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Abstract. Suppose that two Gaussian measures p, and p, on 
Orlicz space (L,(T, F ,  m), (1 ( I , )  fulfill the condition 

(*I JI Ix+YII%~P, - P z ) ( d ~ )  = 0 

for each x from L,. 
It is proved that, under some assumptions on modular M, 

measure m and q, condition(*) implies p, = p,. 

Intrdnction. Suppose that p, and p, are two probability measures on a 
separable Banach space (E, 11 -11) satisfying the condition 

for every x E E  and some fixed q > 0. 
Linde [7] has recently proved that if E = Lr and q # kr for positive 

integers k, then p1 = p, (cf. also [4]). The purpose of this paper is to prove a 
similar theorem for some Orlicz spaces L,, under the additional assumption 
that f i  are Gaussian. 

The technique employed here differs somewhat from that used in [7]; in 
- particular, we do not rely on Hoffman-J$rgensenYs result [ 5 ]  and, even in the 

case of Lr [0, 11 spaces, our theorem is a little stronger, namely, i t 1  = p, if we 
only assume that q # r. 

Preliminaries. We recall here briefly basic notions concerning Orlicz 
spaces and, after restricting our attention to the class of spaces we will work 
with, we state and prove some simple facts implied by our axioms. 

Throughout the paper (T, F ,  m) will stand for a finite separable measure 
space. By M we denote a fixed Young function, that is a convex, strictly 
increasing function such that M (t) = 0 iff t = 0 and M ( - t )  = M (t). We 
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assume further that A4 satisfies ( A , )  condition, 

M (2t) 6 M (t) k for t 2 to 

for some k > 0 and to 2 0. Observe that convexity of M implies k 2 2. 
Now, by LM we denote the space of all real-valued measurable functions 

f such that 1 M (f) dm < a. 
It is easy to see that L, is a linear space. Moreover, if 

then ( ( . I ( ,  is a norm on LM and (L,, II.)[,) becomes a (separable) Banach 
space [dl. 

Now, we restrict our attention to a rather special class of L,-spaces 
which are a generalization of Lr-spaces ( r  3 2). 

First d all, we impose some smoothness properties on M. Namely, we 
assume that , 

(I) M €C2, that is, M has continuous derivatives up to the order two. 
For the sake of convenience we write: p = dM/dt and p' = d2 M/dt2. 
Next condition means that p', roughly speaking, cannot decrease "too 

fast": 
(11) For all t, s such that 0 < t < s, we have p'(t) < pl(s) + A for 

some A 3 0. 
The third condition, 
(111) M (t) B Bt2 for t 2 tl and a B > 0, says that L, c L2 and that the 

natural embedding of L, into L2 is continuous. The  norm and the 
corresponding inner product on LM will be denoted by 11 -11, and (., - ), 
respectively. 

In the sequel we assume that our LM-space satisfies properties (I)-(111). 
We now draw some simple conclusions from these properties. 

P ~ o w s ~ n o ~  1. Under the assumptions as above the following properties 
hold: 

(ii) 

M (t) G t p  (t) < M (2t) for t 3 0, 

tp' (t) < p (2t) + A t  for t 2 0, 

(iii) tZ p'(t) G (k2/2 + A/B) M ( t )  for t 3 max (to, t), 

(iv) sup J M ( f ) d m <  co 
1l.f l l ~ G c  

for every positive constant c. 
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Proof.  (i) By convexity of M the function p is nondecreasing, so 

whereas M (t)/t < p(t), again by convexity of M. 
(ii) Since p' 2 0, this , together with (10, yields 

(iii) This follows easily by (i), (ii), and (A,)-condition. 
(iv) Observe that the (A,)-condition implies, for t 2 to and all s 3 0, 

M (s t )  6 K (8)  M (t), where K (s) = k (s v 1 ) " p ~ ~ .  Since k Z 2, K (s) is nondecrea- 
sing, so 

because J M ( f / l l  f llM)dm = 1 .  
Now, for fixed u, h E LM, let G(t) = flu+ thllM, t E[- 1, 11. Further, let ti, 

= u + th and w, = u,/llut/lM. The next proposition contains basic facts concer- 
ning smoothness. of G as well as some estimates essential in the sequel. 

PROPOSITION 2. Let u glin { h ) .  Then G €C2 and (G1(t)l < CllhJIM, 
JG" (t)l < C llhll$/llutllM, where C does not depend on h, u, t .  Moreover, 

(ii) 

where 

I ,  = S(pf (w,) w, +p  (w,)) w: dm with wi = 
hI lu t l lM-ut  G f ( t )  

liull& 

Proof.  The existence of G' is standard and easiIy follows from our 
assumptions [6]. Formula (i)  can be obtained by differentiating the equa- 
tion l M (wt) dm = l. 

