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FOR THE VECTOR OF VARIANCE COMPONENTS
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Abstract. The main result of this paper gives the minimal
complete class for invariant quadratic estimation of variance com-
ponents in random effects ‘models. It is shown that the problem of
invariant quadratic estimation reduces to the linear estimation in
a linear model for which the class of unique linear Bayes estimators
and of their limits is minimal. This result extends the previous work of
Klonecki and Zontek [1], where the minimal complete class has been
establi\shed' only for balanced random effects models.

1. Preliminaries. Throughout the paper for i =0,1, 2, let J#; be a fini-
te-dimensional vector space endowed with an inner product {,);, and let .#;; be
the set of all linear operators mapping J"; into X; endowed with an inner
product (to be denoted by (,);) that is generated by (,); and (,}; The
corresponding norms in J; will be denoted by || [|; and in #;; by || ||;; Let
A (L) and A (L) denote the image and the null space of the operator L in %;;
respectively. As usually, I* stands for the adjoint operator to L in %Z;;
Operator L in % ;; is said to be idempotent and self-adjoint if I = L and I = L,
respectively. If {a, La), > 0 for every ae A';, where Le £, is self-adjoint, then
Lis said to be nonnegative definite (n.n.d.). If Lis n.n.d. and if {a, La); =0
implies @ =0, then L is said to be positive definite (p.d.). Furthermore Lt
denotes the generalized Moore-Penrose inverse of Le %;;.

Let Y be a random element on a probability space and taking values in J%",.
The distribution of Y is known to belong to a set Z = {P,,: we Q}. We make
no distributional assumption except that for each w in Q there exist the
expectatlon I, and the covariance ¥, of Y. This set-up is referred to as the
general linear model.

Now let Fe.%,,. We consider estimation of F* u, by [* Y, where L runs over
a given affine subset % in %,; when the risk function is R(w, L) = E, | ¥ Y—F*p 3.

Notice that R (@, L) = R(¥, fty, ® #te, L) = (L, % Ly21+<{L—F, (i ® ;) X
X (L—F))5,, where (for a, be 1’ 1) the symbol a ® b.stands for a linear transfor-
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mation in #;; and it is defined for each ce ", by (a® b)c =<b, c),a.
For simplicity we refer to the estimator I*Y of F* u  in terms “estimator

Le¥? of F”,

The relations “as good as” and “better than” are defined in the usual way.
An estimator L is said to be admissible for F among & if Le ¥ and if there
exists no estimator in % better than L. A subset € of & is called a complete
class if it contains all estimators admissible for F among % . Finally, the set of
all estimators admissible for F among % is called the minimal complete class.

Define a subset J of £y, x £y by T = {(V,, b, ® p,): weQ}.

Now let 7 be a prior distribution on J such that E, ¥, and E, u,, ® u, exist.
The relevant Bayes risk becomes then :

E,R(V, ty® pi ) = <L, E, ¥, L),y +
(L=F, E(tp ® o) L—F))21.

An estimator L in . is said to be a linear Bayes estimator among % if it has
the smallest Bayes risk among all estimators in %. If we extend the risk
function for each Lin & from 7 to #" =span 7 by R(W: L) = {L, W ), +
(L—F, W (L—F)),, for each W= (W, W))e#", then an estimator in £ is
a linear Bayes iff it minimizes the extended risk at a point in conv 4 among #.
In view of the above we formulate, similarly as in [5] and [4], the results in
terms of (locally) best estimators instead in terms of linear Bayes estimators.

An estimator L in & is called best among & at a point Wew if
R(W; L) < R(W; M) for all Me Z.

Let 2 (W|.2) denote the subset of all those estimators in % which are best
at Wamong %. Let ¥ = L,+ % () be a representation of &, where Lye &,;,
while = is a linear operator mapping 4, into .%,;. With this representation
one can show that Le & (W|.2) iff n* (W + W) L = n* W, F, where W= (W, 1%).

If Le#(W|%), then #(W|L)=L+n(AN (n*(W+W)n), where W
= (W, W)e# ", while n* (W + W) = is a linear operator in £, defined for each

- Kedy by [n* (W+W)n] K = n* [( + W) aK].

