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ASYN[PTOTIC MULTIVARIATE NORMALITY FOR THE SUBSERIES
VALUES OF A GENERAL STATISTIC FROM A STATIONARY
- SEQUENCE WITH APPLICATIONS TO NONPARAMETRIC
CONFIDENCE INTERVALS* '

‘BY

E. CARLSTEIN (CHAPEL HILL]

: Smnary Let {Z; —0 <i< +oo} be a strictly stationary e-mixing .
sequence with unknown marginal distributions and unknown dependence
structure. Suppose that, ‘given data Z':=(Z,.,,Z,,,,..- Z,,)
the statistic sl :=s5 (7 ) is a point estimator of the unknown
parameter 6. Ifa sample series Z? is available, then the subseries values
5,0<i<i+m<n) may be used to comstruct a monparametric
conﬁdence interval -on @ via ¢ither Student’s distribution or via the
Typical Value principle. The asymptotic justification for both methods
rests upon a more general result which provides necessary and

* sufficient condltlons for asymptotic multlvanate normalxty of subserles
values.

1. Introduction. The jackknife (T ukey [9]) and the typical-value principle
(Hartigan [6]) both employ subsample values of a general statistic as the
building blocks of confidence intervals on an unknown parameter. The idea
behind the jackknife is that the “pseudovalues” (which are based upon

subsamples of the data) are approximately iid. normal random variables;
~ hence, they can be used to construct approximate confidence intervals based on
- Student’s distribution. The idea behind the typical-value principle is that
certain sets of subsample values of a statistic are (approximately) “typical
values” for the unknown parameter; ie. each of the intervals between the
ordered subsample values will include the unknown parameter with (ap-
prox1mate1y) equal probability. ~ _

The jackknife and the typical- value pnnmple are both examples of the same
fundamental strategy for constructing confidence intervals. This strategy is to
provide an omnibus procedure, phrased only in terms of a general statistic and
the corresponding target parameter which it estimates. (This approach is also
shared by Efron’s [3] bootstrapped confidence intervals based on the percentile
method). Omnibus procedures have strong practical and intuitive appeal,
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because they are nonparametric, they are simple to use, and they can be
applied to a variety of situations — without requiring that new theory be
developed from first principles in each new scenario. (Hartigan (6, 7] and Efron

- [2] argue convincingly along these lines.) These omnibus procedures were

never intended to supersede the other confidence procedures which already
existed for certain specific situations. On the contrary, simple situations (where
other confidence procedures already existed) were frequently used as the
motivating cases in the developing the omnibus procedures. (For example,
Hartigan [6] dealt extensively with the sample mean from a continuous
symmetric distribution in his development of the typical- value principle;
Tukey’s [9] jackknife was motivated by the sample mean from a normal
distribution.) The extension of the omnibus procedures to more complicated
situations was usually justified by asymptotic arguments. In particular,
Hartlgans [7] theoretical justifications for the jackknife and typical-value
methods both rested on a more basic result, which itself was phrased in terms
of a general statistic. That result (his Theorem 2) gave conditions under which
(possibly overlapping) subsample values of a general statistic are asymptotical-
ly multivariate normal (with possibly nonzero covariances).

All of the work discussed above deals with subsample values of a general
statistic computed from i.i.d. data. If there is dependence in the data, then there
is an even greater need for omnibus confidence interval techniques that free the
user from the parametric modelmg and theoretical analysis. Indeed, the
dependence structure would provide one more unknown in the model and one
more complication in the theory. The present paper provides omnibus
confidence interval procedures for the dependent case, in the same spirit as the
Jackkmfe and typical-value procedures (as discussed above). Our procedures

