VV( G M for some constant M, 

T 

(38) v (~"'"(t))  - v (x) = f (f + o u (s), Vv)(yXtu (5) )  da 
b 

T 

G - B T+ j (nu (s), Vv) (yX." (s)) ds 
0 

T T 

< - /3 T+ M (1 1 u ( $ 1  ds)Ow5 ( f ( V V ~  (yXp" (s))  d ~ ) " . ~  
0 b 

If T +m, then the right-hand side of (38) converges to -m, which 
contradicts the positivity of v. Thus ( A l )  is satisfied. 

Assumptions (A2)-(A7) concern contrcllability of system (3). Therefore 
we will impose suitable local controllability conditions. 

PROPOSITION 6. Suppose 

Then (A2) and (A6) are satisfied. 
Proof.  Let R ( x )  = [ z :  3 1 , T S O T ( ~ )  < P, ftU(T) = x ) .  As R ( x )  is open by 

(391, ,the set 

is also open. Since the function x -+ e (x, aG) is continuous, it attains its 
positive infimum on 8F. Therefore there exists a S satisfying (A2). 

To prove (A6) it is sufficient to show that there exists a S > 0 such that, 
for any z E aD, there exists a y E dD-, such that V ( z ,  y) < q. By similar 
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arguments as above, we in€er that the set G = Dc u (J R(z )  is open, dD is 
 an 

compact and e (x, &) attains a positive infimum for x E 8D. 
PROPOSITION 7. Suppose 

(40) v s v ~ ~ ~ 3 d ~ 0 v y ~ ~ [ r , d ) 3 ~ , u  S ~ ~ ( " ) < P , ~ x l U I T ) = ~  

and 

-. 
are fulfilled. Then (A7) is satisfied. 

Proof.  For each x ET and jl > 0 we find a 6 ( x )  which satisfies (40) and 
(41). Moreov,er, for any j > O7 there exists a T ( x )  such that 

The family ~ ( r ,  ~(x)) ,  consisting of balls satisfying (40) and (41), covers 
r. Since r is compact, 

S 

r c tJ K (xi, d (xi)) for some x,, . .'. , x, ET. 
i =  1 

I Let be the upper bound for the time from (41) corresponding to xi. 
Write T = max . fT (x i )+  TA, i = 1,  . . ., s). Then, for each x e K ( x i ,  i3(xi)), 

inf V T ( ~ ,  Y )  G inf IVT/,~ ( x ,  xi) + V T ~ ~ )  (xi, Y)I 
Y E D - 8  Y E D - ~  

< #?+ inf VT,,,,(xi, y) < 2fi+ inf V(xi7 Y )  
Y E D - ~  y ~ D - 8  

G 3P + inf V(x, y) 
Y E D  - 6 

and (14) is satisfied. 
It is almost obvious that 
COROLLARY 4. Under (40), (A3) holds. Moreover, (39) and (40) imply (A5). 
Assumption (A4), as it is easy to check, is satisfied for nondegenerate 

systems, i.e. when the eigenvalues of oo* are uniformly bounded away from 
0. 

We consider now an example of stable degenerate deterministic systems 
for which (A4) holds. 

Ex ample. Suppose r = 2. We have 
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' . where 

and the eigenvalues of A, A, and ,I2, are real and 0 > 1, > 1,. The 'corres- 
ponding deterministic system is 

.and coincides with the second order controlled system R+ 2 b i  + c2 x = u 
studied intensively in [2]. The eigenvectors of A are 

Consider the system in new coordinates (yi,  y2) generated by the basis 
(ql q2). If (xi, x2) are old coordinates, then x1 = - y1 - y2, x2 = -A, y1 - 
- A2 y2 and (43) has the representation 

which is nondegenerated linear system. In (q,, q,) basis the sphere (x l )=  + 
+ ( x ~ ) ~  = p2 becomes an ellipse with the symmetry center in origin. Plotting 
the curves corresponding to constant positive and negative controls u 
respectively, we see that (A4) in this case is really satisfied. 
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