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Abstract. The paper gives unbiased and biased invariant quad- 
ratic estimators for variance components in unblanoed nested clas- 
sification random models. The estimators, as well as their quadratic 
risk functions, have simple closed forms that are easy to calculate, the 
estimators are admissible in their classes and the unbiased estimators 
reduce to bast unbiased estimators in cases when all cells are filled and 
the variance of the error terms is set to zero. Numerous numerical risk. 
comparisons of the given estimators with MINQWU,I) as well as with 
the lower bounds of the mean squared error of unbiased estimators are 
also included. 

1. Introduction. Let us consider the following model 

where A is an (n x q)-matrix, /Y is a q-dimensional vector, i.e., BE*. The 
. . P 

n-vector E is a random vector with expectation zero and covariance aiF, 
1 = 1  

where the 6 are n x n n.n.d. matrices with V' being the unit matrix and ai, 
i = 1,. . . , p, are nonnegative numbers called variance components. We assume 
that the fourth moments of the vector X are as under normality; The vectors 
/Y and a = to,, ... ,aJ are unknown. In the literature model (1.1) is called 
a random model when A = I,, 1, being an n-vector of ones. Otherwise, it is 
called a mixed model. 

In this paper we are concerned with the problem of estimation of the vector 
a of the variance components only. There is an extensive literature on this 
topic, and the reader may refer to a recent monograph of Rao and Kleffe (1987) 
for further details. Most research has been don? on estimating a by invariant 
quadratic estimators, i.e., by estimators of the form 

* Paper presented at  the 18th European Meeting of Statisticians, Berlin, August 22-26, 1988. 
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(1.2) ( X ' M L ,  MX, ... , XIMLpMX)' ,  

where L,, . . . , Lp are symmetric n x n matrices, while M is the projection 
matrix on the subspace of P orthogonal to B(A), under the quadratic risk 
function. As usual B( . )  denotes here the range of a matrix argument. 

There are several methods currently available (see for example Searle (1987)) 
to derive estimators for a. However, most of them ensure no optimal properties.- 
A complete characterization of all admissible estimators, unbiased and biased, is 
known only in the case where the matrices M I  = MVl M ,  . . . , M ,  = M c  M 
commute. -. -- 

-In this paper we give admissible unbiased and biased estimators for the 
vector a of the variance components in model (1.1) in terms of the matrices 
MI, . . . , MP under the additional assumption that 

\ As well known, this condition is fulfilled by all nested classification models. 
The calculation of the proposed estimators requires finding general inverses of 
a number of matrices. However, for the unbalanced Ip- 1)-way nested 
classiftcation random model the proposed estimators can be expressed in 
simple closed forms by using techniques of the same nature as in the work of 
Swallow and Searle (1978). 

The construction of the admissible estimators for the variance components 
presented in this paper is based on the well &own step method (see Klonecki 
(1980), LaMotte (1980), and Klonecki and Zontek (1985)). The formulae for the 
model (1-1), subject to (1.3), are given in Section 3, and the explicit formulae for 
the unblanced nested classification random model in Section 4, where we also 
give the risk functions for some of the estimators. Finally, in the Iast section we 
present numerical results demonstrating the behaviour of the suggested 
estimators for a selected unblanced 2-way nested classification random model. 
There are admissible estimators that have more flat risk functions than other 
estimators and admissible estimators that become the best unbiased estimator 
(if such one exists) when the variance of the error terms is set to zero. 

In a second paper of this series we shall present similar results for the 
unbalanced (p -  1)-way crossed classification model. 

2, Preliminaries. To characterize admissible invariant quadratic estimators 
under the.quadratic loss one can apply the theory of linear estimation for linear 
models in finite-dimensional vector spaces. 

In fact, introducing the notation. Y= MXX'M, estimator (1.2) can be 
written as L' Y, where L is a Iinear operator mapping W P  into the'sp8ce Y, -of 

- - 

. ' p  . -. 
n x n symmetric matrices and de&ecl by 2 44 for every a =(a, ,  ... , o d ; ~ @ ~ ,  

i =  1 
while L# is the adjoint .operator to L under the usual inner products in gP 
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and 9, (to be denoted by (., -) and [., -1, respectively). Let dp stand for the set of 
all linear operators mapping 8p into Yn. 

