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Summmy. Let (2,: - m < i < + oo} be a strictly stationary a-mixing - . 
sequence with unknown marginal distributions and unknown dependence 
structure. Suppose that, given data 3;: = (Z,, ,, Zit=, . .. &+a), 
the statistic s:: = s,(zL) is a point estimator of the unknown 
parameter 0. If a sample series 2; is available, then the subseries values 
sl(0 < i < i +m < n) may be used to construct a nonparametric 
confidence interval on 8 via either Student's distribution or via the 
Typical Value principle. The asymptotic justification for both methods 
tests upon a more general result which provides necessary and 
sufficient conditions for asymptotic multivariate normality of subseries 
values. 

1. Introduction. The jackknife (Tukey [9]) and the typical-value principle 
(Hartigan [6])  both employ subsample values of a general statistic as the 
building blocks of confidence intervals on an unknown parameter. The idea 
behind the jackknife is that the "pseudovalues" (which are based upon 
subsamples of the data) are approximately i.i.d. normal random variables; 
hence, they can be used to construct approximate confidence intervals based on 
Student's distribution. The idea behind the typical-value principle is that 
certain sets of subsample values of a statistic are (approximately) "typical 
values" for the unknown parameter; i.e. each of the intervals between the 
ordere-d, subsample values will include the unknown parameter with (ap- 

-- 
proximately) equal probability. 

The jackknife and the typical-value principle are both examples of the same 
fundamental strategy for constructing confidence intervals. This strategy is to 
provide an omnibus procedure, phrased only in terms of a general statistic and 
the corresponding target parameter which it estimates. (This approach is also 
shared by Efron's [3] bootstrapped confidence intervals based on the percentile 
method). Omnibus procedures have strong practical and intuitive appeal, 
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because they are nonparametric, they are simple to use, and they can be . 
applied to a variety of situations - without requiring that new theory be 
developed from first principles in each new scenario. (Hartigan [6,7] and Efron 
[2] argue convincingly along these lines.) These omnibus procedures were 
never intended to supersede the other confidence procedures which already 
existed for certain specific situations. On the contrary, simple situations (where 
other confidence procedures already existed) were frequently used as the 
motivating cases in the developing the omnibus procedures. (For example, 
Hartigan [ti] dealt extensively with the sample mean from a continuous 
symmetric distribution in his development of the typical-value principle; 
Tukey's [9] jackknife was motivated by the sample mean from a normal 
distribution.) The extension of the omnibus procedures to more complicated 
situations was usually justified by asymptotic arguments. In particular, 
Hartigan's [7] theoretical justifications for the jackknife and typical-value 
methods both rested on a more basic result, which itself was phrased in terms 
of a general statistic. That result (his Theorem 2) gave conditions under which 
(possibly overlapping) subsample values of a general statistic are asymptotical- 
ly multivariate normal (with possibly nonzero covariances). 

All of the work discussed above deals with subsample values of a general 
statistic computed from i.i.d. data. If there is dependence in the data, then there 
is an even greater need for omnibus confidence interval techniques that free the 
user from the parametric modeling and theoretical analysis. Indeed, the 
dependence structure would provide one more unknown in the model and one 
more complication in' the theory. The present paper provides omnibus 
confidence interval procedures for the dependent case, in the same spirit as the 
jackknife and typical-value procedures (as discussed above). Our procedures 
are analogous to the jackknife and typical-value methods in physical form: 
they are phrased in terms of general statistics, but they eniploy "subseries" of 
the data rather than "subsamples" (the former referring only to subsamples 
composed of successive observations). As in the i.i.d. case, the theoretical 
justification for our procedures is asymptotic. On the one hand, equi-lengthed 
non-overlapping subseries values of a general statistic are shown to be 
asymptotically distributed as i.i.d. normal random variables. This justifies the 
use of confidence intervals based on Student's distribution, analogously to the 
jackknife procedure. On the other hand, certain sets of linear combinations of 
subseries values behave asymptotically like a set of typical values. This justifies 
the use of these entities in constructing confidence intervds uia the typical-value 
principle. As in the i.i.d. case, the fundamental property underlying our 
theoretical justifications is the property of asymptotic multivariate normality. 
Our basic result (Theorem 1) establishes necessary and suf6cient conditions 
under which- -(possibly- overlapping) - snbseries - values of - a- general statistic 
are asymptotically multivariate normal (with possibly nonzero covariances). 
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Quite surprisingly, the conditions in Theorem 1 are virtually identical to those . I 
in Hartigan's 171 Theorem 2, even though the former permits dependence in I 

