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Abstract. Rositiski and Suchanecki have characterized the class of 
deterministic E-valued functions integrable with respect to Brownian 
motion, where E is a given Banach space. We extend their result to 
random predictable integrands in case E belongs to the class UMD. 
The proof is based upon some new dewupling inequalities for 
E-valued martingale dilTerence sequences. 

Introduction. In this paper we construct the stochastic integral with respect 
to Brownian motion of a predictable process taking values in a UMD Banach 
space. The criterion for integrability is that the integrand process should have 
sample paths which belong almost surely to the space of deterministic 
integrands for which the integral exists. This parallels the real-valued case, in 
which a predictable process is integrable in ItS's sense iff it has square 
integrable sample paths. 

Since their introduction by Burkholder in [ 5 ] ,  the UMD Banach spaces 
have proved the natural setting for vector-valued generalizations of real-valued 
results which are based upon orthogonality (see, for example, [6], [3], and 
[12]). Since the usual construction of the It6 integral depends upon the fact 
that multiplication by a predictable process preserves orthogonality of in- 
crements, it is quite natural to study the It6 integral of UMD-valued 
integrands. 

Let -Wand FP be independent Brownian motions defined on a common 
probability space Q, E a UMD Banach space over R or C, and e: Ll x [0, -, E 
a process which is predictable relative to W (See section 3 for precise 
definitions.) Our method is to use decoupling inequalities. Roughly speaking, 
these reduce the problem of defining the integral Je(a ,  t) dW(t) to that of 
defining J e (a,  t) dW* (t), 0 < t < ?%The latter is much easier to analyze since 
the integrand is independent of W*. The same method has been used by 
Kwapien and Woyczyhski [I 11 in the real case, but their proof does not extend 
to the vector-valued case. Our first task (section 2) is then to obtain suitable 
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decoupling inequalities for E-valued martingale difference sequences. The 
resulting inequalities, which should be of independent interest, do not hold in 
any wider class of Banach spaces. 

The class of deterministic Wiener-integrable functions j: LO, + E, where 
E is a given Banach space, not necessarily UMD, has been characterized in 
[18]. This characterization is not very explicit in general, but, as pointed out in 
[18], it is possible to give easily verifiable necessary and sutficient conditions 
for integrability in some special cases of interest. For example, let E = IP, 
1 < p < a, (this space is UMD). Let f: D x [O, 71 + E be predictable and write 

T 

in terms of the standard Schauder basis of iP. Then the integral 1 f (w , t) d W (t) 
0 

exists, in the sense explained in section 3, iff 

(See the discussion at the end of section 3.) 
Previous work on It6 stochastic integration of vector-valued integrands has 

focused on the Hilbert-valued case or, more generally, on the case of integrands 
with values in a 2-uniformly smooth space ([16]. Also see [8] and [19]. It 
follows from the results of [16] that a UMD space is 2-smooth iff it has type 2.) 
In the latter case the stochastic integral has been defined under the condition 

T 

E j l l f  (a, Ollidt < co. 
0 ' 

We should point out that, in the case of the 2-smooth spaces iP, 2 < p < oo, 
condition (1.2) is much more restrictive than (Ll), even without the expectation 
sign. 

There is also a well-developed theory of stochastic integration of opera- 
tor-valued integrands with respect to Hilbert-space valued square integrable 
martingales. See [15], [2], and [14]. 
- - - Throughout this paper R will denote normalized Lebesgue measure on 
[0, a. Two positive variable quantities A and B are related by A z 3 if their 
ratio is bounded below and above by constants whenever either is finite. The 
symbol 11 11 denotes the norm of the Banach space E. 

