A FUNCTIONAL CALCULUS BASED ON FEYNMAN-KAC FORMULA

BY
ANDRZEJ HULANICKI (Wroclaw)

Abstract. It is proved that if

$$
H f=\int_{0}^{\infty} \lambda E(\lambda) f
$$

is a spectral resolution of a Schrödinger operator $H=-\Delta+V$ on \boldsymbol{R}^{d} with $V \in K_{\text {loc. }}^{d}, V(x) \geqslant 0$ and $V(x) \geqslant C|x|^{\alpha}$ for some $\alpha>0$ and $|x| \geqslant C$, then there exists an N such that if $K \in C_{c}^{N}$, then the operator

$$
\int_{0}^{\infty} K(\lambda) d E(\lambda)
$$

is bounded on $L^{p}\left(R^{d}\right), 1 \leqslant p<\infty$.
Let H be a self-adjoint (unbounded) operator on $L^{2}(\mathscr{M})$, where \mathscr{M} is a measure space. We write its spectral resolution

$$
H f=\int_{-\infty}^{+\infty} \lambda d E(\lambda) f
$$

As we know, if $K \in L^{\infty}(R)$, then

$$
E_{K}=\int_{-\infty}^{+\infty} K(\lambda) d E(\lambda)
$$

is a bounded operator on $L^{2}(\mathscr{M})$ and

$$
L^{\infty}(\mathscr{M}) \ni K \rightarrow E_{K} \in \mathscr{B}\left(L^{2}(\mathscr{M})\right)
$$

is a *-homomorphism.
This is the simplest and the best known functional calculus.
Question. Are there any reasonable conditions on K under which E_{K} is bounded on some $L^{p}(\mathscr{M}), p \neq 2$?

Of course in this generality the answer is "no".
In his book Topics in Harmonic Analysis... Stein [3] proved the following theorem, perhaps still the best one, specifying conditions on H under which the question has an answer.

Stein assumes that the operator H is the infinitesimal generator of a semi-group of operators $\left\{T_{t}\right\}_{t>0}$ such that
(2)

$$
\left\|T_{t}\right\|_{L^{p}, L^{p}} \leqslant 1 \quad \text { for all } 1 \leqslant p \leqslant \infty .
$$

Theorem (E. M. Stein). Condition (2) and

$$
\begin{equation*}
K(\lambda)=\lambda \int_{0}^{\infty} e^{-\lambda \xi} m(\xi) d \xi \quad \text { for some } m \in L^{\infty}\left(\dot{R}^{+}\right) \tag{3}
\end{equation*}
$$

imply that $\left\|E_{k}\right\|_{L^{p}, L^{p}} \leqslant C_{p}$ for all $1<p<\infty$.
-As we see, condition (3) implies that K is holomorphic in the right half-plane. However for some specific operators H the class of functions K on R^{+}for which E_{K} is bounded on some $L^{p}, p \neq 2$, contains functions with compact support. This is the case of some Schrödinger operators.

These are operators of the form

$$
H=-\frac{1}{2} \Delta+V(x)
$$

where Δ is the laplacian on R^{d} and V is the potential, i.e. the operator of multiplication by the function V.

The following condition on V has been introduced by M. Aizenman and B. Simon in 1982 (cf. e.g. [1]):
$\left(K_{d}^{\mathrm{loc}}\right) \quad \lim _{\alpha \rightarrow 0} \sup _{\left|x-x_{0}\right|<1} \int_{|x-y|<\alpha} V(y) \varphi(x-y) d y=0$,
where

$$
\varphi(x)= \begin{cases}|x|^{-d+2} & \text { if } d>2 \\ \log |x| & \text { if } d=2 \\ 1 & \text { if } d=1\end{cases}
$$

Theorem. Assume that V satisfies $\left(K_{d}^{\text {loc }}\right), V(x) \geqslant 0$, and, for some $\alpha>0$, $V(x) \geqslant|x|^{\alpha}$ for $|x|>C^{\prime}$. Let

$$
N \geqslant \frac{d}{2(\alpha \wedge 2)}+3
$$

Then, if $K \in C^{N}[0, \infty)$ and

$$
\begin{equation*}
\sup \left\{e^{N \lambda}\left|K^{(j)}(\lambda)\right|: \lambda>0\right\}<\infty, \quad j=0, \ldots, N \tag{4}
\end{equation*}
$$

then $\left\|E_{K}\right\|_{L^{1}, L^{1}}<\infty$, which, by interpolation, implies

$$
\left\|E_{K}\right\|_{L^{p}, L^{p}}<\infty \quad \text { for all } 1 \leqslant p \leqslant \infty .
$$

Remark. The class of functions defined by (4) is an algebra in which $C_{c}^{N}[0, \infty)$ is dense.