Cleatly, #(W|%)={L} iff n(A (@*(W+W)n)= {0}, ie. iff Z(n*
=R (n* (W +W)=n). In this case we say that L is the unique best estimator
(UBE) at Wamong .%. The class of all UBE’s for F at points in conv 4~ among
& will be denoted by &£(&, F), and its closure by £(%,F).

To avoid some trivialities, we assume throughout the paper that there exists
a point W= (W, W))in # such that W+ W, is p.d. In this case the set E(&Z, F)
is not empty for each affine set & in £,;.

2. For the convenience of the reader we recall a theorem due to. Stepniak
[9] and a theorem due to LaMotte [4] which will be used in_the next section:
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THEOREM 2.1 (Stepniak [9]). The estimators in &(%, F) constitute a
complete class.

Foliowing LaMotte (1982), a point Win #  is said to be a trivial point for
Z if B(W|Z)= . The set of the trivial points for & = L,+ % (n) will be
denoted by & = #(¥). Obviously, & = {(W{,I/K)e"llf *(W+W)n =
n* [(W+I/I£)L0 VI{F] = 0}. Note that for a point (W, W) in the smallest
closed convex' cone in # containing 7 +& (to be denoted by [7 +.#]), the
affme set #(W|Z) is not empty iff

(W, + ) Lo — WF]egi’(ﬂ*(W+W)n) .

TueoreM 2.2 (LaMotte [4]). If L is admissible for F among &, then there |
exists a point W in [T +F NS such that Le B(W|.Z) unless T < &.
Unless 7~ <= &, the class of estimators L in % best at points in [ﬂ' +y]\y
among % constitute a complete class, i.e.
€ = U B (W ZL)
Wel7 + N\
is a complete class for F among .

3. Main results. Klonecki and Zontek [1] presented a condition which

. guaraniees that all limits of UBE’s are admissible. In the theorem bellow we

present a weaker sufficient condition. To formulate it we need to introduce the .
following notation. :
Fori=1,...,d =dm¥ define the following famﬂles of affine sets in &,,:

¢ (%)= {2},

(L) = {BW|Z): £, e6"" VL), Wel[T +F (LI\F (3*)}.'
Finally, define a subset of the set & of the trivial points for & = L, + % (m)
by - o

Lo (L) = (W, W)e F (£): n* W = n* W = 0}
TueoreM 3.1. If ' ;

| Gl [T+ (LY S (L) =Fo(L) for every L€ O €N(2),

i=1

then each estimator in §(&, F) is admissible for F.
Proof. Let {I™} = £(Z, F) be a convergent sequence of UBE’s at points
(W) cconv 7, ie, let, for every n>1,

(32 n*(WH+WE)L” =n* WELF, 9?(71*( WB ym) = R (n*),
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where W = (W§), W{J). Assume that {I™} converges to L, say.

Without loss of generality we may assume that the sequence {n* (W} + W) n}
coﬂverges to a nonzero element.

First we show that there exists a convergent subsequence of {n* W§’} =

= {(n* W§), n* W{))}. Otherwise, there would exist a sequence of positive
numbers- {a"”} tending to 0'such that {a™ n* W{’} (or one of its subsequences)
would converge to a nonzero element n* W, say, where W= (%, , V%)
[T +Z,(ZL)]. Since n* (W1 + W) n = 0, this would imply that W, e & (£) by

- (3.2). But this contradicts the assumption of the theorem.

Thus we may assume without loss of generality that {n* W{’} converges to
n* W], say, where W = (W1,Wi,) is a nontr1v1al pomt in [ +.?0 (£)]. Note
that =* (W + VT{Z)L— n* W, F by (3.2).
If (W, |£) = {L}, then L is admissible for F. Otherw1se let L+ % (n,) be
a representation of &, = & (W,|.%). Since R (n* 1) = Z(n*), there exists a linear
operator A mapping ;!'f 21 into itself such that nf = An*. Thus, by (3.2),
¥ (WS + W) LW = n¥ W8 F and we may continue the above presented
argumentation by putting &, instead of #. Since in every step the dimension
of the resulting affine set decreases, this procedure must stop in at most d steps.
" CoROLLARY 3.2. Under the assumption of Theorem 3.1, every limit of
estimators admissible for F among & is admissible.

CorOLLARY 3.3. Under the assumption of Theorem 3.1, the estimators in
& (%, F) constitute the minimal complete class.

Corollary 3.3 is an immediate consequence of Theorem 3.1 and the above
mentioned theorem due to Stepniak.