" are analogous to the jackknife and typ1ca1 value methods in physical form:

they are phrased in terms of general statistics, but they employ “subseries” of
the data rather than “subsamples” (the former referring only to subsamples
composed of successive observations).” As in the iid. case, the theoretical
justification for our procedures is asymptotic. On the one hand, equi- lengthed
non-overlapping subseries values of a general statistic are shown to be
asymptotically distributed as i.i.d. normal random variables. ThlS justifies the
use of confidence intervals based on Student’s distribution, analogously to the
jackknife procedure. On the other hand, certain sets of linear combinations of
subseries values behave asymptotically like a set of typical values. This justifies
the use of these entities in constructlng confidence intervals via the typical-value
prmmple As in the iid. case, the fundamental property underlying our
theoretical Justlﬁcatlons is the property of asymptotic multivariate normality.
Our basic result (Theorem 1) establishes necessary and- sufficient conditions

under which ‘(possibly - overlapping) - subseries - values -of -a general - statistic

are asymptotically multivariate normal (with possibly nonzero covariances).
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Quite surprisingly, the conditions in Theorem 1 are virtually identical to those
in Hartigan’s [7] Theorem 2, even though the former permits dependence in
the data while the latter forbids it.

The results presented below assume no knowledge of the Inargmal
distributions of the data beyond stationarity. The only assumption about the
dependence is that it be a-mixing (a relatively weak assumption in the mixing
hierarchy [8]). The literature contains no other analogies to the jackknife or
the typical-value methods for dependent data. Freedman [4] has considered
applying the bootstrap to a linear model with autoregressive component; but,

as he emphasizes, the bootstrap calculations assume that the user has correctly o

specified the form of the underlying autoregressive model.

The next section presents basic notation and definitions. Section 3 contains
the fundamental asymptotic multivariate normality result for subseries values
of a general statistic from an a-mixing sequence (Theorem 1). Corollaries 1 and
2 (in Section 4) provide the justifications for confidence intervals based on
Student’s distribution and the typical-value principle. Section 4 also provides
several examples. The proof of Theorem 1 is deferred to Section 5.

2. Definitions and notation. Let {Z (w): =00 <i< + o0} be a strictly
stationary sequence of real-valued random variables (r.v.) defined on probabili-
ty space (@, F, P). Let F} (F respectively) be the o-field generated by {Z, co),

Zpr1(@), ...} (..., Z,- l(a)) Z,(w)} respectively).
~For N>1 wrlte a(N): —sup{IP{AnB} P{A}P{B}l AeFN,BeFO}

~and define a-mixing to mean lim o(N) =

N-o0 ;
Let t,(z4, .. z,,,) be a function from R"'—»R1 deﬁned for each m > >1s0
that ¢,(Z, (®), ..., Z,,(w)) is F-measurable. Suppressing the argument » of
Z;(°) from here on, we denote Z,: = (Zi+1, Zisas +-. » Zism) and th: =t (Z1).

E, V, and C denote expectation, variance, and covariance, respectively.
Indicator functions are denoted by I {- } ForB>0 write pXi = X-1{{X| < B}
and BX:= X —,X. ’

Let {a,} be a sequence of real vectors, and let 4 be a set of conditions to be
satisfied by the a,s as n— 0 (e.g. |a, | - o0). Then the notation

limx, =x
n
A

means that, for a single finite constant x, lim x, = x for all sequences {a,,}
n—o

satisfying A.

3. Main result. For each n > 1 the data Z° from {Z} is available. Cons1der '

a k-vector of subseries values T.: = (T},, Ton, .. 17,,,) where T;,: =t/ In

studying the asymptotlc multivariate dlstrlbution of T, it is natural to make
certain restr1ct1ons on the 1nd1ces k, my, ine ) o
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(@) k=1 is fixed. .

(i) 0 < my, < my,+r, <n for each ie{l,. k} and each n > L.

Condition (ii) requires that each subserles is in fact contained in Z?.

- (iii} r;, =00 as n— oo for each ie{l,..., k}.

Condition (iii) prohibits subseries which are asymptotically negligible.

It turns out that the asymptotic covariances between the T, ’s depend -
precisely upon the limiting proportions of overlap between subseries There-
fore it is convenient to pool the 2k integers {my, My +7i,: z< k}
for fixed n, and to order them and relabel them as C,: =-{cy:1 < i< k}
where 0< ¢, <C€7.. < Cyn <0 Thus :

Cin= min {m,} and cz ,= max {m,,,+r.,.}

‘ C1Kisk , 1<i<k _

To avoid notational coinplications, we assume that the ranks of {m,,
My, + 1yt 1 < i < k} remain the same for all n. That is, if we define I, (i) to be the
rank of m;, in C, (i.e. ¢1,¢,» = my), and if we s1m11arly define J (i} to be the rank
of my,+ry, in C,, then

(iv) I,() =1() and J,()) = J (i) for all n, for each ie{l,..., k}.

