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Abstract. The main result of this paper gives the minimal 

1 complete class for invariant quadratic estimation of variance com- 
ponents in random effects models. It is shown that the problem of 
invariant quadratic estimation reduces to the linear estimation in 
a linear model for which the class of unique linear Bayes estimators 
and of their limits is minimal. This result extends the previous work of 
Klonecki and Zontek [I], where the minimal complete class has been 
establbhed only for balanced random effects models. 

1. Preliminaries. Throughout the paper for i = 0, 1,2, let Xi be a fini- 
te-dimensional vector space endowed with an inner product (,), and let Zij be 

I 

the set of all linear operators mapping Xi into Xj endowed with an inner 
I product (to be denoted by (,)ij) that is generated by ( , ) i  and (,)? The 

corresponding norms in Xi will be denoted by 1 1  and in Sfij by 1 1  [ l i p  Let 

i W (L) and JV (L) denote the image and the null space of the operator L in 2Pi> 
! respectively. As usually, L*, stands for the adjoint operator to L in Yij. 
I 

Operator L in Sii is said to be idempotent and seljkdjoint if L? = L and @ = L, 
I 

respectively. If (a, La), 2 0 for every a  E X i ,  where LE Sii is self-adjoint, then 
L is said to -be nonnegative definite (n.n.d.). -If L is n.n.d. and if ( a ,  La), = 0 

I 
I implies a = 0, then L is said to be positiue definite (p.d.). Furthermore, Lf 
! denotes the generalized Moore-Penrose inverse of LE Yip 
I Let Y be a random element on a probability space and taking values in X,.  

The distribution of Y is known to belong to a set B = {P,: o E D). We make 
no qistributional assumption except that for each w in St there exist the 
expektation p, and the covariance Vm of Y. This set-up is referred to as the 
geneid linear model. 

Now let F E YZ1. We consider estimation of E* pa by I? I: where L runs over 
a given afhe subset Y in Yzl when the risk function is R (a, L) = E,IlE Y- F*ru,lli. 

I Notice thatR(w, L) = R(K, pm% pm, L) = (L, T/,L)zI+<GF, b , % p , ) x  
x  ( L  - where (for a, b E X ,) the symbol a & b stands for a linear transfor- 

i 
.- 

I 

1 .  
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mation in Y I 1  and it is defined for each c E XI  by (a b) c = {b, c ) ,  a. 
For simplicity we refer to the estimator L*Y of F * p ,  in terms "estimator 

LE 2' of F", 
The relations "as good as" and "better than" are defined in the usual way. 

An estimator L is said to be admissible for F among 9 if L E Y  and if there 
exists no estimator in 9 better than L. A subset V of Y is called a complete 
class if it contains all estimators admissible for F among 9 . Finally, the set of 
all estimators admissible for F among dp is called the minimal complete class. 

Define a subset F of Z l 1  x Y l l  by 5 = ((V,, , u , & p ~ :  ~ E Q ) .  

Now let z be a prior distribution on 9- such that E, and E,p,  & p, exist. 
The relevant Bayes risk becomes then 

An estimator L  in 9 is said to be a linear Bayes estimator among Y if it has 
the smallest Bayes risk among all estimators in 9. If we extend the risk 
function for each L in 64 from 5 to W = span F by R (WI, L) = {L, L),, + 
{L-'F,  y ( L - F ) ) , ,  for each W =  (y, @)E W, then an estimator in 9 is 
a linear Bayes iff it minimizes the extended risk at a point in conv F among 9. 
In view of the above we formulate, similarly as in [5 ]  and 141, the results in 
terms of (locally) best estimators instead in terms of linear Bayes estimators. 

An estimator L in Y is called best among Y at a point W E W  if 
R (W; L) < R (W, M) for all M E  9. 

Let B ( w Y )  denote the subset of all those estimators in 9 which are best 
at Wamong 2. Let S = Lo +W(n) be a representation of Y ,  where Lo€ Y21,  
while n  is a linear operator mapping Xo into SZ1. With this representation 
onecanshow that L E L ~ ~ ( W I Y ) ~ X * ( ~ + @ ) L  = x * & F ,  where W= (w,  K). 

If L ~ a ( w 9 ) ,  then B ( W 9 )  = L + n ( N ( n * ( w + @ ) z ) ) ,  where W 
= (q, 6) E W ,  while X* (K + x is a linear operator in Too defined for each 
K E S ,  by [n*(&+WJn] K = n * [ ( K + W J n K ] .  

