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" SHIFTED MOMENT PROBLEM FOR GAUSSIAN
) MEASURES IN SOME ORLICZ SPACES

BY
MACIEJ LEWANDOWSKI (WroctAaw)

Abstract, Suppose that two Gaussian measures p; and #, on
Orlicz space (Lpy(T, F, m), || |Iy) fulfill the condition

() o Tl G — po)dy) =

for each x from L,,. : :
It is proved that, under some assumptions on modular M,
measure m and g, condition (¥) implies u, = p,.

Introduction. Suppose that x, and p, are two probability measures on a
separable Banach space (E, |}-]|) satisfying the condition

(+) e M (dy) = Fllx+ 17 o (dy)

for every xe€E and some fixed g > 0.

Linde [7] has recently proved that if E=L" dnd q # kr for positive
integers k, then y, = #2 (cf. also [4]). The purpose of this paper is to prove a
similar theorem for some Orlicz spaces L,;, under the add1t10nal assumptlon
that g are Gaussian.

The technique employed here differs somewhat from that used in [7]; in
particular, we do not rely on Hoffman-Jgrgensen’s result [5] and, even in the
case of L' [0, 1] spaces, our theorem is a little stronger, namely, p; = u, if we
only assume that g # r.

Preliminaries. We recall here briefly basic notions concerning Orlicz
spaces and, after restricting our attention to the class of spaces we will work
with, we state and prove some simple facts implied by our axioms. ,

Throughout the paper (T, F, m) will stand for a finite separable measure
space. By M we denote a fixed Young function, that is a convex, strictly
‘increasing function such that M() =0 iff t =0 and M(=-1) = M(r). We
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assume further that M satisfies (4,) condition,
MQ2)<M@k fortzt,

for some k >0 and t; > 0. Observe that convexity of M implies k > 2.
Now, by L), we denote the space of all real-valued measurable functions
f such that {M(f)dm < co.
It is easy to see that L, is a linear space. Moreover if

| fliae =1inf fu > 0; [M(f/wydm <1}, feLy,

then |||l is a norm on L, and (L, || +|l») becomes a (separable) Banach
space [6].

Now, we restrict our attention to a rather special class of L,-spaces
which are a generahzatlon of L'-spaces (r = 2).

First of all, we impose some smoothness properties on M. Namely, we
assume that

() MeC? that is, M has continuous derivatives up to the order two.

For the sake of convenience we write: p =dM/dt and p' = d*> M/dt*.

Next condition means that p/, roughly speaking, cannot decrease “too
fast”:

(I) For all ¢, s such that 0<t<s, we have p (t) P()+A for
some 4 = 0.

The third condition,

(IIT) M(¢) = Bt*> for t > t; and a B > 0, says that L, < L? and that the
natural embedding of L, into L? is continuous. The L?-norm and the
corresponding inner product on L, will be denoted by [+l and ¢, ),
respectively.

In the sequel we assume that our L,-space satisfies properties (I){III).
We now draw some simple conclusions from these properties.

ProrosiTion 1. Under the assumptions as above the following properties
hold:

) M) <tp() <MQ2) for t20

(ii) tp'(H) < _p(2t)+At for t 20

(iii) t2p'(t) < (k*2+A/BYM(t) for t = max(ty, t),
iv '";SHL}E&IM (f)dm < o

for every positive constant c.
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Proof. (i) By convexity of M the function p is nondecreasing, so

y t [t
M@) = ds>—-pl=|
® £Mﬂs zpé)
whereas M (i)/t < p(?), again by convexity of M.
(ii) Since p' = 0, this , together with (II), yields

! .
pt)=[p'(9)ds > lrmn P'8)(/2 = t/2)(p' (¢/2)— A).
(1] <s€t
(iii) This follows easily by (i), (ii), and (4,)-condition.
(iv) Observe that the (4,)-condition implies for t 2ty and all s> 0,
M (st) < K(s) M (t), where K (s) = k(s v 1)*% . Since k > 2, K (s) is non-decrea-
sing, so :

[M(fdm= [ M(fldm+ [  M(f)dm
TSN pr Segl A PR YEd Y

S Mol m(T)+K (1S s § M (/)| f ) dm

= Mtollfl) m(T)+ K (IS llse),

because (M (f/I|fllx)dm = 1.