The vector a to be estimated can be also presented as C'EY with C being 
a linear operator mapping BP into Y, and associated with matrices C,, . . . , C, 
such that [C,, M j ]  = aij, i, j = 1 ,  . . . , p, where Mi = MFM. Assuming that 
such an operator exists is equivalent to assume that a is estimable in the 
considered model. 

The quadradic risk function E (L' Y-a, L# Y-a) becomes 
- 

n 

where W, = 2 Mu 63 M,, w, = M,Z M,, while ..- 

As usual, (B1 B,) and (B,GB,) denote for B, and B, in Y, linear 
operators mapping Y, into itself and are for any matrix 3, in Y ,  defined by 

(3, BdB,  = B,  B,B, and (B, B,)B, = EB,, B,]B,,  respectively. 
Consider expression (2.1) as a functional R ( . , - )  defined on the product 

3 x [TI, where [TI is the smallest closed convex cone containing 
F = ((W,, wJ: a E By). 

Estimator L# Yis said to be locally best at point T in [F]  among a subset 
9, of 9 if L € d p O  and iff 

one  can show (LaMotte (1982)) that whatever be point T in [Y], there is 
an estimator admissible within a given affine subset 9, of 9 in the class of all 
locally.'best estimators at T among 9,. Since a necessary and sufficient 
condition for an estimator L# Yto be locally best within 9, at every point T in 
[F] is available, LaMotte's result provides, at least theoretically, a straightfor- 
ward muIti-step method for constructing admissible estimators. The simplest 
situation occurs when admissibility of an estimator can be shown in a single 
step - this being equivdent in establishing that the estimator is unique locally 
best. It is the purpose of this paper to show that the step method can be 
successfully applied to construct a large class of admissible estimators, not 
being unique locally best, for the model defined by (1.1) and (1.3). More 
precisely, we shall show that one can construct for such models explicit 
formulae of admissible estimators, unbiased and biased, resulting from s steps, 
2 < s < p, with the i-th point being T,ci>, do = (ail,  .. . , aiui, 0, .  .. , O ) ' E ~ $ ,  
with 1 < u1 < u, < . . . < us = p and aiu* = 1. For convenience we present the 
coordinates of points dl1, . . . , a'") in the form of an s x p matrix (to be denoted 
henceforth by E) with the i-the- row being 8). Moreover, let 
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I 

In the case of unbiased estimation the corresponding equations, deter- 
mining uniqueIy the admissible estimator associated with the matrix Xy say 

I 
! L,# E: can be written as 

(2.4) W,,i ,L,(a)~C+N(n,- ,)n9(n,)  for all a € B P  ( i  = 1 ,  ... , s), 

where C=span{Ml ,.,., Mp), no = M @ M ,  ni= M B M - M , , M , ' : @ M u l M i  
for i = 1, .. . , s- 1, while Nt.)  stands for null space. - 

For estimation without the condition of unbiasedness the s equations 
i determining the admissible estimators L,# Y associated with matrix ,T are 

The soIutions L, to equations (2.3) and (2.4) as well the solutions L, to (2.5) 
for matrices 1 of the considered type will be presented in the next section. We 
close this section with some formulae that we will require in the sequel. 

For the evaluation of the risk performance of the presented estimators we 
I shall need the lower bounds of the quadratic risk functions for unbiased and 
I biased estimators of the vector of the variance components. They are given for 
I 
I all a E 95,  respectively, by 
I 
i 
! (2.6) B , ( 4  = 2tr (CK (V), G;.1) 

and 
2tTfa 

B  (a) = 
2+rank Me ' 

We shall also need the following formulae throughout the paper. 
1 

Let B,,  B, and B, be n x n nonnegative matrices and let M = I ,  - -1,lb. 
n 

If a€W(B, ) ,  then 

12-81 (B, f aal)+ = B f  T 
1 

B: aafB: ,  
1 f alB: a 

profided the denominator is not zero. 
~f lE&(B1), then 

1 
(2.9) (MB,M)' = B: -- I I , ~ ;  B: l l l B :  - 

If 1 EW (B,) and B ( B l )  c B(B,) ,  then 
I 

I 
(2.10) M B ,  [ M B ,  (MB,M)+ B I M J +  B,  M = M B 1  (BIB$ B1)+ B,  M .  

Formulae (2.8) and (2.9), which are well known, entail (2.10). 
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If 9 (B1) c 9 (B,) and if B (B,)  = 9 (B,), then 

(2.1 1)  BlCB1(Bz+B3)+B11'B1 = B 1 ( B 1 B : B 1 ) ' B 1 + ~ 3 .  