Proof. The proof is based on an old idea of Y. Katznelson (cf. e.g. [2]) which has been used many times by various authors.

Let $e(\xi)=e^{i \xi}-1$. If $F \in C^{1}(-\pi, \pi)$ and $F(0)=0$, then

$$
F(\xi)=\sum \hat{F}(n)\left(e^{i n \xi}-1\right)+\sum \hat{F}(n)=\sum \hat{F}(n) e(n \xi) .
$$

Since, for a fixed n,

$$
e(n \xi)=\sum_{k=1}^{\infty} \frac{(i n)^{k}}{k!} \xi^{k} \quad \text { if }\|A\|_{L^{1}, L^{1}}<\infty
$$

we have $\|e(n A)\|_{L^{1}, L^{1}}<\infty$.
Suppose
(4)

$$
\|e(n A)\|_{L^{1}, L^{1}} \leqslant C|n|^{M} .
$$

Then, of course, for $F \in C^{M+2}(-\pi, \pi)$ and $F(0)=0$,

$$
F(A)=\sum \hat{F}(n) e(n A) \in \mathscr{B}\left(L^{1}, L^{1}\right)
$$

So, if $A=E_{\varphi}$, and the range of φ is contained in $(-\pi, \pi)$, then, by (1),

$$
E_{F(\varphi)}=\int_{-\infty}^{+\infty} F\left(\varphi(\lambda) d E(\lambda) \in \mathscr{B}\left(L^{1}, L^{1}\right) .\right.
$$

Now assume H is a Schrödinger operator which satisfies the assumption of the theorem. Then H is essentially self-adjoint, and non-negative. Let

$$
H f=\int_{0}^{\infty} \lambda d E(\lambda)
$$

be its spectral resolution. We write

$$
T_{t} f=\int_{0}^{\infty} e^{-\lambda t} d E(\lambda) f
$$

The Feynman-Kac formula says

$$
T_{t} f(x)=E \exp _{x}\left[-\int_{0}^{t} v\left(b_{s}\right) d s\right] f\left(b_{t}\right)
$$

where b is the Brownian motion in R^{d}. Hence, since $V(x) \geqslant 0$,

$$
\left|T_{t} f(x)\right| \leqslant \underset{x}{E}\left|f\left(b_{t}\right)\right|=|f| * p_{t}, \quad \text { where } \quad p_{t}(x)=(2 \pi t)^{-d / 2} \exp \left[-\frac{\|x\|^{2}}{2 t}\right]
$$

Hence $\left\|T_{t}\right\|_{L^{1}, L^{1}} \leqslant 1$.
We put $T=T_{1}$ and estimate $\|e(n T) f\|_{L^{1}}$ in terms of $\|f\|_{L^{1}}$.
First we note that $e(n T)=A T$, where, by the spectral theorem,

$$
\|A\|_{L^{2}, L^{2}} \leqslant \sup \left\{\left|\lambda^{-1}\left(e^{-i \lambda n}-1\right)\right|: \lambda>0\right\} .
$$

We write

$$
\|e(n T) f\|_{L^{1}}=\int|e(n T) f| d x=\int_{|x| \leqslant m}+\int_{|x|>m}=I_{1}+I_{2},
$$

where $|x|=\max \left|x_{i}\right|, x=\left(x_{1}, \ldots, x_{d}\right)$. Then, by the Schwarz inequality,

$$
\begin{equation*}
I_{1} \leqslant m^{d / 2}\|e(n T) f\|_{L^{2}} \leqslant m^{d / 2}\|A\|_{L^{2}, L^{2}}\|T f\|_{L^{2}} \leqslant m^{d / 2}|n| C_{T}\|f\|_{L^{1}}, \tag{5}
\end{equation*}
$$

since, by M. Aizenman, B. Simon (cf. [1]), $V \in K_{d}^{\text {loc }}, V(x) \geqslant 0$ implies $\|T f\|_{L^{2}} \leqslant C_{T}\|f\|_{L^{1}}$. On the other hand,

$$
I_{2} \leqslant \int_{|x|>m} \sum_{k=1}^{\infty} \frac{|n|^{k}}{|n|!} E \exp \left[-\int_{0}^{k} V\left(b_{s}\right) d s\right]\left|f\left(b_{k}\right)\right| d x .
$$