Now, for fixed u, he Ly, let G(t) = I|u+th|lM, te[—1, 1]. Further, let u,
=u+th and w, = u/||u,l|;. The next proposition contains basic facts concer-
ning smoothness of G as well as some estimates essential in the sequel.

ProrosimioN 2. Let u¢lin{h}. Then GeC? and |G'(t) < C|Hl|p,
IG” (®)| < C|lhl|&/\lu s> where C does not depend on h, u, t. Moreover,

§)] ' G'(t) =1,/1,,
I,—1,1
() G%ﬂ=£L%7ii,
2
where

Iy = [p(w)hdm, I, = {p(w)w,dm, I = [p'(w)w;hdm,

h”ut“M_u: G'(1)

el e

I, = [(p' (W) w,+p(w))widm  with w

Proof. The existence of G’ is standard and easily follows from our
assumptions [6]. Formula (i) can be obtained by dlfferentlatmg the equa-
tion [M(w)dm =1.

We show that |G'(¢)] < C||hlly. To do this assume that ||h]|, < 1. Then -
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(i) and (iv) of Proposition 1 yield that
11l = [{ p(w,) hdm| < [p(w,|+ ) (1w + ) dm
' < (MQ2|wl+2[H)dm < sup [M(f)dm < oo,
Il

Fll M\"‘
so |I,] < CllAlla-
To complete this part of the proof, observe that property (i) of Proposx—
tion 1 gives .
I, = fp(wt) Wt dm = fp(lwtl) (lwtl) dm = fM(W,) dm

Next, observe that the formula for G" is obtained by forma] differentia-
tion of expressions under the integral sign in I, and I,, respectively. To
justify this procedure it is enough, by virtue of the Mean Value Theorem, to
show that o

(a) ' { sup |p’(w)wihldm < o0
-1 €11
and
(b) [ sup (Ip'(w)wiw,( +|P(Wz) wil)dm < .

—1=st=1

This can be done in a similar way as in estimating I, and is left to the
reader. The above arguments also show that G” is continuous.

Finally, to show that |G”(£)| < C||hll3/|luly, we have to estimate I,, I
and I,. It is easy to see that

1) < {M(2w)dm < sup fM(f)dm < .
' Nriipgs2’
Next, using the formula for w; and the fact that |G’ (£)] < C||h||y, Writing
|h|+|w,| C, =C v 1, we get, for |[h||M <1,

3] < § P (wd) (B +[wi) | Bl dm <

[(A +p'(z,)zF dm

Il t”M I r“M

[Atlm(T)+(2A/B+k2/2) sup [M(f)dm] < €2
” t”M “ t”M
for a constant C, independent from wu, h, t. Slmllarly, we get
|14l < Cs||hl|ag/lltellpe, Which completes the proof.
CoRrOLLARY 1. Let u be a function on T with values in {—1,0, 1} such
that |||y # O and let q be a fixed positive number. Write S, =suppu. Then

0  To-ak

u, b5,
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) o0 = gl [ @) HIE+ @ ) 1, HIE-+ 03 ) u, 17,
where
P'(0) P (Nl
SN AL N p— AL -
® ) = hgmsy 2% T sl mS)
el [, Pl
sw) = [(q D ||u||Mp(1/||u||M)]’--

mz(Sﬂ)
and GU(1) = llu-+ehll. |

The main result. We begin with one techmcal lcmmd ,

LemmA 1] Let (Y, F, v) be a finite measure space and let h }Je a real-valued
Sfunction defined on (—1, 1) xY with the properties:

(i) t = h(t, y) belongs to C'v-ae.,

(ii) y —=h(t, y) belongs to L'(v) for all te(—1, 1),

(iii) sup [(K (¢, y)?v(dy) < 0, where h' = dh/dt.
—1<r<1

Put g(t) = [h(z, y)v(dy).
Then for every g, 0 <& <1, we have

%‘(t) _ .fh'(t, Yv(dy) for te(—1+e, 1—g).