Clearly, B ( WI 9') = (L} iff z (N (n* (Q + $) n)) = { O ) ,  i.e. iff W (n*) 
= W  (n* (w+ &)n). In this case we say that L is the unique best estimator 
(UBE) at Wamong 9. The class of all UBE's for F at points in conv F among 
Y wilI be denoted by b ( 9 ,  F), and its closure by & ( Y  , F). 

To avoid some trivialities, we assume throughout the paper that there exists 
a point W = (w,  $) in W such that w + 6 is p.d. In this case the set 8 (9 , F )  
is not empty for each affine set Y in 921. 

2. For the convenience of the reader we recall a theorem due to Stqpniak 
[9] and a theorem due toLaMotte [4]_which will be used in-the nextsection: 
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T ~ O R ~ M M  2.1 (Stqpniak [g]) .  The estimators in &(B, E;) constitute ca 
complete class. 

Following LaMotte (19821, a point W in W is said to be a trivial point for 
9 if a ( W l 9 )  = 9. The set of the trivial points for 9 = L,+g(n) wil l  be 
denoted by Y = Y (9). Obviously, 9 = ((W,&)E W :  nC(W+ %)n = 0, 
n* [(w+ &)&-@F] = 0). Note that for a point (K, &) in the smallest 
closed convext cone in W containing 9 + Y (to be denoted by [Y t Y]), the 
f i n e  set B(WI9) is not empty iff 

THEOREM 2.2 (LaMotte [4]). If L is admissible for F among 9, then there 
exists a point W in [F + Y]\Y such that E E  i3 (Wl9) unless F c 9. 

Unless f c-9, the class of estimators L in 9 best at points in [F + Y]\Y 
among 9 constitute a complete class, i.e. 

is a complete class for F among 3'. , 

3. Mdn results. Klonecki and Zontek [I] presented a condition which 
guarantees that all limits of UBE's are admissible. In the theorem bellow we 
present a weaker sufficient condition. To formulate it we need to introduce the 
following notation. 

For i = 1, . . . , d = dim9 d e h e  the following families of afine sets in Y2, : 

Finally, define a subset of the set Y of the trivial points for 9 = Lo +9 (x) 
by 

Yo(9) = ((W, &)~9(9): x* = n* & = 0). 

d 

(3.1) [Y + 9, (Y,)] n Y ( 9 3  = 9, (Yip,) for every 3. E U %'(i)(3'), 
i = l  

then each estimator in 8 ( 9 ,  F) is admissible for F.  
P roof. Let (IF} c 8 (9, F) be a convergent sequence of UBE's at points 

(W'$") c conv F, i.e., let, for every n 2 1, 

(3-2) n* (W6"1+ wb"1)d") = R* F@J F ,  W (n* (W'] + @J) x) = 9 (n*), 
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where W$' = (m, Wi). Assume that {Zn)) converges to L, say. 
Without loss of generality we may assume that the sequence (x* (W:! + @h) n) 

converges to a nonzero element. 
First we show that there exists a convergent subsequence of {n* @I) = 

= ((x* W$j,  nY @J)J. Otherwise, there would exist a sequence of positive 
numbers (a'")] tending to 0 such that {a(" w* m)) (or one of its subsequences) 
would converge to a nonzero element a* $, say, where $= (Rl, 
e [.F + Yo (9)]. Since n* f U&) n = 0, this would imply that E Y (9) by 
(3.2). But this contradicts the assumption of the theorem. 

Thus we may assume without loss of generality that (n* Wt)) converges to 
n* q, say, where = (wl ,K2) is a nontrivial point in [F+Y,(dp)]. Note 
that a*(W1+W2)L=  n * W 2 F  by (3.2). 

' 

If (w 19) = (Lj, then L is admissible for F. Otherwise, let L+ 9 (n , )  be 
a representation of 9, = (y 19). Since L% (n:) c 3 (n*), there exists a linear 
operator A mapping dp,, into itself such that nf = An*. Thus, by (3.2), 
nf (@I + I+'#) &"I = n: J@] F and we may continue the above presented 
argumentation by putting 9, instead of 3. Since in every step the dimension 
of the resulting a&ne set decreases, this procedure must stop in at most d steps. 
COROLLARY 3.2. Under the assumption of Theorem 3.1, every limit of 

estimators admissible for F among 9 is admissible. 
I COROLLARY 3.3. Under the assumption of Theorem 3.1, the estimators in 

B ( 9 ,  F) constitute the minimal complete class. 
I 

I Corollary 3.3 is an irrimediate consequence of Theorem 3.1 and the above 
mentioned theorem due to Stqpniak. 