2. Ilecaupling inequalities for martingale differences. Recall that the Banach 
space E is UMD (for Unconditional Martingale Differences) if there exists 
a p, 1 < p < oo, and a constant p, such that, for every n, every E-valued 
martingale difference sequence dl ,  d,, . . . , d,, and every sequence E,, E,, . . . , E, 

of numbers in ( + 1, - 1) we have 
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As soon as (2.1) holds for one such p, it holds for all p in the range 
1 < p < m. Examples of UMD spaces are I P ,  I! [O, I], and the Schatten CP 

spaces. (See [5] or [7] for further information on UMD spaces.) The spaces 
11, CLO, 11, and C1 are not UMD. 

We begin with a very simple decoupling result. Our reason for including it 
is that it shows very clearly the connection between decoupling and the 
defining property (2.1) of UMD spaces. 

PRCIPOS!TION 2.1. Let q,, q,, . . . be a sequence of independent real-valued - centered Gaussian random variables. Let q:, q j ,  . . . be an independent copy of 
this sequence defined on the same probabiiity space. Let E be a UMD Banach 
space and e l ,  e,, ... a sequence of strongly measurable E-valued random 
variables such that e, is a function of ql ,  . . . v.-~. Then 

for each , l  < p c a. 
Proof. Write r ] ]  = xj+ yj with the pair xi, yj i.i.d. (hence also centered 

Gaussian.) We may assume that either the right or left-hand side of (2.2) is 
finite. Then the sequence e l x l ,  ely,, e,x,, e,y,, e,x,, .:. is a martingale 
difference sequence. Applying (2.1) and the reverse inequahty to this sequence 
with cj = (- lyil we obtain 

The desired result follows since the sequences (ej(xj-yj)} and {ejq?} have 
the same distribution. 

Two 9,-adapted martingale difference sequences {d j )  and {dj*) are said to 
be tangent relative to 9, (terminology essentially due to Jacod [lo]) if for each 
n the pair (d,, d:) is conditionally ii.d. almost surely, given 9,-,. The main 
result of this section may now be stated. 

THEOREM 2.2. Let E be a UMD Banach space. If p satisjes 1 < p < co, there 
is a constant y, such that, for every pair {aj) and ( d f )  of E-valued tangent martingale 
d~@erence sequences such that El/djllP and ElldTIJP are $finite for each j, we have 

We also have the weak-type inequality 

for some constant c. The constants in these inequalities depend only on E and p. 



In the case E = R or, more generally, for E finite dimensional, inequalities 
(2.3) have been obtained by Zinn [21]. We believe that inequality (2.4) is new 
even in the real case. 

Example  2.3. Let XI ,  X,, . .. be a sequence of independent, mean zero 
real-valued random variables and XT, X:, . . . an independent copy of this 
sequence. Let el,  e,, .. . be E-valued with ej measurable a({X,, .. . , Xj-l, 
X:, . . . , XF-,I). Suppose EllejX1l( < c~ for each j. Then { e j X j )  and (ejXr) are 
tangent sequences. (The same holds if the ej  are real-valued and the Xj are 
E-valued.) Note that Proposition 2.1 corresponds to the special case in which 
the Xj are Gaussian and the ej are independent of the starred variables. 

LEMMA 2.4. Let E be a Banach space and X and Y i.i.d. E-valued Bochner- 
integrable random uariubles dejned on a common probability space. Suppose @ is 
biconcave on E x E, ia., concave in each variable separately, and such that 
@(X+ I: X- Y) is an integrabie random variable. Also assume that @ is lower 
semi-continuous in its first variable. Then 

(2.5) E @ ( X + Y ,  X-Y) 6 8 ( 2 E X ,  0). 

Proof.  Since X and Y are i.i.d., 
1 1 

E @ ( X + Y ,  X-Y) =-E@(X+Y, X-Y)+ 1 8 @ ( X + q  Y-X) 
2 

I < E @ (X + Y, 0) (concavity in second variable) 

< @(2EX, 0) (concavity in first variable). 