The condltlon guaranteemg asymptotlcally constant overlap _between
subseries is

(V) (j+1,n c,,,)/r,,,—»y,, as n—oo. for’ each ze{l ., k} and each
je{I@,..., J@—1}
Any collectlon of indices {k (ml,,, rm):1<i<k,nz=1} satlsfymg con-

ditions (i) through (v) will be called regular. leen a regular collection of
indices, the matrix X is defined to have entries ‘

min{J(i),J ()} -1 .
2= Z _ Vi Vijs - l,]E{l,---,k},
1 = max{I@i),I{)}": ’
where empty sums are zero. In particular, Tu=1 Vi.
The statistics defined by {t,,(-):m = 1} will be called ‘central wzth parameter
o2 if: .
@M L. lim Lim A2 P {}t0] >A}_~=0~

A— 0 n—wo

“and- - |
an | lim tim 4|E {29} =
A—+oon—w
and ‘ B
@ lim Im  |E{f% ) —eo? =0 Vo?e[o, 1].

A= ®©  tin/Wn =32, Wn = vptiin Z tin— 0

These conditions are virtually identical to those set forth by Hartigan [7]in

his definition of centrality for the independent case. Condition (I) controls
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the tails of t&’s distribution; (II) centers the statistic; (III) requires the statistic to
have covariance behaviour analogous to the sample mean of iid. r.v.s: the
squared correlation between the statistic and its subseries value should be
approximately equal to the proportion of overlap. Besides having some
intuitive appeal, and besides being the obvious analogy to the iid. case, our
centrality conditions are also the minimal sufficient conditions for asymptotic
multivariate normality of the subseries values of a general statistic from an
a-mixing sequence. Therefore it is natural to formulate our theoretlcal results
for general statistics in terms of centrality. .

THEOREM 1. Let {Z} be a-mixing, and let az be a positive constant.
{t,, () m > 1} are central with parameter o iff T, 2N, @, 0%2) as >0
whenever {k;(m;,,1:,): 1 <i<k, n>1} is a regular collection of indices.

mixing and the marginal distribution of Z, These assumptions vary greatly
from one situation. to the next (see, for example, Corollaries 7 through 10 of

[1], which establish centrality for sample means, sample percentiles, and.

smooth functions -of central statistics). Therefore these assumptions cannot be
explicitly incorporated into a unified general-statistic theory. In fact, one
reason for formulating a result in terms of general statistics is that the implicit

conditions for many special cases can be deduced from that single result. -

As a practical matter, the following alternative conditions (which are
analogous but more ~restrictive) are known to imply centrality under
o-mixing [1]:

9] {t9} are uniformly squared-integrable

and . ‘

1Y) _ _ lim E{t)} =0

and . v E

(III’) : lim (w i, )”2 C{t3,, tor} = a>.

w,.?v,.+u,./u,.—*ao

These sufﬁc1ent conditions are used in Corollarles 8 through 10 of [1] to
deduce centrality of the sample mean and sample fractiles. Furthermore, these
sufficient conditions are evidently not excessively. restrictive: they are satisfied
(for the sample mean) by the standard conditions of Ibragimov» and Linnik’s
[8] Theorem 18.5.3.

4. Applications to confidence mtervals Throughout this section assume the
following set-up: The statistic s&,: = s,, (Z%) is wholly computable from the data
Zi:, and does not depend upon any unknown parameters. Furthermore,
si, estimates the unknown parameter 6. Finally, put t.: = (si,—0)m*/2. The
notation of Section 3 remains unchanged.
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COROLLARY 1. Let ry =1, and m;, = (i—1)r,Vie{l, ..., k} and Vn, with
r/n—e*>0,1< r,, < kr, < nVn If {Z} is o-mixing and {t (")} are central
with. parameter ¢* > 0, then T, —>Nk(0 6?1,) as n—oo.

Proof.- Immediate from Theorem- 1.