This formula may be v e s e d  by simple matrix algebra. 

3. The main results. We now establish some results that can be used to 
obtain the linear operators L, determined by (2.31, (2.4) and (2.5). To formulate 
them, we need to introduce the following definition and notation. 

Let Y, = U (L (a ) :  a E $ 2 ~ )  n 9 IMP @ M J ,  where the sum extends over all 
solutions L of the relation-(2.4) for the given matrix E. 

For -every i = 1, .... s let = M i  @I mi, Gi = Fi @I Fi, where M i  is 
defined by (2.2) while Fi = M i - l ( M i - l  Mi+ Mi-l)' M i - 1 ,  M ,  = 0, and let 
Hi = W: - W$ Gi Wi+. 

LEMMA 3.1. The set LYE is a p-dimensional subspace. The matrices 

form a basis for 9,. 
P r o  of. This lemma can be proved by induction. We do not give the details. 
Now a somewhat surprising result shall be established. It states that 

without any additional assumptions imposed on the considered model the 
solutions to (2.4) span the same subspace for all p x p matrices X of the 
considered type. 

LEMMA 3.2. For every p x p matrix Z formulae (3.1) present the same basis 
which is given by 

A1 = Q z M ;  Q2, 

- A2 = Q3 [ M ;  - M i F , M , f I  Q 3 ,  

. . . . . . . . . . . . . . . . .  
(3.2) 

A,-I = Q , I M , + - ~  - M ~ ~ F , - ~ M , + - ~ I  Q,, 
A, = M , - M , - ~ M , + - ~ ,  

... where, for 2 < t < p, Q, = M i  F , M , ~ -  1 F, M: , while 
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P r o  of. The assertion follovris by noting that (3.2) presents the basis (3.1) for 
E = Ip and from formula (2.11) given in Section 2. 

The following lemma states that the solutions of (2.4) span the same 
subspaces also for a class of s x p (2 < s < p) matrices E. However, it goes only 
for some special models. 

Rewrite expression (1.1) in the form 

where U,, U2 and A* are known matrices, while E* and r are uncorrelated 
P* 

random vectors with expectation 0 and covariance matrix equal to C a i v  
i =  1 

and 0; Vf, say, respectively. Under this assumption 
i = p * + l  

UIVTU\ for i = I,... , p*, 

U,VFU; for i = p * + l ,  ..., p. 

The projection matrix on the space orthogonal to 9 (A*) will be denoted by 
M*. Moreover, let Z be any matrix of the considered type such that us, = p* for 
some index 1 4 s* G p*, and let 

be a partition of Z such that Ell is an s* x p* matrix. 
LEMMA 3.3. Assume that U1 is of full column rank. The subspace 9, spanned 

b y  the soZutiom to (2.4) does not depend on C,, if and only if there exists a best 
unbiased estimator for a* = (c, , . . . , a&' in the submodel X* = A*B + E*. 

Proof.  Suppose that L# Y is an unbiased estimator of a. The matrices 
L,, . . . , L, associated with L fulfill then the condition [Mi, Lj] = a,, 
(i,j = 1, ... p). 

Since A = U,A* and since U, is of full column rank, it follows that 
M* = (MUl)+ MU,. Thus these equations can be rewritten as 

[M* VfM*, U;MLjM U,] = Sij, i , j  = 1, . . . , p*. 

This clearly shows that the linear operator L*, associated with the matrices 
U; M L, MU,, . . . , U;ML,M U,, provides an unbiased estimator of a* 
within the submodel X*. Moreover, since %(Mi) @(Mj) for i = 1, . . . , p* and 
j = p* + 1, . . . , p, equations (2.4) with i = 1, . . . , s* are equivalent to 

M T U ; M L j M U 1 M T ~ & * + ~ ( l 7 ~ - , ) n 9 ( M * @  M*), 

for i = 1, ... , s* and j = 1, .. . , p*, where 



while b* = span (M* VT M*, . . . , M* V M * ) .  Now the assertion is evident. 
LEMMA 3.4. If Lz is the solution to (2.5), then . 

Proof.  Since this result can be established analogously as Theorem 6.5 in 
Klonecki and Zontek (1985), we omit the proof. 

We shall now present the basic results of the paper - explicit formulae for 
unbiased and biased admissible quadratic invariant estimators for the mixed 
model (1.1) fulfilling (1.3). 