Now we describe a class of models which satisfy the assumption of 
Theorem 3.1. 

I Assume that 

m 

where U,, ... , Urn are n.n.d. operators in 91, such that U, is p.d., while 
I 
I i = l  

Moreover, we assume to the end of this section that there exists a number 
x such that, for every w E 0, the operator 

I Remark.  Perlrnan [6] showed that under condition (3.4) no linear 
unbiased estimator of F is admissible. 
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Note that (3.4) is equivalent to the condition that W (Q) c B(v) for ewry 
(W9 K I ~ C ~ l .  

For A, B E Y  ,, , let A @ B denote a linear mapping of Yl , into itself 
defined by (A B) C = ACB* . 

Let x = N 8 I ,  where N E be idempotent and selfadjoint while I be the 
identity operator in Y ,. 

THE~REM 3.4. if - I is invertible and if 4 N  = 0, then the estimators in 

8 (L,,, + 8 (n), I )  constitiire the minimal complete cbss .  - - 
Proof.  Step 1. Put--3=L,,+W(n). We show that 

To prove this, it is sacient to show that if a trivial point (q,' 4) belongs 
to [Y+Y,(LF)], then N y  = N y  = 0. 

Let ((U (w(")), Fn)) 6 conv 9 and {(St), $291 c Yo (2) be a sequence such 
that (U (o("))+S?), T("l+Sp))+(y, H$) as n+ CQ. Since N (H(+ @ ) N  = 0 and 
since all coordinates of w(") are nonnegative for each n = 1, 2, . , . , Q o(n'+O, 
where Q is a diagonal matrix with the i-th diagonal element equal to 0 for 
NU, = 0 and equal to 1 for N U i  # 0, i = I ,  . .. , m. Thus 

N K  = lim NU (dm)) = lim NU (Qw("l) = 0. 
n+ m n-w 

This and the assumption that (&-, y)~9'(9) implies that 

which shows (3.5). , 
. 'Step 2. Let 9; = @ ( W I ~ ) E ~ ~ ( ' ) ( L Y ]  be a nommpty set, where 
w =  (y, lQ€p-+Y(Y)]. 

By definition, & + NK E T I ,  where K E 9, iff N (q + &) (& + N K )  = 
I NY. Hence 9, = Lo+L,+B(Nl 8 I ) ,  where 

L1 = [ N ( ~ + ~ N ] + C N ~ - N ( ~ + & ) L ~ I ,  
I 

while 

Since by the assumption and by Lemma A.2, the value 1 is not :Y, 
eigenvalue of neither Lo nor LIN, &+L,-I is invertible by Lemma A 1 .  

By similar arguments as in Step 1 one can show that (3.5) is valid, puttid& 
9, instead of 9. This finishes Step 2. 

Step 2 can be repeated for 2, E (9) b y  noting that (4 + L,) N, = 0 and 
SO on. 

An application of Theorem 3.1 gives the desired result. 
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4. The minimal complete class for invariant quadratic estimation of the vector 
of variance components. Denote by Z a random t-vector. Suppose that the 
distribution of Z belongs to a set B such that the expected vector of Z is XP, 
where X is a known (t x p)-matrix, while #IE&?~ is unknown. Moreover, 
assume that the covariaace matrix of Z is 

k 

covZ = C aiG 
i =  1 

. . 

where K, . . . , y are-nad. (t x t)-matrix, while u = (a,, . . . , a,)' is an unknown 
vector with non-negative coordinates called variance components. 

Specialize ,XI as the space of all (p x p)-symmetric matrices endowed with 
the trace inner product. Define Y= B'ZZ'B, where 3 is a (t x'r)-matrix such 
that BB' = i-XX' and B'B = I, while r = rank X. 

A linear estimator based on Y is called an invariant quadratic estimator 
(quadratic with respect to Z). 

Note that 

k 

(4.11 V(a )  = EY= aiB'vB. 
i = l  

k 

Assume that (3' K B ,  . . . , B' Y B )  are linear independent and that 3' Y B  
i =  1 

is p.d. Finally, assume that 

The covariance operator of Y has this structure if we assume, for example, 
that Z is normally distributed. 

LEMMA 4.1. The estimators in ~F'(64,~, I )  constitute the minimal complete 
class. 

Proof. Since, for each i, j = 1, . . . , k, the operator 

is n.n.d., the covariance of Yis a linear combination of a finite number of fixed 
n.n.d. operators. Moreover, as noted by LaMotte [3], the expected vector (4.1) 
and the covariance operator (4.2) of Ysatisfy condition (3.4) with x = r/2. The 
assertion of the lemma follows immediately from Theorem 3.4. 