P roo f  of Theor  ern 2.2. We apply the methods and results of 
D. L. Burkholder. It is shown in [7] that there is a biconcave function @ on 
E x E such that 

Here f i p  is as in (2.1). Furthemore, for some 0 < C < m, 

(2.7) I @ ( x ,  y)l < C(1 + I I x I I ~ +  I I Y I I ~ ~  
-- -.. . . and 

Indeed, the existence of such a function @ is equivalent to (2.1) (see 171). 
Put 

A n 

F , =  E d i  and G,= E d ? .  
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Then, by (2.6) and Lemma 2.1, 

EIIGnlIp-8~ElIF.IIP < E @ ( G n + F n ,  G,-F,)  = EE(@(G,+ F, ,  G,-F,)ld,- 

G E@(Gn-l+Fn-l, Gn-l-Fn-l), 

where we used (2.5) in the last step. Repeating the argument la- 1  times and 
applying (2.81, we have EIIGRIIP-/3:EIIFnIIP < @(O,  0) = 0, which proves (2.3) 
with y, = /Ip. 

To prove (2.4) we again use the results and methods of Burkholder from 
[7]. It is shown in section 8 of [7] that there is a biconvex function u on E x E 
such that .. 

(2.91 u(x, Y )  G II~+YII if max {llxll, Ilvll) 2 1 ,  

and 

Let 

with inf 0 = + CQ. Note that (d; ltr > ,?) and { d j  l(, , n) are again tangent 
sequences. Put 

n R 

F,= C l t r z J 7 d j  and Gn= C lt,,,?dT. 
j= 1 j= 1 

We shall prove that, for each n, 

Inequality (2.4) then follows by homogeneity and passage to the limit as 
n tends to infinity. Now 

By (2.10) the expression 21/Fnl 1 - u (Fn + G,, F, - G,) + u (0, 0) is nonnegative, 
so Chebyshev's inequality gives the upper bound 2EllI;,ll -Eu (F, + G,, Fn - G,,) 



+u(O, 0). Using Lemma 2.4 exactly as in the proof of (2.3) above we have 
- Bu (F,  + G,, Fn - G,J < - u (0, 01, and thi desired result follows. 

In the case E = W there exists [7] a function u satyisfying (2.9) and (2.10) 
with u(O, 0) = 1. Thus, in this case (2.4) holds with c = 2. 

We shall conclude this section by showing that if inequalities (2.3) hold for 
any 1 < p < w, then E must be UMD. 

Def in i t ion  2.5. Let r,, r, ,  ... be the Radernacher sequence. An Elvalued 
martingale difference sequence d,, of the form d,, = e,r,, where e, is an E-valued 
function of r,, r, ,  . , . , r,,-l, will be termed a Walsh-Pnley martingale digerenee 
sequence. . . 

-It can be shown that E is UMD if and only if (2.1) holds for all Walsh-Paley 
martingale difference sequences [13]. 

Now let rT, ,a, . . . , be an independent copy of the Rademacher sequence 
and e j  = ej(rl, P,, .. . , r j - l ,  r r ,  . . . , r7- be E-valued functions. Then by (2.3) 
(see Example 2.3) we have 

Ell C ejrjllP w Ell ejrylIP. 
j =  1 j =  1 

Equivalently, we have the two-sided inequalities 
n n 

Ell C rTdjllp * Ell C djllP, 
j =  1 j =  1 

whenever d j  is a Walsh-Paley martingale daerence sequence and r! are 
independent of the dj. Now inequality (2.1) for the d j  follows at once from (2.14) 
since the r! are symmetric random variables (one may take P,  = y;). 

Remark  2.6. Garling [9] has raised the following interesting open 
questions: In which Banach spaces do the right-hand (resp. left-hand) in- 
equalities in (2.13) hold when the e j  are functions of only one of the 
Rademacher sequences? 