the data while the latter forbids it. i 
The results presented below assume no knowledge of the marginal i 

distributions of the data beyond stationarity. The only assumption about the 
dependence is that it be a-mixing (a relatively weak assumption in the mixing 
hierarchy [8]). The literature contains no other analogies to the jackknife 6r 
the typical-vaIue methods for dependent data. Freedman 143 has considered 
applying the bootstrap to a linear model with autoregressive component; but, 
as he emphasizes, the bootstrap calculations assume that the user has correctly ' 

specified the form of the underlying autoregressive model. 
The next section presents basic notation and definitions. Section 3 contains 

the fundamental asymptotic multivariate normality result for subseries values 
of a general statistic from an a-mixing sequence (Theorem 1). Corollaries 1 and 
2 (in Section 4) provide the jbstifications for confidence intervals based on 
Student's distribution and the typical-value principle. Section 4 also provides 
several examples. The proof of Theorem 1 is deferred to Section 5. 

2. Definitions and notation. Let (Z i (w) :  -a < i < +a) be a strictly 
stationary sequence of real-valued.random variables (r.v.) defined on probabili- 
ty space, (a, F ,  P). Let FJ IF; respectively) be the a-field generated by (Z, (w), 
Z, , ,  (a), . . . } ({. . . , Zq- (w), 2, (w))  respectively). 

For N 2 1 write u ( N ) :  = sup(IP{AnB)- P(A)P{B}I:AEFN~, BEF;), 
and define a-mixing to mean iim a (N) = 0. 

N - r  m 

Let tm (z,, . . . , zJ be a function from Rm + R', defined for each m 2 1 so 
that t,(Z, (a), . . . , z,(u)) is F-measurable. Suppressing the argument w of 
Zi(-) from here on, we denote 2;: = (Zi+ ,, Zif 2 ,  . . . , Zi+J and tk: = tm(Zi). 

E, I.: and C denote expectation, variance, and covariance, respectively. 
Indicator functions-are denoted by I {.I. For B 2 0 write gX: = X - I  {(XI < 3) 
and 'X: = X-BX. 

Let (an) be a sequence of real vectors, and let A be a set of conditions to be 
I satisfied by the an's as la + ao (e.g. 1a.l a). Then the notation 

lim xam = x 
iP 

means that, for a single finite constant x, lim xan = x for all sequences (a,} 
n + m  

satisfying A. 
3. Main result. For each n 2 1 the data 2: from {Zi) is available. Consider 

a k-vector of subseries values R:  = (TI., T2., . . . , &.), where T.: = t:;. In 
studying the asymptotic multivariate distribution of T,, it is natural to make 
certain restrictions on the indices k, win, rh. 
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(i) k 2 1 is fixed. 
(ii) 0 6 mi, < mi, +rim < n for each i E {I, . . . , k) and each n 2 1. 
Condition (ii) requires that each subseries is in fact contained in 2;. 
(iii) ri,+co as n+oo for each i ~ { 1 ,  ... , k). 
Condition (iii) prohibits subseries which are asymptotically neghgible. 
It turns out that the asymptotic covariances between the T,'s depend 

precisely upon the limiting proportions of overlap between subseries. There- 
fore it is convenient to pool the 2k integers {mi,, mi, +rin: 1 < i 6 k) 
foi fixed n, and to order them and relabel them as C,: = {q,,: 1 < i < bk), 
where O < c,, < c,,-Gr.. < cZk,, < n. Thus % 

C l n  = min {G) and c,,., = max (mi, +ri,). 
' l i i s k  1 B i S k  

.. ---  
To avoid notational complications, we assume that the ranks of {mi,, 

min + r,,: 1 < i < k) remain the same for all n. That is, if we define I ,  (i) to be the 
rank of mi, in C,, (i.e. c,,,(~),, = min), and if we similarly define J, (9 to be the rank 
of mi, + rim in C,, then 

(iv) I,(i) = I ( i )  and J,(g  = J ( i )  for all n, for each i ~ { l ,  ... , k). 
The condition guaranteeing asymptotically constant overlap between 

subseries is I .  