Proof. Let .
A,={yeY; sup |W(t,y) <n}.

—1+est<1—¢

Then the functions g,(t) = [14 () h(t, y)v(dy) are differentiable for
te(—1+e¢, 1—¢). By the Mean Value Theorem we get, for ¢ and to belong-
ing to (—1+¢, 1—¢),

Yn (t) Gn (tO)

= [, 0 6, y)vidy).
4]

Choosing subsequence t, —t* and applying (i) and (ii) we gét

g(6)—g(to)

= IR )@,
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Since t* —t, if t —¢,, applying once more (i) and (ii) we finally obtain
dg , |
d—(to) = I (to, ) v(dy).
t
Now we recall some standard facts about Gaussian measures on Banach
spaces [2].

Suppose that (E, ||-|]) is a separable Banach space and E’ is its dual
space. A Borel probability measure p on E is called centered Gaussian if

- every £ €E' is a real (symmetric) Gaussian random variable on the probabili-

ty space (E, 8, p), with %, being the Borel o-field of E. It is well-known
that if y is Gaussian, then there exists a (unique) x €E (called the barycenter
of u) such that py(-) = u(-+x) is centered.

~Now, let E'(u) be the L?(ug)-closure of E, endowed with the usual
L2(py) inner product. For every ¢ €E’(u) there exists a unique A¢ €E such
that, for every neE’, we have

n(AE) = (n&dp, = l.<71, B -

A: E'(W) —E is a linear injective mapping.

The image of A, endowed with the inner product induced from E’(u), is
denoted by H(u) and is called the reproducing kernel Hilbert space (RKHS)
of (E, w). Tt is well-known that H(u) is the space of all admissible translates
of u.

The following theorem describes the density of the measure u translated
by some x = AéeH (u), E€E'(u):

CAMERON-MARTIN'S FORMULA. Let x = AE € H(u), where & €E'(u), with u
centered Gaussian. Then

1
du(-—x) = exp (é_iu‘flllzl(u))dﬂ-

The next theorem generalizes an immediate observation that one-dimen-
sional symmetric Gaussian measure of translates of a fixed interval takes on
the greatest value when this (translated) interval is symmetric with respect to
the origin. _ .

. ANDERSON'S INEQUALITY. Let u be a centered Gaussian measure and V a
Borel symmetric with respect to the origin convex set.
Then, for every x€E, u(x+V) < u(V).
LEMMA 2. Let p be a Gaussian measure on E with dim(supp p) =

Assume that the barycenter of u belongs to H(y). Then, for every x # 0
xeH(w) and reR,

_'(1) | sup jllx'+ty||',u(dy)<oo.

—-1€t<1
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Proof. For r > 0 the conclusion easily follows from the finiteness of all
moments of any Gaussian measure.
It remains to prove our lemma for r < 0. Write V = {y; |[yll < 1}. Then

) fllx+ oyl m(dy) = (=) [ ko (§+xo+‘t‘v>du,
1]
where po(*+x0) = p(*).

Put a = x/t+ Xy, 4/t = s. Take a fixed { €E' and let b=A¢ n=A""a.
By Cameron-Martin’s Formula we get (see also [3])

hola+s) = exp"(“—"§||a||%m.)) J exp(—n)dio
sV
1, ., .
< exp —EHGHH(M f exp (¢ —inf&—n)du,
sV sV
1 12 " . . ‘
= eXp —EIIaHH(,l)—lnff | exp(§—n)dpo.
sV sV

Since

| exp(E—mduo

sV )
1 2 . 1 5
= €Xp Ella"‘b”H(u) ‘ exp i_ﬂ_iua_bnﬂ(u) dpo
) sV
1 2 1 p)
= exp §||a—b||H(m to(la—b+sV) <exp §||ﬂ—b“H(u) to (sV),
we get
1 1 )
(3 Ho(a+sV) < exp (Ella—bll?m)—Ellallﬁ(m—lnfi)ﬂo(SV)-
sV, )

We now choose a weH(u) such that A~ 'weE' and

. ) .
@ . flw— x”H(u) < ”x”H(u)