Analogously to [7] _]uStlﬁCElthI‘l for the jackknife in-the mdependent case,
Corollary 1 prov1des the asymptotlc Justlﬁcatlon in the a- mlxmg case for
treating :

S l(w k”z/[Z[s"" S

as an r.v. w1th Student’s d1str1but10n on k—1 "degrees of freedom (Here
k-1 . .

St = )-skrfk)
Ay :
Observe that S, is free of the nuisance parameter o2 and hence may be used

as a pivot for constructing a confidence interval on 0.
Corollary 2 shows that, even under a-mixing, the subseries values s, can be
used to construct:a‘’ set of statistics - wh1ch are (asymptotically) typical

-values for 0.

COROLLARY 2. Let ml,,EO' and Myyq,=my+r, Vie{l, ..., k—1}
. _ : . k , ‘
and ¥n, with ry/n—g? >0 Vie{l,...,k}, 1 <rp< Y ra<n Vje{l, ..., k}
and Vn. B ' _
Let le{l, ..., k} be arbitrary but fixed, and write K: = {ie{l,..., k}
s.t. i # I}. Define: . : .

Vin: = [sTirril* + stnr. /2]/(r1/2+r, 1) for each icK, Vn.

If {Z} is a-mixing and {t, ()} are central with parameter o> > 0, then
lim P{Y I{V,,<0} =N} =1/k for each Ne{0,1,..., k—1}.

n—>oo ieK

In particular,

P{minV, < 0 < max V,,,}—>1 2/k as n— oo.
ieK : ieK - . :

"Proof. By Theorem 1, —>Nk(0 6’I,) as n—»oo For each ie K, write
Tt = T+ Tin; also write T,: = (Tj,:ieK). Then T, 2N, (@, £), where : =
02 (It-1+ [1]k=1)x x~1)- Using the logic in the secohd paragraph of Har-
tigan’s [7] proof of his Theorem 6, we may conclude that-the event
Ay = {exactly N of the 7:,,5 ie K, are less than 0} has asymptotic probability
1/k (for each Ne {0, 1, ..., k—1}). But since T, = (V;,—6) (r”2+r, /2) the event
Ay, is equlvalent to the event Y I{V,<0}=N. - C

“iek



Subseries based confidence intervals ' 197

According to Corollaries 1 and 2, we -may construct both types of

confidence intervals for 0 (using only the subseries statistics s&,) whenever {Z,}

is oa-mixing and {t, ()} are central with 62> > 0. We now describe several

standard scenarios where these conditions are met. Note that the normal,

double-exponential, and Cauchy AR(1) sequences are not only a-mixing but
also (see [5]) satisfy :

Y (@k)f <o for 0<e<1.
k=1 .

Example 1. If s5,,(-) is the sample mean and 6 = E {Z,}, then in either of
the following two scenarios we find that {t,(*)} are central with ¢ > 0:
la. For some 6 >0, _ - _ -

E{Z))*"%} <00, Y («(k)’**? <0, and Z C{ZO, Z} >0.

k=1 T i=—w
1.b. Z, is bounded,
Y ak)<oo and ) C{Z,, Z}>0.
k=1 i=—w®

Example 2.1f 5,,(-) is the n'* sample percentile and 6 is the n'* percentile of
Zy’s marginal distribution F, then the following regularity conditions guarantee
that {t,.(-)} are central with ¢? > 0: F is absolutely continuous and strictly
1ncreasmg, with derivative f satlsfymg f (0) > 0; also €0, 1)

Zoc(k)<o‘o and Z (P{Z,< OZ<0} n2)>0
. k=1 = —w .

Example 3. Suppose {Z,} is a-mixing and t(): =3, ()—0m'?is central
with parameter ¢ > 0. Then the transformed statistic s,,(-): = f(5,(-)) es-
timates the transformed parameter 0:= f(), and t,(-): = (m(-)—O) 12 g5
central with ¢ > 0 provided that f is dlfferentlable at § and f(0) # 0 (for

details see [1]).