Now we describe a class of models which satisfy the assumpt1on of
Theorem 3.1.

Assume that

(33) 4=U@= Y o,

. : m
where U,, ..., U, are n.n.d. operators in .#,, such that Z U, is p.d., while

i=1
0 =(Wy, ..., W, )'ch{(xl,... x):%20,i=1,...,m}.

Moreover, we assume to the end of this section that there exists a number
» such that, for every we(, the operator

KX o C wV—p, ® p,
is nnd.

Remark. Perlman [6] showed that under condition (3.4) no linear
unbiased estimator of F is admissible.
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Note that (3:4) is equivalent to the condition that ge(wg) c @(W) for. every
(%, W)e[7].

For A, Be %, let A® B denote a linear mapping of #,, into itself
defined by (4 ® B)C = ACB*.

Let r = N ® I, where N € ¥, be idempotent and selfadjoint while I be the
-1dent1ty operator in %,,.

THEOREM 3.4. If L, — I is invertible and if LyN = O then the estimators in
&(Lo+ % (m), I) constitute the minimal complete class.

Proof. Step 1. Put & = L,+%(n). We show that
(3.5) o [T+Fo( L] NP (L) =P (2).

To prove this, it is sufficient to show that if a tr1v1al point (VI{, ug) belongs
to [T +F(Z)], then NW = NI/IQ 0. '
. Let {(U(w™), T™) < convZ and {(SP, )} < Vo (£) be a sequence such
that (U (@™)+ 8, T" +5%") (W, W) as n— oo. Since N (W, + W) N =0 and
since all coordinates of ™ are nonnegative for each n =1, 2, ver sy Q0™ 0,
where Q- is a diagonal matrix with the i-th diagonal element equal to 0 for
NU;=0 and equal to 1 for NU,;#0, i=1,..., m Thus :

NW, = lim NU (™) = lim NU (Qo™) =

n—aw n—+w

This and the assumption that (W], W)ey(z’) 1mp11es that
W = (N (W + W) Ly~ NW) (Lo—1)™* = 0
which shows (3.5). \
/Step 2. Let &, =B(W|L)ebV (L) be a noncmpty set, where
W= (W, WelT + (2] |
By definition, L,+ NKe %, wher¢ Ke%,,, iff N(W+W)(L,+NK)=
NW,. Hence &, = Ly+L,+#(N, ® I), where '

L, —[N(W+W)N]+[NW N(W+VI§)L0]
while
S =N(- [N(W+W)N]+N(W+W£)N)

Slnce by thc assumption and by Lemma A.2; the value 1 is not 2
eigenvalue of neither L, nor LN, L,+L,—1I is invertible by Lemma A I.
By similar arguments.as in Step 1 one can show that (3.5) is valid, puttiﬁ’g
Z, instead of #. This finishes Step 2. .
Step 2 can be repeated for % 2 6‘6‘2’ (3) by noting that (L, + Ll) N, = - 0 and
S0 on.
An application of Theorem 3.1 glves the des1red result
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4. The minimal complete class for invariant quadratic estimation of the vector
of variance components. Denote by Z a random t-vector. Suppose that the
distribution of Z belongs to a set 2 such that the expected vector of Z is Xf,
where X is a known (¢ x p)-matrix, while fe%” is unknown. Moreover,
assume that the covariance matrix of Z is

k
covZ = Y ok,
i=1

where ¥, ..., K are-n:n:d. (¢ x t)-matrix, while ¢ = (g, ..., 6;)' is an unknown
vector with non-negative coordinates called variance components.

Specialize 4", as the space of all (p x p)-symmetric matrices endowed with
the trace.inner product. Define Y= B'ZZ'B, where B is a (¢ x r)-matrix such
that BB =I—-XX* and B'B = I, while r = rank X.

A linear estimator based on Y is called an invariant quadratic estimator
(quadratic with respect to Z).

Note that

4.1) V(e)=EY= i o,B'VB.

i=1

: k
Assume that {B'¥B, ..., B'{B} are linear independent and that ) B'WB
i=1
is p.d. Finally, assume that

“4.2) covY =2V (o) ® V(o).

The covariance operafor of Y has this structure if we assume, for example,
that Z is normally distributed.

LeMMA 4.1. The estimators in &(Zy,, I) constitute the minimal complete
- class.