We show that 1Gf(t)j 6 C(lh[l,. To do this assume that llhllw < 1. Then 
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(i) and (iv) of Proposition 1 yield that 

1111 = I f ~ ( w t 1  hdml G jp(lwtl+lhOClw,l +IY)dw 

G ~ ~ ( 2 j w t l + 2 1 h [ ) d m  6 sup I M ( f ) d m  < m, 
l l f  1 1 ~ 6 4  

Ir l l  < cllhllhf. 
To complete this part of the proof, observe that property (i) of Proposi- 

tion 1 gives 

= j ~ ( w ~ ) w , d m  = Jp(l~v,l)(lw,l)dm 2 jM(w,)dm 1. 
.. -- 

- Next, observe that the formula for G" is obtained by formal differentia- 
tion of expressions under the integral sign i n  I, and l,, respectively. To 
justify this procedure it is enough, by virtue of the Mean Value Theorem, to 
show that 

[ sup Ip' (w,) w: h) dm < ca 
* - l < t < l  

and 

(b) 1' sup ( I  P' (w,) w: wt I +  I P (wt) w:l) dm < 03 . 
- 1 d t G l  

This can be done in a similar way as in estimating I, and is left to the 
reader. The above arguments also show that G" is continuous. 

Finally, to show that (GU(t)( < C((hl(k/,l((utlJM, we have to estimate I , ,  I, 
and I , .  It is easy to see that 

)121 $ j M (2w,)dm < sup j M ( f ) d m  < co . 
l l f l l ~ s 2  

Next, using the formula for wj and the fact that (G1(t)l < CllhllM, writing 
zt = IhI +Iw,l, C1 = C v 1, we get, for IlhllM < 1, 

C 1 c2 <-[Atfm(T)+(2A/B+kZ/2) sup f M ( f ) d m ]  G - 
Il"tllM 11.f11~s2 II"tjlM 

for a constant C, independent from u, h, t. Similarly, we get 
11,1 < C3 Ijhljaa/llutllM, which completes the proof. 

COROLLARY 1. Let u be a function on T with values in { - 1, 0, 1) such 
that IlullM # 0 and let q be a fixed positiue number. Write S, = suppu. Then 
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where 

. . 

and Gq(t) = IIu+thll%. 

The main result. We begin with one technical lemma. 
.. - .- 

LEMMA 1. Let (Y, F, V) be a .finite measure space and let h be a real-valued 
function defined on ( -  1, 1) x Y with the properties: 

0) t + h ( t  , y) belongs to C' v-a.e., 

(ii) y + h(t, y) belongs to L! (v)  for all t E(- 1, I), 

(iii) sup J(hl(t, y))2 v (dy) < a, where 11' = dh/dt . 
- l - = t < l  

Put S (t) = j h ( t ,  Y) v (dy). 
Then for every E, 0 < E < 1, we have 

ds 
-It) = Sh'(t, y) v(dy) for t E(- I + E ,  1 -r ) .  
dt 

Proof .  .Let 

A, = ( y  E sup Ih'(t, y)l < n) . 
- I  + e < f < l  - E  

Then the functions gn(t )  = 1 I,, (y) h(t, y) v (dy) are differentiable for 

t E(- 1 + E ,  1 -E). By the Mean Value Theorem we get, for t and to belong- 
ing to (- 1 +&, 1 -&), 

g n  ( t )  - gn (to) 
t-to 

= l A n  b) h' ( t n ,  Y) ( d ~ ) .  

Choosing subsequence t,, -r t* and applying (i) and (ii) we get 
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Since t* + t o  if t -*to, applying once more (i) and (ii) we finally obtain 
I 

Now we recall some standard facts about Gaussian measures on Banach 
spaces [2]. 

Suppose that (E ,  11 -11) is a separable Banach space and E' is its dual 
space. A Borel probability measure p on E is called centered Gaussian if 
every ( EE' is a real (symmetric) Gaussian random variable on the probabili- 
ty space ( E ,  g,, p), with gE being the Borel a-field of E. It is well-known 
that if p is Gaussian, then there exists a (unique) x EE (called the barycenter 
of p) such that p, (.) = p(.+ x) is centered. 

Now, let E1(p) be the Lz(po)-closure of E', endowed with the usual 
L2(p,) inner product. For every 5: ~E'tp) there exists a unique At E E  such 
that, for every y EE', we have 

A: E1(,u) + E  is a linear injective mapping. 
The image of A, endowed with the inner product induced from Ef(,u), is 

denoted by H(p) and is called the reproducing kernel Hilbert space (RKHS) 
of ( E ,  p). It is well-known that H(p) is the space of all admissible translates 
of p. 