(v) (c j+  ,,,-cjn)/rh -P y$ as n &a, for' each i c {1, . . . , k} and each 
j ~ ( I ( i ) ,  ... , 3(i)-1). 

Any collection of indices {k; (m,, rim): 1 < i < k, n 2 1) satisfying con- 
ditions (i) through (v) will be called regular. Given a regular collection of 
indices, the matrix E is defined to have entries 

where empty sums are zero. In particular, Zii = 1 Vi. 
- The statistics defined by {t, (.): m 2 1) will b& called-central with parameter 
a2 if: 

Q)  ' . , lim Iim A2P((tHI 2 A) = O 
A-rm n-+m 

and 

01) lim G ~ 1 ~ ; { ~ t . 0 ) 1  = O 
A+m n-r m 

and 
- 

(III) lim lim I E ( A t ~ n . A t ~ ~ ) - ~ ~ 2 ~  = O V e 2 ~ [ 0 ,  I]. 
A + m  u, /w,+~~.  wn P v n + u n 3 u n - r m  . 

These conditions are virtually identical to those set forth by Hartigan [7] in 
his definition of centrality for the independent case. Condition (I) controls 
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the tails of tjj's distribution; (11) centers the statistic; (111) requires the statistic to 
have covariance behaviour analogous to the sample mean of i.i.d. r.v.s: the 
squared correlation between the statistic and its subseries value should be 
approximately equal to the proportion of overlap. Besides having some 
intuitive appeal, and besides being the obvious analogy to the i.i.d. case, our 
centrality conditions are also the minimal suficient conditions for asymptotic 
multivariate normality of the subseries values of a general statistic from an 
u-mixing sequence. Therefore it is natural to formulate our theoretical results 
for genera1 statistics in terms of centrality. -. 

TI-~ZOREM 1. LPt {Zi) -be a-mixing, and let aZ be a positive constant. 
I 

1 { t ,  (.): m 2 1) are central with parameter g2 iff %N, @, o2 E )  a3 n + GO 

whenever { k ;  (m,, r,): 1 < i < k,  n 2 1) is a regular coIIection of indices. 

For a specific statistic, centrality may entail assumptions about the rate of 
mixing and the marginal distribution of Zi. These assumptions vary greatly 
from one situation. to the next (see, for example, Corollaries 7 through 10 of 
[I], which establish centrality for sample means, sample percentiles, and 
smooth functions of central statistics). Therefore these assumptions cannot be 

8 explicitly incorporated into a unified general-statistic theory. In fact, one 
I 

I reason for formulating a result in terms of general statistics is that the implicit 
conditions for many special cases can be deduced from that single result. 

I As a practical matter, the following alternative conditions (which are 
analogous but more restrictive) are known to imply centrality under 
a-mixing [ 11 : 

Q') {t;} are uniformly squared-integrable 

and 

01') lim E {t:} = 0 
n+ w 

and 

(I113 lim ( w , J ~ , ) l ' ~  C {tk,  ti:) = cr2. 
w, 3 v.+u, 3 u,+m 

These sufficient conditions are used in Corollaries 8 through 10 of [I] to 
deduce centrality of the sample mean and sample fractiles. Furthermore, these 
sufficient conditions are evidently not excessively. restrictive: they are satisfied 
(for the sample mean) by the standard conditions of Ibragimov and Linnik's 
[8] Theorem 18.5.3. 

4. Apglicatioas to confidence intervals. Throughout this section assume the 
following set-up: The statistic s;: = s, (pk) is wholly computable from the data 
pi, and does not depend upon any unknown parameters. Furthermore, 
s6 estimates the unknown parameter 6. Finally, put t;: = (& - 0) rnl t2.  The 
notation of Section 3 remains unchanged. 
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COROLLARY 1. k t  rim = r, and mi, = ( i  - 1) r, Vif (1, . . . , k )  and Vn, with 
r,/n *e2 > 0, 1 < r, < kr, < nVn. If {Zi) is m-mixing and ( t , ( - ) j  are central 
with parameter a2 > 0, then 5~~ (6, aZ  I , )  as n + oo. 