Now we use the following well-known, and easy to prove fact (cf. [1]):

$$
\begin{aligned}
& P_{x}\left\{\inf _{0 \leqslant s \leqslant 1}\left|b_{s}\right|<\frac{1}{2}|x|\right\} \leqslant P_{0}\left\{\sup _{0 \leqslant s \leqslant 1}\left|b_{s}\right| \geqslant \frac{1}{2}|x|\right\} \\
& \leqslant 2 d P_{0}\left\{\sup _{0 \leqslant s \leqslant 1} b_{s}^{1} \geqslant \frac{1}{2}|x|\right\}=4 d P_{0}\left\{b_{1}^{1} \geqslant \frac{1}{2}|x|\right\} \leqslant C e^{-\varepsilon|x|^{2}}
\end{aligned}
$$

for some C and $\varepsilon>0$ which depend only on d, and b^{1} denotes the one-dimensional Brownian motion. Hence, for $|x|>C^{\prime}$,

$$
\begin{aligned}
& \underset{x}{E \exp }\left[-\int_{0}^{k} V\left(b_{s}\right) d s\right]\left|f\left(b_{k}\right)\right| \leqslant E \exp \left[-\int_{0}^{1} V\left(b_{s}\right) d s\right]\left|f\left(b_{k}\right)\right| \\
& \leqslant P_{x}\left\{\inf _{0 \leqslant s \leqslant 1}\left|b_{s}\right|<\frac{1}{2}|x|\right\}_{x} E\left|f\left(b_{k}\right)\right|+\exp \left[-\frac{1}{2}|x|^{\alpha} E\left|f\left(b_{k}\right)\right|\right. \\
& \leqslant\left(C e^{-\varepsilon|x|^{2}}+e^{-|x|^{\alpha} / 2}\right)|f| * p_{t}(x)
\end{aligned}
$$

Consequently,

$$
\int_{|x|>m} E \exp \left[-\int_{0}^{k} V\left(b_{s}\right) d s\right]\left|f\left(b_{k}\right)\right| \leqslant c^{\prime} e^{-\varepsilon^{\prime} m^{\alpha} \wedge 2}\|f\|_{L^{1}}
$$

for some c^{\prime} and $\varepsilon^{\prime}>0$. Thus $I_{2} \leqslant c^{\prime} e^{|n|} e^{-\varepsilon^{\prime} m^{\alpha \wedge 2}}\|f\|_{L^{1}}$.
Putting $m=c|n|^{1 /(\alpha \wedge 2)}$ for sufficiently large c, by (5), we obtain

$$
\|e(n T)\|_{L^{1}, L^{1}} \leqslant C|n|^{d / 2(\alpha \wedge 2)+1} .
$$

Thus for every $F \in C^{N}(-\pi, \pi)$ such that $F(0)=0$ the function

$$
\begin{equation*}
K(\lambda)=F\left(e^{-\lambda}\right) \tag{6}
\end{equation*}
$$

has the property $\left\|E_{k}\right\|_{L^{1}, L^{1}}<\infty$. It is easy to verify that functions of the form
(6) are precisely the ones which satisfy (4). This completes the proof of the theorem.

REFERENCES

[1] R. Durrett, Brownian Motion and Martingales in Analysis, Wadsworth Advanced Books \& Software Belmont California, 1984.
[2] Y. Katznelson, An Introduction to Harmonic Analysis, John Wiley \& Sons Inc., 1968.
[3] E. M. Stein, Topics in Harmonic Analysis Related to Littlewood-Paley Theory, Annals of Mathematics Studies, Princeton 1970.

Institute of Mathematics
Wrocław University
pl. Grunwaldzki $2 / 4$
50-384 Wrocław, Poland
Received on 12. 11. 1987