The following theorem describes the density of the measure p translated 
by some x = At  E H ( ~ ) ,  t E E' (p): 

CAMERON-MARTIN'S FORMULA. Let x = A t  E H (p), where 5 EE' (p), with p 
centered Gaussian. Then 

The next theorem generalizes an immediate observation that one-dimen- 
sional symmetric Gaussian measure of translates of a fixed interval takes on 
the greatest value when this (translated) interval is symmetric with respect to 
the origin. 

ANDERSOWS INEQUALITY. Let p be a centered Gaussian measure and V a 
Borel symmetric with respect to  the origin convex set. 

Then, for every XEE, ,u(x+V) G p(T/). 
LEMMA 2. Let p be a Gaussian measure on E with dim(suppp) = m. 

Assume that the barycenter of p belongs to  H ( p ) .  Then, for every x # 0, 
x E H (p) and r ER, 



Shijted moment problem 113 

Proof .  For r 2 0 the conclusion easily follows from the finiteness of all 
moments of any Gaussian measure. 

It remains to prove our lemma for r < 0. Write V = { y ;  llyll < 1). Then 

where p o ( - + x 0 )  = PC'). 
Put a = x/f  + r,, u/t = a. Take a fixed i; EE' A d  let b = At ,  9 = A-' a. 

By Cameron-Martin's Formula we get (see also [3]) 

, Since 

we get 

We now choose a w E H ( ~ )  such that A-' w EE' and 

For to  > 0 which is small enough we have 

and 
W-X 2 2 2 

It;-+xo(J iy(lr) T ~ ~ - ~ ~ ~ m r  

8 - Probability Vol. 10, Fasc. I 



Moreover, if ( = A-  w / t ,  then, for some uo > 0, we get 

(7) 
1 

i n  x for O < u d u o .  
(u/tlV 1 6t2 

Combining (3)-(7) we have, for ji) < to and 0 < u 6 u,, 

for some positive constants C and D. Now, (8) yields the following estimate 
for (2): 

m 

[ U ' - ~ / A ~  - + x o + -  v ' iu 
b t " ?  t 

m ' 1 qgexp (-P) / u r l  p o @ V ) d u - - u ~  for 111 5 g. 
t ' 0 r 

Since for every positive integer n there exists a constant C, such that 
,u (uV) < C, U" for 0 < w 6 1 [I 1, we obtain 

Finally, if It[. > t o ,  then 

which completes the proof of the lemma. 
The last lemma and Corollary 1 give the following 
COROLLARY 2. Let v be a Gaussian measure on E = L,. Assume that the 

barycenter of v belongs to H ( v )  and let u  # 0, u € H ( v ) .  
Ifdim(suppv) = a, then the functions Gq( t )  = (Iu+th11L and dGq/dt satisfy 

all assumptions of Lemma 1 for every q > 0. 
Before formulating our theorem, we again introduce some notation. 

Write T,  = {x; m (x i  > 0) and T,  = T\ T,. Let 
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THEOREM. Let LM E LM (T, F, m) be n separable Oriicz space, where M 
satisilies (1)-(111). Assume that dim LM = a, m is not purely atomic and that 
4 @ R , u R , ,  q > 0. 

If v1 and v, are Gaussian measures on LM such that, for every u E LM, 

( + I  jHu + hIl% ~1 [dh) = J Ilu + hll$ v z  (dli), 

then v1  = v 2 .  

Proof. Denote vl--v, by v. We show that for disjoint sets A , B E F  the 
following conditions hold: 

This clearly implies that, for every continuous linear functional $ on L,, 
the onedimensional Gaussian measures I(l (v,) and $ (v,) are identical, which, 
of course, yields the equality v, = v,. 

Let g, be the barycenters of v,(i = 1, 2) and let u be a fixed element of 
L, with values in ', - 1, 0, 1 ) .  In order to apply Corollary 2 we construct a 
centered Gaussian random vector Z with infinite-dimensional support satis- 
fying g , ,  g, ,  u ~ P l ( y ) ,  where y is the distribution of Z. Furthermore, if y, is 
the distribution of sZ, s > 0, then y, as well as v i  * y, (i = 1, 2) have all the 
above-mentioned properties. 