Proof.  Immediate from Theorem 1. 
Analogously to [7] justification for the jackknife in the independent case, 

Corollary 1 .provides the asymptotic justification in the a-mixing case for 
treating 

as an r.v. with Student's distribution on k - 1  degrees of freedom. (Here 

i = O  

Observe that S, is free of the nuisance parameter cr2, and hence may be used 
as a pivot for constructing a confidence interval on 0. 

Corollary 2 shows that, even under a-mixing, the subseries values sk can be 
used to construct a set of statistics which are (asymptotically) typical 

-values for 0. 
COROLLARY 2. Let ml+ 0 and mi+ I,,, = mi,+ri, V ~ E  (1, .. . , k- I} 

P k 

and Vn, with rm/n+@? > O  V i ~ ( 1 ,  ... , k), 1 G rj,< rim < n  V j ~ { l ,  ... , k) 

and Vn. 
Let I E  (1, . . . , k) be arbitrary but fixed, and write K :  = { i ~  (1, . . . , k) 

s.t. i # 1). Define: 

K,: = [srir r&I2 + SZ r:/2]/(rji2 + r:i2) for each i E K, Vn . 
If (Zi) is a-mixing and { t , ( . ) )  are central with parameter a2 > 0, then 

lim P { z  I{V, < 0 )  =N} = l/k for each N E { O ,  1; ... , k-1). 
n + m  ~ E K  

In particular, 

P(min F, < 6 < maxK,,)+1-2/k as n+m.  
i d  ~ E K  - - 

Pro of. By Theorem 1, %N, (6, a2 I,) as n + a. For each i~ K, write r,,: = T ,  + T,; also write E: = (Tm: i~ K). Then %N,-,  (6, 8, where 2: = 

a2(Ik-1 + [1 ] ( , - , ,  . Using the logic in the second paragraph of Har- 
tigan's [7] proof of his Theorem 6, we may conclude that - the event 
A,: = {exactly N of the %is, i E K, are less than 0) has asymptotic probability 
l /k (for each N E {0, 1, . . . , k -  1)) .  But since En = (F, - 8) (r;J2 +r:i2), the event 
A,, is equivalent to the event C I { q ,  < 8 )  = N .  

IEK 
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According to Corollaries 1 and 2, we -may construct both types of 
confidence intervals for 8 (using only the subseries statistics s;) whenever {Zi) 
is u-mixing and ( t ,  (-1) are central with a2 > 0. We now describe. several 
standard scenarios where these conditions are met. Note that the normal, 
double-exponential, and Cauchy AR(1) sequences are not only m-mixing but 
also (see [53) satisfy 

-. - - 
Ex.ample 1. If s, ( -1  is the sample mean and 8 = E {Z,), then in either of 

the following two scenarios we find that ( r , ( - ) )  are central with u2 > 0: 
1.a. For some 6 > 0, _ - 

w m 

E (IZ,] < m, (a (k))d/(2+a) < m, and C c {EL, z,) > 0. 
k =  1 i =  - m  

1.b. Z, is bounded, 

C a ( k ) < c o  and C(Zo,Zi)>O.  

Ex ample  2. Tf s, (-1 is the nth sample percentile and 8 is the dh percentile of 
z,,'; marginal distribution F,  then-the following regularity conditions guarantee 
that {t,(.)) are central with aZ > 0: F is absolutely continuous and strictly 
increasing, with derivative f satisfying f (8) > 0; also n ~ ( 0 ,  I) ,  

m m 

Col(k)<m,  and ( P ( Z , < ~ , Z ~ < ~ ) - ~ ~ ) > O .  
k = l  i =  - m 

Ex a m p  I e 3. Suppose {Zi) is E-mixing and Frn (.): = (s", (-) - is central 
with parameter a2 > 0. Then the transformed statistic s, (.): = f (s", (-)) es- 
timates the transformed parameter 8: = f (@, and t, (.): = fs, (-) - B)mllZ is 
central with aZ > 0 provided that f is differentiable at B" and f'(@ # 0 (for 
details see [I]). 