For any n x n symmetric matrices A , ,  ... , A, define a p-vector Z by 
Z = ([A,,Y I ,  . . . , [A,,  a)', and a p x p matrix K b y  K = ( [ A ; ,  M j ] } ' .  With 
this notation 

E Z = K ' a  and c o ~ Z = 2 ( a ' T ( ~ t ~ } ,  

where K j  = { [ A i y  Mu A j M , ] )  for i ,  j = 1, . . . , p. 
THEOREM 3.1. The admissible unbiased estimator associated with matrix E is  

given by 

where K and Z can be computed w.r.t. any basis of 9,. 
P r o  of. Since (3.4) is evidently an unbiased estimator, we need only to show 

that it fulfills relation (2.4). But this is also obvious, because it can be written in 
the form of 

where each Li belongs to Y,. 
The next theorem gives a formula for the admissible biased estimator 

associated with a given matrix E. It will be stated under the assumption that 
the vector Z and the matrix K are calculated w.r.t. the basis A , ,  . . . , A, even 
in Lemma 1.1. To present the formula we need to introduce addit~onal 
notation. 

For any matrix E of the above considered type let 

m . . . . .  . . . . . . , . . . , . . . . . . . .  . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . .  0 flsu.-1+1 . . 68". J 
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THEOREM 3.2.. The admissible biased estimator associated with matrix E is 
given by 

Proof.  Suppose that k, fuIfills (2.5). By virtue of Lemma 2.2 the matrices 
L,,  . . . , L, corresponding to L, are linear combinations of matrices (3.1). This 
means that there exist uniquely determined numbers yij that can be obtained 
from (2.5) such that 

P 
.. - Li = C yi j  A,. 

j =  1 

In fact, substituting these expressions into (2.5) and noting that 
. - 

we obtain the following linear equation in the coefficients yij:  
( 2 + * )  y i j f  = * Its solutions is {yij)'  = (2I+E* ZK)-I Z* E 
= Z*(21+EKE*)-1X. Hence L,# Y =  (yij)Z = [(2I+ZKZ*)-lElr(Z*)'Z as 
asserted. 

If Z and K are calculated w.r.t. an arbitrary basis B , ,  . . . , B, of Y, and if 
or = (aij) is a Ip x p)-matrix of coefficients such that 

A , =  ai jBj ,  i =  1, ... , p ,  
j =  1 

where A, ,  . . . , A, is the basis of Y, given by (3.1), then the admissible biased 
estimator (3.5), associated with matrix E, takes the form 

- - -  

Remark  3.1. Put model (1.1) in the form of (3.3). If vector Z is calculated 
w.r.t. the basis (3.1) associated with a matrix .Z of the considered type, then 
clearly Pr (Z,,, = 0, . . . , Z ,  = 0) = 1 when Pr (7 = 0) = 1 and, moreover, 
under the assumptions of Lemma 3.2, the estimator (3.4) becomes the best 
unbiased estimator of a* in the relevant submodel X* = A* f l  + E * .  

Re m a r k  3.2. Admissible unbiased and biased estimators which are not 
unique locally best within their classes are called limiting estimators, for 
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they are limits of unique locally best estimators. All the new admissible 
estimators presented in this paper are limiting estirnqtors, but not every 
limiting estimator can be obtained in the described manner. It may be worth to 
recall (see Zontek (1988)) that under very general assumption the class of 
unique locally best estimators and their limits forms the minimal complete 
class. 

Remark  3.3. For the unbalanced ( p -  1)-wag nested classification random 
model with all subclasses filled the Henderson's estimators are not admissible 
among unbiased estimators. In fact, for such models they can bk-presented as 
(K')-'3# Y, where B isassociated with matrices 3, = M ,  M ; ,  B, = M ,  M: - 
MI M:,  . ;. , B, = M p -  M,-I  while K = ( [ B , ,  Mj ] ) '  and estimztors of 
such a form can be neither unique locally best estimators nor limiting 
estimators. 

4. Examples. We shall now apply the theory developed in Section 3 to 
obtain admissible estimators for the unbalanced ( p  - 1)-way nested clas- 
sification random model. The defining formula of this model is 

where 1 ,< i, 6 no, while for any 2 6 t G p and any i, i, . . . it- , the index it goes 
from 1 to nil while nil ,.,, iP- > 1 for at least one i, i, . . . i,- ,. As usual 
y is an unknown parameter, while til, tili2, . . . , &li2...ip are mutually 
uncorrelated random variables with zero means and variances a,, a,, . . . , o,, 
respectively. The problem consists in simultaneous estimation of the vector a of 
variances a,, . . . , a,. 

