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Ahsbact. The purpose of this paper is to study the asymptotic 
behaviour of trimmed sums of order statistics 

where the order statistic Xi,, arises from an i.i.d. sequence belonging to 
the domain of attraction of a stable law with index 0 < n: < 2. If we use 
a special representation for X,:. related to F-'(U,:=) coming from 
uniformly distributed random variables U,, ... , U,, then we can 
prove the convergence in probability or even %convergence for Y, in 
various cases. Special attention is devoted to the convergence of Y, to 
one-sided stable laws showing that we may choose min (k(n), r (n)) = 0. 
As an example we obtain the limiting distribution of student's t type 
statistics. 

1. Introduction. Let XI, X,, . . . be an i.i.d. sequence of real valued random 
variables lying in the domain of attraction of a stable random variable Ywith 
index u of stability, 0 < a < 2, i.e. there exist coefficients a, > 0 and b, E R such 
that 

n 

(1.11 an -' xi-bn %Y 
i= 1 

in distribution as n + CQ. It was suggested by LePage, Woodroofe and Zinn 171 
that only the extreme order statistics yield a contribution to the limit (1 .1 ) .  
Recently S. Csiirgo, Horvath and Mason [4] have shown that for each 
sequence k(n) such that 

(1.2) k(a)+ao and k(n)/n+O as n + c o  

the sum of the order statistics 



converges in distribution an n + a. Here XI :, < X2:. < . . . 6 XnZn denote the 
order statistics arising from XI, . . . , X,. In addition, these authors studied the 
behaviour of the trimmed sums 

n - k  

Their methods heavily rely on a new Brownian bridge approximation. The 
authors remarked that the technic also applies to asymmetric trimmed sums 
but they decided to do not carry it out in view of the ensuing additional 

-. --  technicalities. 
. The purpose of the present paper is to present an elementary approach to 
the asymptotic behaviour of (1.3) and (1.4) based on well-known technics for 
order statistics. The method also applies to' asymmetric trimmed sums and 
when (1.2) is violated. Note that for one-sided stable limit distributions Y the 
assumption k(n)+  a is not necessary. Among various applications we give 
a new probabilistic proof for the sufficiency of conditions (2.1) and (2.2) below 
for the convergence of the normalized sums (1.1) to a stable random variable. 
The proof is very rapid. Only the investigation of the correct centering 
constants needs more effort. In addition we are able to hnd a probability space 
and random variables with the same distribution as in (1.1) such that 
convergence in probability or even L1-convergence to the stable random 
variable Y holds. 
, In the sequel we will make use of some results for slowly varying functions, 
which can be found in [lo]. 

2. The behaviour of the central part of the sum. Let X denote a real random 
variable with distribution function F. By Feller 151, p. 577, it is well-known 
that X belongs to the domain of attraction of a stable law with index a, 
0 < ct < 2, iff there exists a function L varying slowly at infinity such that 

(2.1) G ( Y ) = P ' ( { I X I > Y ) ) = Y - = L ( Y )  asyTCQ 

and 

for some pe [0, 11, p+q = 1. Let G-I (s) = inf(t: G ( t )  6 s] denote the inverse 
of G and I;-' of F,  respectively('). Subsequently let us always choose the 
normalizing constants an of (1.1) as 

At this stage we recall a known representation for order statistics (see 121, 

(I) More precisely: F - I  is the inverse distribution function. 
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section 13.6). Assume that Y , ,  Y,, ... is an i.i.d. sequence of exponential 
distributed random variables. Set 

k 

(2.4) r, = C y ,  
i =  1 

Then it is well-known that the following random variables are equal in 
distribution 

If we t@e (2.3) into account, we see that (2.2) yields - 
-. - -- 

which suggests that the extreme order statistics yield a major part of the stable 
distribution. The next lemma shows that the central part of the sum (1.1) 
vanishes asymptotically. Special attention is devoted to the I!-convergence of 
the central part which has further applications. 

(2,l) LEMMA. Assme (2.1) and (2.2). Let k(n) and r (n) be integers such that 
O<k(n)<n-r (n)  < n and 

(a) There exists dn E R  such rhat 
n-rlnI 

in probability as n + m. 
(b) if in addition 

(2.9) (k (n) + 1) > 1/01 and (r (n) + 1) > l /a ,  
c' 

then the mean 
n-r(n)  

(2.10) cn=*E(a;' Xi:n)  
i = k ( n ) + l  

exists. U d e r  (2.9) we m a y  choose d, = c, in (2.8) and, in addition, (2.8) tends to 
zero in e. 