Moreover, the property (+) still holds with vi replaced by vi x ys. 
Applying Lemma 1 to GQ and dGq/dt with v repIaced by v * y,, we get 

(0) v * y, (dh) = 0 and (0) v * y, (dh) = 0. 
J 

It is easy to see that these equations yield, as s +O, 

To conclude this part of the proof we have to construct a random 
vector Z with the above listed properties. To do this, Iet {fi)gl be a 
sequence of linearly independent functions belonging to the unit sphere of L, 
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and let (-,, (-,, to, t,, ... be a sequence of standard Gaussian random 
variables. It is easy to see that 

satisfies all the requirements. 
Next, applying Corollary 1 to formulas (9) and (10) we get 

1) 1 {u, h)v(dh) = 0 

and 

Property (a) now follows from (11) if we put u = I,, A E F .  Further, if A 
and 3 are disjoint and of positive measure, then writing (12) for u, = I,+ 1, 
and u2 = IA-lB,  and taking into account that @,{u,)  = Qk(u2) ( k  = 1, 2, 3) 
and that Q3(uZ) # 0, we get (b). 

Now, if A c T ,  A E F ,  m(A)  > 0, then we construct a sequence (r,] such 
that r ,  = I ,, supp p., = A, r ,  = -I- I with equal measure = m(A),  and ( r , )  is 
an orthogonal sequence of LZ(T, F, m). Substituting r., in place of u in (12) 
for n = 1, 2, . . . , we get the following system of linear equations: 

Adding first n equations and dividing by n we get 

When n + cc: we get D = 0. Substituting this value into (13) and taking 
into account that @,(IA) # 0 we obtain (c) for all A c T,, A E F .  

Next, we show that (c) yields 

for all A G z. Indeed, let now {f,) denote an orthonormal basis of 
LZ(T,,  F n z, m). Then 

which, by virtue of (c), proves (13). 

Ubserve that, in particular, (13) implies ' 
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For, putting A = T, in (c) and in (13) and using (12) we immediately get 
that pf(0)lllTd hll$v(dh) = Q which, tugether with (131, gives (14). 

To complete the proof, take I#,] c T, and put u = I,, into (12). 

Applying (14) we obtain 

or, equivalently, 

Since q$R, ,  (15) implies that (c) holds for u = I,,, which clearly 
- . . - -  

completes the proof. 
COROLLARY 3. If the furzction t -+ p (t)/t is bounded or pl (0)  = 0, then 

Theorem holds even if m is purely atomic. 

Proof.  Boundedness of t + p ( t ) / t  or condition p'(0) = 0 give ,that 

In fact, if p ' (0 )  #. 0, then, putting in (12) u,, = I,, ({x,) = &), we have 

where 

and C,, (n = 1, 2, . . .) is a bounded sequence. But lllu,, hlliv(dh) € a, SO 
n 

lim C, 1 Ilu, hi122 v (dh) = 0 (dim L, = a), 
n-rn 

whence f llhll; v (dh) = 0, which completes the proof. 
We 'say that q > 0 .is admissible for L, if if), satisfied for this particular 

q, implies that v, = v,. 
COROLLARY 4. FOP LM = Lr with r > 2 the exponent q is admissible if 

q # 1, q # r. When rn is non-atomic or r = 2, then q is admissible if q # r. 
For any 1, with non-purely atomic nzeasure m, every q < 1 is admissible. 
Remark.  The following example shows that if q = r, then there exist 

two different Gaussian measures on L' such that (+) is satisfied. 
Example.  Let h,, h,, h be such functions on T that h, = I,, h, = 1, c, 

h = h, +h,, A E F ,  m(A)  < m ( T )  and let el,  8, be two independent and 



118 M. Lewandowski  

standard. Gaussian variables. If X, = h, dl'+ h2 02, X2 = hdl, then it is clear 
that XI and X2 generate different measures on Lr. 

We have, for any f f L r ,  

Acknowledgment. The author is indebted to Tomasz Byczkowski for his 
remarks and suggestions during the preparation of this paper. 

REFERENCES 

[I] A. de Acosta, Stable measures and seminornas; Ann. Prob. 3 (1975). 
[a]  C. 0 ore l L  Gurssian Radon measures on locally convex spuces, Math. Scand. 38 (1976). 
[3] - A nore on Gnrrss measures which agree on small balls, Ann. Inst. Henri Poincare 13 (1977). 
[4j E. A. Gorin and A. L. Koldobski i ,  On potentials identifying immures in Banach spaces, 

Dokl. Akad. Nauk SSSR 285 (1985). 
[ 5 ]  J. Hoffmann-J#rgensen,  Measures which agree on balls, Mufh. Scand. 37 (1975). 
[6]  K r a s n o s e l s k i and R u t  i t s k i, Convex functions and Drlicr spces (in Russian), Gosud. Izd. 

Fiz.-Mat. Lit., Moscow 1958. 
[7] W. Li nd e, Uniqueness theorems for measures in L, and C ,  (4, Math. Ann. 274 (1986). 

Institute of Mathematics, Technical University, 
50-370 Wroctaw, Wybrzeie Wyspiariskiego 27 
Poland 