To express the basis (3.2) corresponding to the p x p unit matrix in a simple 
form we need to introduce the following notation. Let 9 stand for a set 
defined by 

Now, for 1 < t < p - 1  and for any a =  i,i, ... it€$ and any 1 <it+, <n, 
let ai,,, = i,i ,... itit+,. Clearly, a h + , ~ 9  for t < p-1. Next we define by 
a recursive formula a sequence of vectors denoted by e with labeling indices. 
Let e i , ,  ,... ip = 1, for .all possible indices i,i ,... i,, ahd let 

1 

no", 
for every a E 9, where, for the convenience of notation, nil i, ... i, = 1 for all 

1 indices i,i, . . . i,. Finally, let E, = e,& for the above defined vectors e,. 
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The basis (3.2) can then be presented in the following way: 

" i , i ,  ... i 
... 0 t u l  

1 
i i i  1 G t < p. 

it-, = 1  ni i i l .  . . i t - i  

First we shall give explicit formulae for the relevant vector Z and its 
exkctation for the unbalanced 2-way nested classification ;andom model. The 
expressions will be given in terms of the familar notation with no,  ni, and 
nisi, replaced, respectively, by a, bi, and nii. They are 

and 

(4.4) 

where 

fl, (4-3) EZ = 

- i = l  

bi a 

where Sit = n; and S = C Sit (t = k1, - t2 ,  3). 
j = l  i= 1 

Also the covariance of the Z can be written in a closed form expression 

,- \ 

1 " 1  1 a I 
a-1 -(a-1) 7 -(a-1) - Si(-l) 

a i = l b '  a i ,  I b? 
a 

0 C bi -a  (1 -  b ) ~ i ( - ~ )  
i =  1 i = l  

a 

0 0 S1 - C bi 2 
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. I 

If Z and K are defined as above, then (K-')'z is the unbiased admissible i 

estimator associated with every 3 x 3 matrix E by Theorem 3.1 and Lemma 3.2. 1 
I 

Moreover, in view of Theorem 3.2, 

I 

where E may be any 3 x 3 matrix, furnishes then the biased admissible 
estimator associated with the matrix Z. I 

i 
When the considered model is partially unbalanced, i.e., when all bi are 1 

I equal to b, then (K- l ) 'Z  is also an unbiased estimator associated with every I 

1 
I 
I 
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2 x 3 matrix of the f o w  

by Lemma 3.3. 
The biased admissible estimator associated with this matrix has a form that 

differs from (4.5). I t  is given by [(21+EKKl)-'E]'K;Z, where 

while 2 and K are given by (4.2) and (4.31, respectively. The matrix K, could be 
obtained from (3.61, but in this case it is easier to get it directly from (2.5). 

Next we give the formula for vector Z and its expectation for the partially 
unbalanced 3-way nested classification random model with n, = a, nil = b and 
niIi, = c for all 1 6 i, < a and 1 < i, < b. The vector Z is given by 

f 7 

It is written in this way so as to imitate formula (4.2) By replacing in the 
above expression a, b, c and nijk by no, nil, niii2, and niliZi3, respectively, and i, 
j and k, by i,, i, and i,, respectively, we obtain the corresponding formula for 
Z for the completely unbalanced 3-way nested classification random model. 

The expectation of the vector Z is given by 



- 
Vmionce components 

a b c  

where now St = z n!jk, t = $. 1. 
i = l j = l k = l  

As for the case of the 2-way nested classification random model the 
expressions for the admissible unbiased and biased estimators are obtained 
from Theorems 2.1 and 2.2, respectively. 

Now we shall give for the partially unbalanced 2-way nested classification 
random model with all bi equal to b the admissible unbiased estimator and the 
admissible biased estimator associated with matrix -- . 

I 

For this case formulae (3.1) give the following basis: 

Formulae for these matrices in terms of a, b and nii can be easily derived 
from (2.8H2.10). 