Proof. Since, for each i,j=1,...,k, the operator
W;=BVYB® B'VB+B'VB® B'\B

is n.n.d., the covariance of Yis a linear combination of a finite number of fixed
n.n.d. operators. Moreover, as noted by LaMotte [3]; the expected vector (4.1)
and the covariance operator (4.2) of Y satisfy condition (3.4) with % = r/2. The
assertion of the lemma follows immediately from Theorem 3.4.

We use Lemma 4.1 to characterize the minimal complete class for o.

Specialize %", as #*. The function ¥V'= V(o) is a linear transformation
mapping &, into ;. Since the operator V has full rank by assumption that
B'VB,..., B¥B are linear independent, Fo=V(V*V)™! is a correctly
defined operator in #,; and F§EY=o0. .
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THEOREM 4.2. The estimators in é’ (321, Fo) constitute the minimal complete
class. .
Proof Let Le.#,, be an admissible estimator of F, By Shinozaki’s
lemma (see Rao [7]) the estimator LV*e %, is admissible for I. Lemma 4.1
implies now that there exists a sequence {{£"} < &(&14, I) converging to LV*.
Thus {L7 F} = £(Z4;, F,) is the convergent sequence and the limit is equal
to E .

lim "Fy=LV*F,=L .
which. completes the proof

Klonecki and Zontek [2] proved thls theorem under an additional
assumption that B’V B, ..., BB commute.

As noted by Kloneckl and Zontek ([1], Example 7. 1) the assertion of
Theorem 4.2 is no longer valid for estimating the lmear combinations of
variance -components.

Theorem 4.2 combined with Shinozaki’s lemma gives the followmg

CorOLLARY 4.3. For every (r x m)-matrix C every estimator in

4.3y ' . {LC: Le&(Z 11, Fo)}
is admissible for FOC
Under some additional assumptions 1mposed on matrices B’ VB,..., B¥B,

Zontek [11] has shown that the set glven by (4.3) represents the mlmmal
complete class for estimation of F,C. It is an open problem whether or not (4.3)
coincides with the minimal complete class without any additional assumption.

Remark. If one has a base of the quadratic subspace spanned by
{B'VB, ..., B¥B}, the estimators in &(%,,, F,) can be computed without
much difficulty. If {B'Y, B, ..., B'¥ B} span a commutative quadratic subspace
and if one has its orthogonal basis, the estimators in & (£,;, F,) can be found
even in a simpler way. For details the reader is referred to Zmyslony [10]. In
the latter case, Klonecki and Zontek [2] have given an explicit formula for the

estimators in &(Z,1, Fy).
Appendix. Let L, and L, belong to i1 and let N be an mdependent and
selfadjoint operator in % y;.

LEMMA A.1. Assume that L,N = 0 and (I—N) L, = 0. If A is an eigenvalue of
Lo+L,, then A is an eigenvalue of either Ly or LN

Proof. Let xeJ’, be an eigenvector of L,+L, corresponding to an
eigenvalue A, ie. let :

(A1) (Lo+Ly)x = ix.

Decompose x as x = (I—N)x+Nx = x, +x,.

L
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If x, =0, then x, #0. In this case 4 is an eigenvalue of LN by (A1)

If x; # 0, then multiplying (A.1) by I—N and taking into account that
LyN =0, we infer that A is an eigenvalue of (I—N)L, and also of L¥(N—I).

Let -y be an eigenvector of L§ (I —N) corresponding to A. Since (I —N) L§
= L¥, equation L§(I—N)y = Ay implies that Ny = 0. Thus (I—N)y is an
eigenvector of L§ corresponding to A Hence A is an eigenvalue of L, which
completes the proof.

Let ¥ #e€ %, be n.nd. operators such that Z(®) < (V) or, equivalehtly,
that, for sufficiently large xe %, %<y, Vi), = {(y, ®y), for every yex .

LEMMA A.2. The eigenvalues of Ly=(T+ QV @ are in the closed mterval
[0, 2/(1+3)].

Proof. Let xe ', be an eigenvector of L, correspondmg to a nonzero _
elgenvalue A, ie. et (V+ D)t dx = Ax, where Px # 0 Jof; equlvalently, that :
(I—A)dix—le Thus ' :

1-A<x, @x)l—.l(x Vx>, = %A (x, dix)l

Since {x, #x>, >0, the assertion follows
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