Remark  2.7. We may take y, = 8, in (2.3). Are these the best constants? 
The size of these constants is of some interest. For example, if a, denote the 
best constants in the E-valued Riesz inequalities (see [6]), then it can be shown 
that up < y;. 
- 3. Stochastic integration with respect to Brownian motion. Let E be a Banach 

space and W(t )  standard real-valued Brownian motion. Following 1181 we 
shall declare a non-random strongly Lebesgue measurable function 
f :  [0, fl + E  to be W-integrable if there exists a sequence f, of E-valued 
simple functions such that IIS,-f 1 1  tends to zero in measure and 

converges in probability at t = T (hence uniformly in 0 6 t < T in probability 



Decoupling and stochastic integration 289 

by Uvy's inequality). One defines a raadorn E-valued continuous function fo W ( e )  
as the limit of the random fimctions f ,  o W (e) and checks easily that this definition 
does not depend on the chosen sequence f,. The class of such W-integrable f, 
denoted by Y ([0, Tj, El  W), becomes an F-space in any of the {equivalent) metrics 

where p* = max(p, I), 0 < p < a, and 
T 

Il f llo = j min { l l  f (s)ll, 11 ds. 
.. . . 0 

See [12] for proofs and further discussion. 
In particular, it is shown there that the class 9 ( [ O ,  q, E, W) (hereafter 

shortened to 9) is highly dependent on E and cannot in general be 
characterized by any moment condition, Indeed, there are Banach spaces 
E and un$ormZy bounded E-valued functions f which fail to be W-integrable. We 
need below the fact that, given f in 9 and cp* in E*, we have q*of in L2 [0, T'l 
so that the usual Wiener integral 

T 

1 v*of ts)dWls) 
0 

is well-defined. Also, iff €9  and g is a real-valued Lebesgue measurable 
function such that 1st < 1, then g f ~ Y  (see 1181). 

Let St be the completed filtration of W Define the family of elementary 
integrands on [0, n, d(E, T), to be the linear space of functions on Q x [0, a 
spanned by functions of the form 

and by functions of the form 

xl,(w)lb,tj, A i n F s , x i n  E.. 

Thus, a typical function e in b(E, 7') has the form 

where 0 <to < I ,  < ... < t, < 1: x~EE,  A O ~ S o .  and A j s P t  ,-,, j = 1, 2, ... , n. 
We define the process eo W(t) for 0 < t < T by 

t n 

(3.2) eoW(t) = Je(w, s)dW(s) C xjlA,(w)[W($ A t)-w(tj-l A t)]. 
0 j= 1 

Finally, let 9, denote the class of all strongly P 8 A-measurable E-valued 
functions e such that 

(3-3) y*oe is St-predictable for each cp* in E*, 



and 

(3.4) . t +e(w,  t )  belongs to 3' for P-a.e. a. 

The main result of this section may now be stated. 
THEOREM 3.1. Suppose e belongs to 2&,. Then there exists a sequence of 

elementary integrands such that, for each cp* in E*, 

and 
. . 

(3.6)- e,o W ( t )  converges unifiirrnly in t in probability. 

The limiting process, denoted by eo  W( t ) ,  is independent (up to indistinguish- 
ability) of the choice of en satisfying (3.5) and (3.6). 

A natural question is whether we can have strong rather than weak 
convergence in (3.5). WR believe that this is generally not possible, even in the 
non-random case, unless E has cotype 2. 

We may assume that there is an independent copy W of Wdefined on the 
same sample space as W Thus W* is independent of 9, and is itself 
a standard Brownian motion. It then follows from Fubini's theorem and the 
results of [I81 that for each e in 8, there is a random variable eo  W* taking 
values in the space of continuous E-valued functions such that, for every cp* in 
E*, 

(3.7) q * ( e o W * ) = q * ( e ) o W  as., 

the latter being defined as an ordinary Wiener integral. Also, we get that 
E(lleo W*IIPIF,) < co a.s. for every 0 < p c oo, by' Fernique's theorem. 