When u2, and a,, are set to zero, expressions (4.8) reduce to 

and its expectation is 

1 
a-1 

a 
-(a-1) C Sgl 

i =  1 a i=l 

i =  1 i =  1 

The corresponding vector Z becomes 

(4.9) z =  

r 

i= 1 
a b 

C z nQ(xij .-x.. 1'- C (xi . . -x.. .  z n$ 
i= 1 j =  1 i =  1 j =  1 

a b n i j  

C C C (xijk-xi..)' 
i', j =  l k =  1 

L 
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Having this formulae we can write down the expression for the admissible 
unbiased estimators as well as for the admissible biased estimator. To get the 
formula for the biased estimator observe that if azl = a2, = 0, then 

Thus in view of (3.4) it has the form [(21+EKE*)-1Xl'Z*, where 
Z* = E* 2, while Z is given by (4.9). -- 

The expectation aria the covariance of Z* have simple forms in terms of the - n's. These are 

I 1 a 1 

a 

a-1 -(a-1) C s , ~ s , ,  -(#-I) s;' 
a i= 1 a i =  1 

EZ' = Q 

0 St-  C Sillsi2 S l - a  
i = l  

and 

where Vll 

covz* = 2 ( =' vllir 0 a'Vz2u 1; 
is given by 

while Gz by 

To 

5. Risk comparison. The expressions for the risk functions of the different 
estimators given in Section 3 are too complicated for a throughout analytical 
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comparison and, therefore, an evaluation of their performance must be made an 
the basis of numerical comparison. We make a risk comparison only for an 
unbalanced Zway nested classification model with aIl subclasses filled. To begin 
with we would like to make the following introductory comments. 

If X is a 2 x 3 matrix such that u, = 2 or ifit is a 3 x 3 matrix, then the risk of 
the corresponding unbiased estimators at points a = (u,, 1 -a,,O)', 0 d a, 6 1, 
depends only on the number of levels a and b, and at point (1,0,O)' on a alone. 
Moreover, the variances of the unbiased estimators coincide with their relevant 
lower bounds at these points. When a and b are fixed and if the number of 
replications nij increases, ke.; if more observations are added, then the risks of 
all the considered estimators as well as the lower bounds (2.6) and (2.7) decrease 
at all points c with a, > 0, and, as numerous numerical results show, the 
largest decreases are at points nearest to ( O , O ,  I)'. As one might also expect, the 
larger u and b, the smaller the dissimilarities between risks of unbiased and 
biased estimators. Our numerical results show that similarly as for the one-way 
classification model (see Swallow and Searle (1978)) the estimators benefit far 
more from adding observations in the form of more groups that from 
increasing group sizes. 

For the numerical study we selected the following N = (nQ) pattern 

with 25 readings. The valuk of a were selected similarly as in Zontek and 
Klonecki (1988), i.e., the risks have been calcuIated for a = (a,, a,, 1 -a, -a,)' 
and for o,, a, = 0(.2) 1.0, 0 < a, +a, < 1. There is no .loss of information in 
using this format, because the risk is a function of the variance components 
through being a function of the ratios a,/a,, a,/03 and G,. 

The following numerical results are provided. The entries in Table 1 present 
lower bounds of variances for unbiased estimators. Table 2 Iists variances of 
the best unbiased estimator at point (1/3, 1/3, 1)'. Tables 3 gives risks of the 
unbiased estimator associated with matrix (4.7) with ozl = a2, = 1/3 and 
Table 4 the risks of the unbiased estimator associated with every 3 x 3 matrix 
as well as with every matrix of form (4.6). The latter has a slightly larger risk at 
the specified point (1/3,1/3,1)' than the corresponding best unbiased estimator, 
but this disadvantages is outweighted by other desirable properties. In 
particular, when a, = 0, its risk reaches the lower bound for unbiased 
estimators. It might be a reasonable choice when no a priori information about 
a is available. 

When biased estimators are allowed for considerations, a remarkable 
reduction in the mean square error, as presented by Table 5, takes place. Table 
8 shows that the admissible biased estimator corresponding to the unit matrix 
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is at every point of the parameter space better thah any unbiased estimator. Its 
efficiencies w.r.t. the lower bounds given in Table 1 are, as it is shown in 
Table 9, never smaller than 13% and are above 50% over a large range of the 
values of the underlying variances that are most likely to be met in practice. 

If the degree of unbalancedness is high, then there may exist unbiased 
estimators better than the admissible biased estimators corresponding to the 
unit matrix in some neighbourhood of (0, 0, I)'. As one might expect this may 
occur as a result of a combination of three factors-number of total readings, 
number of levels and the degree of unbalancedness. For balanced nested 
classification random models (see Klonecki and Zontek (1981)) the admissible 
biased estimator corresponding to the unit matrix is better than the best 
unbiased estimator. 