5. Proof of Theorem 1. Without loss of generality, put ¢% = 1. First we
prove that centrality is sufficient for asymptotic multivariate normality. For
each ie{2, 3, ..., 2k} define {d;,:n> 1} and {w;,:n > 1} as follows: d;,: =
Cin—Ci— 1,0 U diy +>oo as n— oo then w;, = 0 Vn; otherwise we can choose w;, s.t.
0 < Wy < diy VY, Wy, — 00, and wl,,/d,,,—>0 asn— co. Foreach Ie{l, 2, ..., 2k—1}
and each n, write '

En: =t

di+1n~Wi+1i.n"
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We sﬁall beg_in by showing that

J@-1 . ' '

By =|Tp— Y, Ytml >0 as n—oo for each ie{l,..., k}.
, 1=1(}) ‘ : .

Observe that

JG)—1 T Im-1

) Bu<HWTl+ Y yulul+ 1 Tu— Y 7w alml for 4>0.

1=16) 1=1()
“-Let ¢ >0 be given.

By ) . -
" lim lim P{T,|>¢e} =0 and lim lim P {y; |t > s} =
A> @ n-o A-x n= o

for each 'l Let B;,(A) denote the term within the last modulus of equation (1).
We have -

) P{Bu(A) > e} <e *[E{(, T} -1+
: Ji)-1 -
+ > @ |E{A7-i'n',4t~tn} —yul + 75 |E{(4tm)*} — 1)+

1=10)
+2 Z YuPri |E{Ai;n',4£;‘n}|]'

IDSI<lI<IH-1

Now take lim lim of both sides in equation -(2). Except for the terms
A- o nswo

within the last summation, each term on the r.h.s. of (2) vamshes by (II}). Those
remaining summands with y;y,; # 0 are each dominated by IC {attn> atv ,,}|
+|E { st} E {4fra}. Now taking lim lim, we obtain zero, since the co-
: A= w0 n— o

variance term is bounded by 44%a(c;n—Cr+1,n+Wie1,n) (se€ [8], p 306) and
s1nce (IT) applies to the expectation terms. Combining these results establishes
B, > 0 for each i.

Let A:=(4;, 4,,..., 4)eR* be fixed. It will suffice to consider the
asymptotic dlstnbutlon of :

kK J@—1

G, = Z Z '1i5’1iﬁn

_ i=11=10)
inplace of that of 1-T, because
- k . ' N
A-T,—G,l < Y. |4 By >0.
. i=1 .

‘Write
2k—1

k : . . .
= Y g, where gi=Y Ay I{I(@<I<I@)—1}.
=1 - i=1 _ :
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- Define r.v’s. {tj,;1 <1<2k—1,n> 1} to have the same margmal dis-
tributions as {1 <1< 2k -1,n > 1} but with {f,: 1 << 2k—1} indepen-
dent for fixed n > 1. Let ' :

1k'17
= 2 lin'g
=1

Then, for every ueR,
2k—1

1=2 N-aow

|E {eXp {ian}}wE{exp {zu GIH<16 Y awy)I{lim dy=oc0}-20 as n->o

3

by the argument of Ibragimov and Linnik ([8] p 338). Hence we may s1mp1y
consider the asymptotic d1str1butlon of G, in place of that of A-T..
By Theorem 6 of [1], each £}, is marginally asymptotically N (0, 1)

(provided lim d;,,,, = oo) And since {f: 1 <1< 2k—1} are mdependent we

may conclnude that
D . 2k-1
G;,,—DN(O, Z glz)
’ I=1
Observe that )
2k—-1
X o= Z Z A
- =1 J
for Z;; as defined in Section 3. Since this argument holds for each AeR%
the sufficiency proof is completed.
To prove that centrality is necessary, consider any collection of mdlces w1th
k=2, my,=0<my <Myu+73 <71, <NV,

lim r,,/ry, = @2, lim my,/r,, = u?, and lim ry, = 00 for i=1, 2.
"Any such collection is regular, with 1 (1) = 1,J1)=4, 1 2 =2, J(2)=3,
=u 131 =0% Y5 =1-p?—¢* and 3, = 1. Therefore, by hypothes1s

G) (%, t™) 3N,(0,0;1,1;0) as n— 0.

The argument in the final parag_raph. of [1] can now be used to show that
(3) holds even if m,,/ry, is not convergent. Finally, centrality is implied by the
fact that (3) holds whenever r,,/r,, = 0% and ry, > my, +75, = > T2n = 00 (see [11,

- Theorem 6).
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