LEMMA 3.2. Given e in Y,, there exists a sequence en of elementary integrands 
such that for each cp* in E* we have 

and 

(3.9) e,o W* (t)  + eo  W* (t) uniformly in t i~ probability. 
- 

Proof. We assume T = 1 for convenience. Note that (3.8) follows from 
(3.9.), (3.7) and well-known properties of the Wiener integral. For S > 0 deline 
T, on Y by T,e (s) = e(s-6) if S 6 s < 1 and T,e(s) = 0 otherwise. We shall 
show that T, maps Y into itself and, moreover, 

(3.10) T,eo W* (t)  + eo  W* (t)  

uniformly in t in probability as 6 + 0: 
To prove this we first show that if A(n)  are Borel sets with A(n)JA(ao)  and 

I ( A  (a)) = 0, then Elle l,(,,o W* (l)IIP + 0 for any 0 < p < co . If we let 
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CO 

Xn = B lA(n)\AIn- lio W (11, then C Xn converges a.s. by the' Itb-Nisio Theo- 
n =  1 

rem. Thus 
m 

! 
el,(,,o W*(l) = Xj+O a.s., 

j = n  

and the desired result follows from [18], Lemma. 2.1. 
Now take any 0 < p 6 1 and E > 0 and choose A so small that for any 

0 < S ,< d we have --_ 

Let e, = e lIo,l-bl. We -may find a simple function e,, supported in 
[0, 1 - A], such that Elle,o W* (1) -e,o W* (l)I(* < ~ / 4  and, hence, 

E ~ J e , 0 ~ ( l ) - e , o W * ( l ) ~ ~ ~ < ~ / 2  for each O G 6 G A .  

By translation invariance of W* we also have 

Ell T,(eJoW (1)- T,(e,)oW*(l)JIP < &/2. 

Now T, (e,) = T, (e), so combining these estimates yields 

It is easy to show that the first term on the right-hand side tends to 0 as 
6 tends to 0, and (3.10) follows since 8 was arbitrary (uniform convergence in 
t follows from convergence at t = 1 via Lkvy's inequality.) 

We will now show how to approximate functions in dp by dyadic step 
functions. Unfortunately, the natural approximation method destroys predic- 
tability in the case of random integrands. The purpose of the "shift" operators 
T, introduced above is to restore that predictability. 

Let g,, denote the nth dyadic a-field of [O, 11 and 8, the a-field generated 
by the increments W* (j2-")- W* ((j- 112-") for j = 1,2, . . . , 2". If e belongs 
to 9, then cp*oe belongs to L2[0, I] for each cp* in E*. Thus E(el3,J is 
well-defined in the Pettis sense and it is easy to check that 

1 1 

j E (elB,J (s) d W* (s) = E (j e (s) d W* (s)ISn) a.s. 
0 0 --.-. - 

We conclude from the convergence theorem for rightclosed martingales, 
valid in an arbitrary Banach space, that 

1 

1 E (el59,) (s) d W* (s) + eo W* (1) a.s. 
0 

As above, this may be strengthened to 

(3.1 1) E(elgn)o W* (t) + eo W* (t) uniformly in t in probability. 



Finally, if e(w, t) belongs to S?,, then E (5 e (w,  .)I 59,) E 8 (E, 1) for 
2-" c 6. Thus, by combining (3.10) and (3.1 I), it is easy to construct a sequence 
e, with the desired properties. 

The next result provides the link between the distributions of e o W  
and eo W* for predictable e. Kwapieli and Woyczytiski have proved a similar 
result in the case E = R. (Their proof does not extend to the vector-valued 
case.) We shall obtain our result directly from the I.? case (p = 2 in (2.3)) by 
means of the extrapolation method of Burkholder and Gundy (the method of 

is modeled on that of [4] Theorem 6.2). 
LEMMA 3.3. ~ h e r ~ - i s  a constant C such that for any 0 < a, b and any 

e fb (E ,  T )  the estimate 

(3.12) P( sup IleoW(t)ll > b) < C(a/b)2+2P(lleoW*(T)II 2 a) 
O < t G T  

holds. We may take c = y$ in (2.3). 
Proof. We shall first show that if T is any stopping time relative to the joint 

a-fields 9, of W and W* satisfying 0 6 r 6 T as., then 

with C = yg in (2.3). By a standard approximation argument involving the 
quasi-left continuity of Brownian paths we may assume that 7 takes only 
finitely many values. Thus, taking into account the form of e (see (3.1) above), 
we have 