For ty; > 0 which is small enough we have

5) Hx ol > Lz for 11 <
T xo >_2' X H(ll) or \to
2|t aw M

and

. 2
w 2
(6) < S lw—xllf-
H(w

8 — Probability Vol. 10, Fasc. 1



114 M. Lewandowski
Moreover, if ¢ = A~ ! w/t, then, for some u, > 0, we get

1
(7N linf & < —5Ixllfe for 0 <u<u,
@y 16t

Combining (3)<(7) we have, .for | <ty and 0 <u < Ug,

: , D\
@) Mo (‘f‘"“"xo”f“’:V) < C#o.(gV)CXP(—t—Z‘)

for some positive constants C and D. Now, (8) yields the following estimate

for (2):

“ x u
fu='po (?+x0+; V)du

0

D uo‘ r—1 u < r—1
< Cexp -3 fu=1po ;V du+ {u~'du
0 L)
c D\%' 1
<Fexp (_;5> | u’_luo(uV)du—;u{) for |t| <t
0

Since for every positive integer n there exists a constant C, such that
uwV) < C,u" for 0 <u<1 [1], we obtain

fu™ po@V)du < co.
0

Finally, if || > t,, then

f w1y, ( +x0+ V)du [w~ Yo (g V)du =t v po(uV)du,
0 0 0
which completes the proof of the lemma.

The last lemma and Corollary 1 give the following

CoROLLARY 2. Let v be a Gaussian measure on E = L,,. Assume that the

- barycenter of v belongs to H(v) and let u # 0, ueH(v).

If dim (supp v) = oo, then the functions G*(t) = ||lu+th||}, and dG¥/dt satisfy
all assumptions of Lemma 1 for every q > 0.
Before formulating our theorem, we again introduce some notation.

Write T, = {x; m{x} >0} and T, = T\ T;. Let

tp' (1)
Rf—{T“ “e[ Ty >}
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tp’ (0) 1
R, = %—+1 M) =
‘1 m(}x]
_ THeOREM. Let Ly = Ly (T, F, m) be a separable Orlicz space, where M
satisifies ()(III). Assume that dim Ly, = oo, m-is not purely atomic and that
qé¢R. UR,y, q>0.
If vy and v, are Gaussian measures on Ly such that, for every ue Ly,

(+) [llu+ hlige vy (dh) = fllu+ bl v (dh),

then v{ =v,.
Praof. Denote vl—vz by v. We show that for dlS_]Oll’lt sets A,B€F the
following conditions hold:

with x E’E,}.

(a) o [ <14, BYv(dh) =0,
(b) | - [ <Ly, kY Uy, Byv(dh) =0,
(© f <Ly, hY?v(dh) =

This clearly implies that, for every continuous linear functional ¥ on L,,,
the one-dimensional Gaussian measures ¥ (v;) and (v,) are identical, which,
of course, yields the equality v, = v,.

Let g; be the barycenters of v;(i = 1, 2) and let u be a fixed element of
L,, with values in {—1, 0, 1}. In order to apply Corollary 2 we construct a
centered Gaussian random vector Z with infinite-dimensional support satis-.
fying g,, g,, u€H(y), where 7y is the distribution of Z. Furthermore, if v, is
the distribution of sZ, s > 0, then y, as well as v; =y, (i = 1, 2) have all the
above-mentioned properties.

Moreover, the property (+) still holds with v; replaced by v; *y;.

Applying Lemma 1 to G? and dG%dt with v replaced by v=*y,, we get

dG1 d* G* -
—-Ovs3,@n=0 and JF(O)v*ys(dh) =0

J
It is easy to see that these equations yield, as s =0,
: o daG?
©® - ff(omdh) -
| 42 Gt
(10) jdt—z(O)v(dh) =0

~To conclude this part of the proof we have to construct a random
vector Z with the above listed properties. To do this, let {f}2, be a
sequence of linearly independent functions belonging to the unit sphere of Ly,




116 M. Lewandowski

and let &_,, £_, &, &, ... be a sequence of standard Gaussian random
variables. It is easy to see that

> 1
Z=g,8 ,+g, ¢ +us+ Z ﬁélf
i=1

satisfies all the requirements.
Next, applying Corollary 1 to formulas (9) and (10) we get

(1 | { <u, hyv(dh) =
and . '
(12) &, () fI(L—|ul)- W3 v(dh) +
+ @ (u) f|[1ul- hlI3 v (@R)+ @3 (u) § Cu; Y v(dh) =

Property (a) now follows from (11) if we put u =1,, A €F. Further, if A
and B are disjoint and of positive measure, then writing (12) for u, =1,+1,
and u, =1,—1p, and taking into account that @, (u,) = &, (u,) (k=1, 2, 3)
and that @, (u,) # 0, we get (b).