5. Proof of Theorem 1. Without loss of generality, put a2 = 1. First we 
prove that centrality is sufficient for asymptotic multivariate normality. For 
each i E (2, 3, . . . , 2k) define {din:n 2 1) and (win: n 2 1) as follows: din: = 

ch -ci- l,,. If din p co as n -t co then win = 0 Vn; otherwise we can choose win s.t. 
0 < wi, < di,Vn, win+ oo, and w,,Jd,+O as n+ co. For each EE{~,  2, ... ,2k- 1) 
and each ra, write 



198 Subseries based confuience intervals 
I 

j We shall begin by showing that 
J (iJ - 1 

B i n . : = J q n -  yli-<,150 as n + c o  for each i ~ { 1 ,  ..., k). 
I = I ( i )  

Observe that 
I J ( i ) -  1 J ( i ) - 1  

( 1  Bin I A ~ n I +  C ~ t i I ~ 6 n I  + I , i ~ n -  C ~ l i ' A 6 n l  for A > 0. 
1 = X ( i )  1 = I ( i )  

/ -Let r > 0 be given. 
BY (11, . -- - .- 

lirn lim P {lAZ,I > E )  = 0 and lim lim P {y l i  1~6.1 > E )  = 0 
A,, n + m  A + w  n + s l  

for each I. Let Bi,(A) denote the term within the last ibdufus of equation (1) .  
We have 

J ( i )  - 1 
+ C (2 yli IE(,T~.,L} - Y I I I  + Y I ' { ( A ~ > ?  > - I > +  

1 = I ( i )  

L 
I Now take lirn lim of both sides in equation (2). Except for the terms 
1 

I ~ - t m  n-tw 
within the last summation, each term on the r.h.s. of (2) vanishes by (111). Those 

I 

remaining summands with yl i .y lo i  # 0 aEeach dominated by lC{,Gn, AG.,}l 
+ IE {,Gn} E { , & n ) l .  Now taking lim lim, we obtain zero, since the co- 

A-a, n-rn t 

variance term is bounded by 4A2u(c,.,-ct+ + wl+ (see [8], p. 306), and 
since (11) applies to the expectation terms. Combining these results establishes 
Bin 5 0 for each i. 

Let A: = (A,, A,, ... , Ilk)€Rk be fixed. It will suffice- to consider the 
isymptotic distribution of 

in place of that of I-z, because 
k 

I ~ Z - G , I  d I A ~ ~ B * ~ o .  
i =  1 

Write 
2 k - 1  - k 

G n =  C t,-g,, where g , : =  C R i y ~ i I { I ( i ) < l < J ( i ) - l ) .  
1=1 i= 1 
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Define r.v.'s. (Zn: 1 6 E 6 2k- 1, n 2 1) to have the same marginal dis- 
tributions as (rh: 1 < 1 < 2k- 1, n 2 11, but with (Fh: 1 6 I 6 2k- 1) indepen- 
dent for fixed n 2 1. Let 

Then, for every u E R; 

by the argument of Ibragimov and Linnik ([!I], p. 338). Hence we mGy simply 
consider the kymptotic distribution of Gk in place of that of A.Z. 

By Theorem 6 d [I], each {, is marginally asymptotically N(O, 1) 
lprovided lirn dl+ ,,, = m). And since {z,: 1 < 1 < 2k- 1) are independent, we 

n+ ca 

may conclude that 

Observe that 
Zk-1 k k 

C = C C 4AjZij 
1 = 1  i =  1 j =  1 

for ,Zii as defined in Section 3. Since this argument holds for each A E  R ~ ,  
the sufficiency proof is completed. 

To prove that centrality is necessary, consider any collection of indices with 
. k =2,  mln =O<mzn<rnzn+rZn<rln  < n V n ,  

lirn r2,/rl, = e2, lim m2jrl, = p2, and lim ri,, = ao for i = 1,2. 
n+ m n+ m R+ m 

Any such collecti~n is regular, with 1(1) = 1, J (1) = 4, I (2 )  = 2, J(2) = 3, 
= p2¶ ~ $ 1  = e2, GI = 1-p2-e2, and y;, = 1. Therefore, by hypothesis, 

(3) ( t : n , t ~ ) S ~ 2 ( ~ , ~ ; ~ , 1 ; ~ )  a s n + m .  

The argument in the final paragraph of [I] can now be used to show that 
(3) holds even if m2,,/rln is not convergent. FinalIy, centrality is implied by the 
fact that (3) holds whenever r2,,/rln -+ e2 and rl, 2 mzn + rzn > r2, -+ oc (see [I], 
Theorem 6). 
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