N 

for suitable 0 = to < t ,  < ... < t, < T, xj€E, A O € P O ,  and A j € S t  j-,, 
j = 1, 2 ,  . . . , N. Now (3.13) follows readily from (2.3). 
. Define stopping times p and v by ,u = inf {t : lleo W (t)lf > b) and v = 

= inf {t: Ilea W* (t)Jl 2 a). Then 

P( sup lleoW(t)lI > b,  sup ' l l e o ~ ( t ) i l  < a )  < P(lleoW(rr A v A 7)ll 2 b) 
O d t < l  O G t < l  

where we used (3.13) with z = ,u A v A T Now (3.12) follows since 

P( SUP Ileo W(t)ll > b) 
O G r B T  

< P( sup Ileo W(t)ll > b,  sup I leoW (011 < a)+P(  sup Ileo W (t)ll > a). 
0 8 t 9 T  O < t G T  O < t < T  

By exactly the same method of proof we obtain the reverse inequality 
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(3.14) PP( sup IleoW*(t)[I > b) < C(a/b)'+P( sup Ilea W(t)ll 2 a) 
O d t S T  O i t d T  

for all a,  b > 0 with c = y i  in (2.3). 
Remark  3.4. Note that the proof of Lemma 3.3 used stopping times 

defined in terms of both processes W and V.  Therefore, the full strength of 
Theorem 2.2 is needed - Proposition 2.1 alone is not sufficient. 

P roo f  of Theorem 3.1. To define the process eoW for e in 2, choose 
any sequence e, of elementary integrands satisfying (3.8) and (3.9) of Lemma 
3.2. combining (3.9) with (3.12) we may define the random continuous function . 
eo W(t )  as the uniform limit in probability of the e,oW To check that eo W 
is independent of the chosen sequence e,, supposeS, is any other sequence in 
b(E,  T )  satisfying (3.8) and (3.9). Let H(w,  t) denote the uniform limit in 
probability of LOW Then, for any t in LO, TI and any rp* in E*, we have 

by (3.7). We conclude that H{w, t) = eo W ( w ,  t )  as. for each fixed t. But since 
both H(w,  t )  and so W ( o ,  t) have continuous sample paths, the two processes 
are indistinguishable. 

As noted in [I81 the class Y can be described explicitly in certain cases. For 
example, let (E, 9, p) be a measure space and take E = LP(dp) for some 
1 < p < co. Then a strongly measurable E-valued function f may be viewed as 
a jointly p@ A-measurable function, and we have f in Y iff 

To see this recall [I81 that f belongs to 9 iff& considered as an E-valued 
random variable on the sample space [0, TJ, is pre-Gaussian. The stated 
criterion thus follows from the well-known condition for an E-valued random 
variable to be pre-Gaussian (see [20] or [I] exercise 13, p. 205). In particular, if 
f: IR x 10, q-., P is predictable, then the stochastic integral f o W exists iff 

W T  

C (1 fj" (w, t )  dt)pI2 < co as., 
- j = l  0 

m 

where f = C hej in terms of the standard basis of I P .  
j =  1 

Remark  3.5. The only properties of Brownian motion used in this section 
are its integrability, quasi-left continuity, and the independence of increments. 
Therefore, the methods and results of this section carry over with minimal 
changes to any process having these properties. {The class of integrable 
deterministic processes will vary from process to process.) Also, it seems very 
likely that integrability may be dropped for symmetric processes because of the 
possibility of truncation. 



Added in  proof.  The author has learned that (2.3) and Lemma 2.4 had 
been obtained independently by P. Hitczenko. 
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