We use Lemma 4.1 to characterize the minimal complete class for a. 
Specialize X ,  as Bk. The function V =  V(a )  is a linear transformation 

mapping X,  into X,. Since the operator V has full rank by assumption that 
3' KB, . . . , B' are linear independent, F ,  = V (V* V)- is a correctly 
defined operator in s2, and F: EY= a. 
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THEOREM 4.2. The estimators in 8 (.5Y2,, F,) constitute t h ~  minimal complite 
class. 

Proof.  Let-. L € T Z 1  be an admissible estimator of F,. By Shinozaki's 
lemma (see Rao [?I) the estimator L V * E ~ ~ , ,  is admissible for I. Lemma 4.1 
implies now that there exists a sequence (I?") c 8 (dp,, , I) converging to LV*. 
Thus { & " ) F ~ )  c 8(LFLP2,, Fo) is the convergent sequence and the limit is equal 
to 

lim @ I F ,  = LV*F, = L  
n+ w 

which .completes the irbof. 
Klonecki and Zontek [2] proved this theorem under an additional 

assumption that B' B, . . . , 3' y B  commute. . - 
As noted by Klonecki and Zontek ([I], Example 7.11, the assertion of 

Theorem 4.2 is no longer valid for estimating the linear combinations of 
variance components. 

Theorem 4.2 combined with Shinozaki's lemma gives the following 
COROLLARY 4.3. For euery (r x rn)Gnntrix C eoery estimator in 

is iidmissible for F,C. 
Under some additional assumptions imposed on matrices B' 3, . . . , B YB, 

Zontek 1111 has shown that the set given by (4.3) represents the minimal 
complete class for estimation of F,C. It is an open problem whether or not (4.3) 
coincides with the minimal complete class without any additional assumption. 

Remark. If one has a base of the quadratic subspace spanned by 
{B'v B, . . . , B' KB), the estimators in 6(2Z2,, F,) can be computed without 
much mculty. If ( B ' v  B, . . . , B'KB) span a commutative quadratic subspace 
and if one has its orthogonal basis, the estimators in &(dPZ1, Fo) can be found 
even in a simpler way. For details the reader is referred to Zmyilony [lo]. In 
the latter case, Klonecki and Zontek [2] have given an explicit formula for the 
estimators in b (5?'Z1, I;,). 

Appendix. Let L, and L, belong to $pll and let N be an independent and 
selfadjoint operator in Sll. 

LEMMA A.1. Assume that LON = 0 and ( I - N )  L, = 0. If 1 is an eigenvalere of 
Lo+L,, then A is an eigenvalue of either Lo or L,N. 

Proof.  Let x E X ,  be an eigenvector of Lo +L, corresponding to an 
eigenvalue 2, i.e. let 

(A.1) ( L , + L , ) x  = Ax. 

Decompose x as x = ( I  - N )  x + N x  = x, + x,. 
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If x, = 0, then x, # 0. In this case 1 is an eigenvalue of L,N by (A.1). 
If x, # 0, then multiplying (A.1) by I - N  and taking into account that 

L,N = 0, we infer that 1 is an eigenvalue of (I - N )  L, and also of L$ ( N -  I). 
Let y be an eigenvector of Lg (I -N) corresponding to 1. Since (1- N )  I$ 

= L$, equation L$ ( I -  N) y = Ay implies that IVY = 0. Thus (I -N) y is an 
eigenvector of I$ corresponding to A. Hence R is an eigenvalue of &, which 
completes the proof. 

Let y Qs c YI1 be n.n.d, operators such that 9 (@) c 9 (v) or, equ;ivalehtly, 
that, for sufficiently large x ~ g ,  x (y, Vy}, 2 ( y ,  @y), for every ye X,. 

LEMMA A.2. The-ai&nualues of La = (V+ @p 8 are in the close& interml 
LO, ~ / ( 1  +XI]. 

Proof. Let x E XI be an eigenvector of Lo correspaqding to a nonzero 
eigenvalue A, i.e. let (V+ 8)+ @x = Ax, where Qix # O ,or; equivalently, that 

' 

(1 -1) #X = a v ~ .  T ~ U S  

(1 - A ) ( x ,  G X ) ~  = a ( ~ ,  V X ) ~  2 ) c ~ < x ,  Q X ) ~ .  

Since ( x ,  Q x ) ,  > 0, the asertion follows. 
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