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Abstract. It is proved that if 

is a spectral resolution of a Schrodinger operator H = - A  + Y o n  Rd 
with V E K ; ~ , ,  V ( x )  3 0 and V ( x )  2 CJxp for some a > 0 and 1x1 C, 
then there exists an iV such that if K E C:, then the operator 

m 

J K (I.) dE (i) 
0 

is bounded on Lp(@, 1 < p < m. 

Let H be a self-adjoint (unbounded) operator on I?(&), where A? is 
a measure space. We write its spectral resolution 

+ m  

Hf= S I,dE(L)f. 
-m 

As we know, if K E L" (R), then 
+ m  

EK = J K ( A )  dE (A) 
-a 

is a bounded operator on L2(&) and 

L" (A) 3 K--, Eg E (L2 (A)) 

is a *-homomorphism. 
This is the simplest and the best known functional calculus. 
QUESTION. Are there any reasonable conditions on K under which EK is 

bounded on some LP(&), p # 2? 
Of course in this generality the answer is "no". 
In his book Topics in Harmonic Analysis.. . Stein [3] proved the following 

theorem, perhaps still the best one, specifying conditions on H under which the 
question has an answer. 
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Stein assumes that the operator H is the infinitesimal generator of 
a semi-group of operators (T,), ,, such that 

(2) I I ~ I I L ~ , L ~ < ~  for all 1 ~ p g c 0 .  

THEOREM (E. M. Stein). Condition (2) and 
m 

(3). KIA) = R j  e-"e(Bd{ f i r  some rn€Lm(R+), 
0 + 

imply that llEk.lLp,Lp < C p  for all 1 < p < m. 
-As we see, condition (3) implies that K is holomorphic in the right 

half-plane. However for some specific operators H the class of functions K on 
R+ for which EK is bounded on some LP, p # 2, contains functions with 
compact support. This is the case of some Schrodinger operators. 

These are operators of the form 

where A is the laplacian on Rd and V is the potential, i.e. the operator of 
multiplication by the function K 

The following condition on V has been introduced by M. Aizenman and 
B. Simon in 1982 (cf. e.g. [l]): 

(e?) lim sup 1 Vly)cp(x-y)dy = 0 ,  
a-0 lr-xol < 1 lx-yl < a  

where 

if d > 2, 

i f d = l .  

THEOREM. Assume that V satisJies (Kim), V(x) 2 0, and, for some a > 0, 
V (x) 3 Ixla for 1x1 > C'. Let 

Then, if K E CN [0, co) and 

(4) sup{eNAIKm(;l)I:l>O)<oo, j = O  ,..., N, 

then l lEKllL~,L~ < oo, which, by interpolation, implies 

I I E K I I L P , L ~ < ~  for aII ~ < p < m .  
Remark.  The class of functions defined by (4) is an algebra in which 

C: [0, a) is dense. 
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Proof.  The proof is based on an old idea of Y. Katznelson (cf. e.g. [Z]) 
which has been used many times by various authors. 

Let e ( r )  = eif-1. If F € C 1 ( - n ,  n) and F ( 0 )  = 0, then 

F ( t )  = Cp(n)(eine- l ) + C F ( n )  = C.@(n)e (n ( ) .  

Since, for a fixed n, 

we have 11s (nA)IIL~,L1 < -03. 

- , Suppose 

(4) II~(~A)IIL~,L'  G Clnl". 
Then, of course, for F E C ~ + ' ( - X ,  n) and F(0 )  = 0, 

F ( A )  = z p ( n ) e ( n A ) ~ i @ ( f i ,  I?). 

. So, if A = E,, and the range of q is contained in (-n, x), then, by (I), 

Now assume H is a Schriidinger operator which satisfies the assumption of 
the theorem. Then H is essentially self-adjoint, and non-negative. Let 

m 

' Hf = S AdE(1) 
0 

be its spectral resolution. We write 

The Feynman-Kac formula says 
t 

Tf (4 = Eexp[- J v ( b 3 d s l f  (b3Y 
x 0 

where b is the Brownian motion in Rd. Hence, since V ( x )  2 0, 

ITf (x) l  G E [ f ( b t ) l  =If l*pt3  where p, (x )  = (27~t)-~/ '  exp [ - - ""21. 
X 

Hence l17JlL~,L~ < 1. 
We put T =  Tl and estimate Ile(nr) f l lL1  in terms of 1 1  f l l L 1 .  

First we note that e (nT) = AT where, by the spectral theorem, 
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We write 

where 1x1 = max IxJ, x = (x,,  . . . ; x,). Then, by the Schwarz inequality, 

( 5 )  I ,  < mdt211e(nqf l l ~ 2  a md'211AIILz,LzIITf HU G md121nlCrllf l l ~ i ,  

since, by M. Aizenrnan, B. Simon (cf, [l]), V E K ~ ,  V ( x )  B 0 implies 
IITf llL2 < CTll f l l L ~ .  On the other hand, 

Now we use the following well-known, and easy to prove fact (cf. [I]): 

for some C and E > 0 which depend only on d, and b1 denotes the 
one-dimensional Brownian motion. Hence, for 1x1 > C', 

4 ( ~ e - ~ 1 ~ 1 ~ + e - I ~ l " ~ ~ ) 1  f I * ~ ~ ( X ) .  

Consequently, 
k 

E exp [- 1 V(b3  ds]  I f (bk)l 4 ~ ' e - " ' " ~  A " 
1x1 ' m x 0 

l l  f l l ~ l  

for some c' and E' > 0. Thus I 2  d c'elnle-"mK"2 Ilf 1 1 ~ 1 -  

Putting m = ~ l n l ~ ~ ( ~ ~  ' )  for sufficiently large c, by (3, we obtain 

Ile(nT)[IL~,L~ 4 ClnldI2(" A 2)'1. 

Thus for every F E  CN (- TC, 71) such that F(0) = 0 the function 

(6) K (A) = F(e -A)  

has the property IIEkllLi,L1 < CQ. It is easy to verify that functions of the form 
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(6) are precisely the ones which satisfy (4). This completes the proof of the 
theorem. 
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