Now, if 4 = T,, AeF, m(A4) > 0, then we construct a sequence {r,,} such
that ro =1,, suppr, = 4, r, = £1 with equal measure =4m(4), and {r,} is

_an orthogonal sequence of L*(T, F, m}. Substituting r, in place of u in (12)
forn=1,2,..., we get the following system of lmear equations:

(13) D+®;(1,) [y, h)*v(dh) =0, n=1,2,...
Adding first n equations and dividing by n we get

D+-:;€D3 1)y f (e hY?v(dh) =
k=

When n — o0, we get D = 0. Substituting this value into (13) and taking
into account that @;(1,) # 0 we obtain (c) for all 4 = T, A€F.
Next, we show that (¢) yields

(13) [ RiI3 v(dh) =
for all A =7T.. Indeed, let now {fe} denote an orthonormal basis of
“L*(T,, Fn T, m). Then
3= 3 fio LehY2,
k=1
which, by virtue of (c), proves (13). »
Observe that, in particular, (13) implies

(14)- p' () A3 v(dh) =
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For, putting 4 = T, in (¢) and in (13) and using (12) we immediately get
that p'(0)||1r, |2 v(dh) = 0, which, together with (13), gives (14).

To complete the proof, take {x,} =T, and put u=1,, into (12).
Applying (14) we obtain

(D2 () — Dy () + B3 (W m({xo))) [luhll3 v(dh) = O

or, equivalently,
AN
p(1/lell )
Since gqé¢R,, (15) implies that (c) holds for u =

completes the proof:

CororLARY 3. If the function t —p(t)/t is bounded or p'(0) =0, then
Theorem holds even if m is purely atomic.

),ﬂluhﬂ%@kh) ~o.

1s) (nuuM(q;l)

which clearly

xp?

Proof. Boundedness of ¢ = p(#)/t or condition p’(0) =0 give that
P/ (0) {1z, HlZv(dh) = 0.

1

In fact, if p'(0) # 0, then, putting in (12) u, =1, (ix,} = To), we have
(16) _ {1113 v(dh)+C, {Ilu, hl|3v(dh) = 0,
where

_ Ntllag PO Mlln)
T PO

and C, (1=1,2,..) is a bounded sequence. But ¥ {|u, H2v(dh) < oo, so

C 1

lim C, {llu, hl5v(dh) =0 (dim Ly = ),

whence jllhll%v(dh) = 0, which completes the proof.

We say that g > 0 is admissible for L, if (+), satisfied for this particular
g, implies that v, = v,.

COROLLARY 4. For Ly = I with r > 2 the exponent q is admissible if
q#1, g #r. When m is non-atomic or r = 2, then q is admissible if q #r.

For any I,, with non-purely atomic measure m, every q <1 is admissible.

Remark. The following example shows that if g =r, then there exist
two different Gaussian measures on L’ such that (+) is satisfied.

Example. Let hy, h,, h be such functions on T that h; =14, h, =1,4c,
h=hy+h,, AeF, m(4) <m(T) and let 6;, 6, be two independent and
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standard Gaussian variables. If X, = h, 0, +h,0,, X, = h0,, then it is clear
that X, and X, generate different measures on L'
We have, for any felL,

Ellf+hy0,+h, 0, = E(f [f+ Ry 61+ hy 0,0 dm)
T

=E (i |+ hy 0] dm)+E( [ 1f+h, 0,1 dm
4

A€

= E(J |f+ hy 0] dm)+E( '['fﬂk- 0, dm)

=E||f+ho,lir
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