PROBABILITY
AND
MATHEMATICAL STATISTICS

Vol. 10, Fasc. 2 (1989), p. 277-281

A FUNCTIONAL CALCULUS BASED ON
: FEY_NMANfKAC FORMULA T

ANDRZEJ HULANICKI (WROCLAW)
M”Abstract. It is proved that if
Hf=[AEQ)f
0

is a spectral resolution of a Schrddinger operator H= —A4+V on R*
with VeK? | V(x) > 0 and V(x) > Clx}{* for some o > 0 and |x| > C,

loc.

then there exists an N such that if KeC:’ , then the operator

[KG)AEG)
0
is bounded on IP(RY), 1 < p < .

Let H be a self-adjoint (unbounded) operator on I?(.#), where .4 is
a measure space. We write its spectral resolution.

+ o .
Hf= [ AdEA)f.
As we know, if KeL”(R), then

&:TKWMW

is a bounded operator on I?(.#) and
L*(M)>K—EyeRB(L* (M)

is a *-homomorphism.

This is the simplest and the best known functional calculus.

QuesTION. Are there any reasonable conditions on K under which Eg is
bounded on some I?(.#), p # 2? ‘

Of course in this generality the answer is “no”.

In his book Topics in Harmonic Analysis... Stein [3] proved the following

theorem, perhaps still the best one, specifying conditions on H under which the
question has an answer.
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- Stein assumes that the operator H is the infinitesimal generator of
a semi-group of operators {T}},., such that

2 ITlee, o <1 for all ISp< oo
THeEOREM (E. M. Stein). Condition (2) and

3. K(4) ='/l'j' e “m(E)dt  for some meL”(R™),
3

imply that ||E||Ls,1» < C, for all 1 <p < co. _

TAs we see, condltlon (3) implies that K is holomorphlc in the right
- half-plane. However for some specific operators H the class of functions K on
R* for which Ey is bounded on some I?, p # 2, contains functions with
compact support. This is the case of some Schrodmger operators.

These are operators of the form .

H= ——%A+V(x),

where 4 is the laplacian on R? and Vis the potential, ie. the operator of
multiplication by the function ¥,

The following condition on ¥ has been introduced by M. Alzenman and

B. Simon in 1982 (cf. e.g. [1]):
(K?°) -~ lm sup f VOex—ydy=0,

a0 |x—x0] <1 |x-y|<a

where

X742 if d> 2,
p(x)=<log|x] ifd=2,
1 ifd=1.

_ THEOREM. Assume that V satisfies (K¥°), V(x) = 0, and, for some a > 0,
V(x) = |x|* for |x] > C'. Let
d
>
N 2(c A 2)+
Then, if KeCN[0, o0) and
@) sup {e"*|[KP(A):A>0} <0, j=0,...,N,

then ||Eglle, 12 < o0, which, by interpolation, implies

[|EgllLe,1r < 00 for all 1 <p< 0.

Remark. The class of functions defined by (4) is an algebra in which
CY[0, o0) is dense.
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Proof. The proof is based on an old idea of Y. Katznelson (cf. e.g. [2])
which has been used many times by various authors.

Let e(¢)=é€“—1. If FeCY(—mn, n) and F(0) =0, then
F@=YFm@E =)+ F(n) =Y Fnens).

Since, for a fixed n,

a

.k
ew= 5 e it s < o,

- k=1
we have |le(nd)||,: 11 < c0..
Suppose

@ lea)l < Ch¥.
Then, of course, for FeCM*2(—n, n) and F(0) =0,

7 F(4) =Y F(nemd)es (L, L).
So, if A =E,, and the range of ¢ is contained in (—=, =), then, by (1),

+ w

Ergy= | Flo(WdE()eB (L, IY).

Now assume H is a Schrodinger operator which satisfies the assumptioh of
the theorem. Then H is essentially self-adjoint, and non-negative. Let

Hf = }o;tdE(,l)
0

be its spectral resolution. We write

Tf= e dED S

The Feynman-Kac formula says
t
T.f(x) = Eexp[ — Jv(b)ds] f (b)),
x 0 .

where b is the Brownian motion in R?. Hence, since V(x) = 0,

o _ &
TSN <EFGN=1/I*p. where p,(x)=(ni) "/Zexp[— 5 |
Hence ||T)|lps, 11 < 1. '

We put T= T, and estimate |le(nT) f|[z: in terms of || f|[g:.
First we note that e(nT) = AT, where, by the spectral theorem,

lAllz2, 12 < sup {JA~" (e~ " —1)|: 1 > 0}.
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We write

le®T) fll = fle@T) fldx= | + [ =I,+I,

x| <m - |x|>m
where lxl max x|, x =(x,, ...5 x;). Then, by the Schwarz inequality,
) < mPle(nT) f 2 < m*?||Alle2, L2I TS i < m*2 1| Col f lls,

since, by M. Aizenman, B. Simon (cf. [1]), VeKY¥®, V(x)>0 implies
ITf|lz2 < Crll f]l:. On the other hand, ,

L< | il—’ exp[— jV(b)ds]|f(b,‘)|dx‘

|x] >mk

Now we use the following well-known, and easy to prove fact (cf. [1]):

1
Px{ inf |b]< §|x|} { sup |b —|x|}
O0<s=s1 05

1
< 2‘1'1.’0{ sup b > %le} = 4dP, {bi > §|x|} < Ce™elxP

0ss<1

for some C and &>0 which depend only on d, and b' denotes the
one-dimensional Brownian motion. Hence, for |x| > C,

EeXp[ IV(b)dS]lf(bk)l EeXp[ !V(b)dS]lf(bk)l

< Px{ inf || < —IX1}EIf(b;)I+exP[——|xl°‘E|f(bk)l

0<s<1
< (Ce™ e~ 12)| £ |4 p, ().
Consequently,

| Eexp[— IV(b)dV]If(bk)l e | f s

x| >m x
for some ¢’ and & > 0. Thus I, < c'e™e=*™"?|| f|,..
Putting m = c[n|***? for sufficiently large c, by (5), we obtain
lle @Dzt 1 < Cla|#2@~ D1,
Thus for every FeCV(—n, n) such that F(0) =0 the function
(6) | K@)=F(™)

has the property ||E|lL: 11 < o0. It is easy to verify that functions of the form
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(6) are precisely the ones which satisfy (4). This completes the proof of the
theorem.
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