TABLE 1 

Lower bound of mean squared error for unbiased estimation 

TABLE 2 

I I 

TABLE 3 

Mean squared error of the unbiased estimator corresponding to 
X = (1/3, 1/3, 1) 

- Mean s q ~ r e d  error of the unbiased estimator corresponding to Z = 
(li3 Ly3 :) 

c1 
a2 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

0.0 0.2 0.4 0.6 0.8 1 .O 

0.2137 0.2201 0.2556 0.3202 0.4139 0.5367 
0.2193 0.2447 0.2992 0.3827 0.4954 
0.3011 0.3454 0.4188 0.5213 
0.4589 0.5222 0.6146 
0.6929 0.7751 
1.0029 
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TABLE 4 

Mean squared error of the unbiased estimator corresponding to Z = C: D 

Mean squared error of the biased estimator corresponding to Z = c: 3 

1 
"2 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

I &  - Probability 10.2 

0.0 0.2 0.4 0.6 0.8 1 .O 

0.2397 0.2388 0.2626 0.3110 0.3839 0.4815 
0.2392 0.2562 0.2978 0.3640 0.4548 
0.3150 0.3499 0.4093 0.4933 
0.4671 0.5198 0.5970 
0.6954 0.7659 

-. 

1.0000 

TABLE 5 

Lower bound of mean squared error for biased estimation 

6 1  
n2 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

0.0 0.2 0.4 0.6 0.8 1.0 

0.0769 0.0523 0.0400 0.0400 0.0523 0.2000 
0.0523 0.0338 0.0277 0.0338 0.1360 
0.0400 0.0277 0.0277 0.1040 
0.0400 0.0338 0.1040 
0.0523 0.1360 
0.5000 

TABLE 6 

Mean squared error of the biased estimator corresponding to 
2 = (1/3, 1/3, 1) 

6 1  
"2 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

0.0 0.2 0.4 0.6 0.8 1.0 

0.2509 0.1152 0.1182 0.2600 0.5406 0.9599 
0.1155 0.0338 0.0909 0.2867 0.6213 
0.1182 0.0906 0.2017 0.4515 
0.2590 0.2853 0.4505 
0.5377 0.6182 
0.9546 

TABLE 7 
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TABLE 8 

Mean squared error of the biased estimator corresponding to X = I ,  

TABLE 9 

Efficiencies of the biased estimator corresponding to E = I ,  
w.r.t. the Iower bounds given in Tabie 1 - 

Numerical risk comparisons for N-patterns having greater degree of 
unbalancedness than the one here considered are available in Klonecki and 
Zontek (1988). 

6. Conclusions. Since there is now available a large class of admissible 
estimators for nested random unbalanced models, the problem arises which of 
them to apply in practice. This problem requires further detailed, throughout 
investigation. The numerous numerical results obtained by us seem to suggest 
the following. 

When unbiased estimation is preferred and when no a priori information 
about a is available, the admissible estimator associated with unit matrix 
appears to be the best choice. It becomes, in the subrnodel obtained by setting 
in the original unbalanced model the variance of the error terms to zero, the 
limiting admissible estimator (see Zontek and Klonecki (1988)) which coincides 
with the best unbiased estimator when all cells are filled. For that reason it is 

' very efficient for experiments (see Ahrens et al. (1980)) where the variance of the 
error terms is small in comparison with the other variances. This estimator is 
also distinguished for its flat risk function over the set of all possible parameter 
values. It is also a fortunate situation that of all the known admissible 
estimators, it and its covariance, are the easiest to compute. When there is 
available some a priori information about the estimated parameters, one 
can use either the MINQE(U, I) or the admissible estimator associated with 
matrix (4.7). 
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It is not as clear as above which one of the proposed admissible biased 
estimators to apply. When no a priori information is available, the estimator 
associated with the unit matrix appears again to be reasonable. Since it is 
better than all unbiased estimators under balanced nested dassification 
raidom models, one might expect that when the unbaIancedness of the 
accepted model is not to severe it is indeed the best choice. On the other hand, 
if we have some information about a alternative possibilities provide the 
estimators associated with a 1 x 3 matrix or a 2 x 3 matrix of form (4.61, and in 
case a11 bi are equal, also with a 2 x 3 matrix of form (4.7). - - 

-. 
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