The proof of Lemma (2.1) (a) is elementary whereas part (b) requires further 
calculations. First recall the following well-known lemma for order statistics 
which is due to Bickel [ l j ,  Theorem (2.1): 

(2.2) LEMMA. Assurne that El, . . . , En are i.i.d. random variables with compact 
support on R. For each pair 1 < j < k < n the order statistics Xi:. and Xk:,, are 
non-negative correlated. 
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Proof.  By [I] the order statistics are positive correlated whenever El has 
a Lebesque density. A 'weak approximation of the distribution of E ,  by 
absolutely continuous distributions now yields the result. 

P roo f  of Lemma (2.2) (a). Introduce, for E > 0, 

whee 1, denotes the indicator function of a  set A. We see that 
n 

(2.12) V a r ( ~ ' ~ ( ' ) X J d m ; ~ [  j' x2dF(x)+ 
i =  1 

-- 
.. .- I - &a,,. eaJ 

+ a.' 8' P({lX1 I > u ~ E ) ) ]  = :f, (8) .  

An application of Lemma (2.2) for (E)X , ,  . . . , {')Xn yields 
. - 

t i-r(n) 

(2.13) V a r ( a i l  x te)Xi:n)<h(~) ,  
i= k ( n ) f  1 

From CS], p. 579, we recall that 

Let now E,JO be any sequence such that &,a,+ a. Then, from (2.14) and 
G(an) = l/n, we obtain 

(2.15) f , ( ~ & - [ l + ~ / ( 2 - a ) ] ~ G ( a ~ ~ / G ( a J = ~ - " L ( u ~ ~ / L ( u J + O a s n - , m ,  

which is a well-known property of slowly varying functions. Combining (2.13) 
and (2.15) we see that 

n - r ( n )  

(2.16) a;' ( ( " ) x ~ E ( ( ' ~ ' x ~ : , ) ) + O  in L?. 
i = k(n)+ 1 

From (2.6) we recall that, for fixed k~ N, 
- 1 (2.17) an X k : n  %-ql/aril/u and a ; l X n + l - k : n % p l l a ~ i l l a  

converge in distribution as n -+ co . 
In view of (2.7) there exists a sequence E , + O  such that an&, + co and 

(2.18) - P(A,J-tO as n j m ,  

where An = (Xk(n)+ 1 : n  < -anq,) u {Xn-l(n):n 2 
Since 

restricted on the complement A: of A ,  the assertions (2.16) and (2.18) 
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yield the desired convergence (2.8) and the proof of Lemma (2.1) (a) is complete. 
For the proof of Lemma (2.1) (b) it is not enough to consider (2.18) and 

(2.19). We need the following Lemma. 
(2.3) LEMMA. Assume (2.1), (2.2) and k > l / a .  For each E > 0 I 

n q / ~ =  

(2.20) E (a; Xi :n  4 -  m, -=,,(Xi. ,,)) -+ - q l J a  I y - l Ja (1  - ~ ~ ( k - 2 ) ) d y  
t = k  0 

= h ( k , ~ ) ,  as n + m ,  

where H,  denotes the distribution -. - - function of a Poisson random v-ariable with - 

mean y.. 
Proof .  Assumption (2.2) implies 

(2.21) G- ' ( s )  = s-LiaZ (s), 
! 

where 1 is a further function varying slowly at zero. The expectation (2.20) can 
be expressed by I 

n 

(2.22) a n - ' j F - l ( x ) l , - , ,  - , d (F- l (x ) )  x Af;::,lx)dx. 
i = k  r 

Here f i : , (x )  denotes the density of Ui: ,  arising from uniformly distributed i 
! i.i.d. random variables U,, . . . , U,, i.e. 
I 

An application of the transformation nx = y shows that (2.22) equals 

Thus by (2.2) and (2.21) the integrand of (2.24) tends for fixed y > 0 to 

We will prove that the dominated convergence theorem of Lebesgue can be I 

applied. Note that, for y > 0, 

Let us now choose S > 0 such that 

(2.27) k - l - S - l / u  > - 1  
I 

and K > 0 such that F-I Cyln) ,< -ELI, implies y ,< K uniformly in n. 1 

I 

i 
I 
I 
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By (2.21), (2.26) and IF-l(s)l 6 G-l ( s )  the integrand of (2.24) is domi- 
nated by 

Note that CY6 E(y/n)/,E (l/n)] lro, ab) is uniformly bounded. This is a con- 
sequence of the fact that 1 (y/n)/E(l/~) + 1 uniformly in y on compact sets 
C .c (0, m) and $ z(yA/n)/E(l/n) + 0 as y , lO (cf. [lo]). In view of (2.27) 
assertion (2.20) follows which proves Lemma (2.3). 

P r o o f  of ~em&-i (2 .1)  (b). Assume (2.7) and (2.9). By Lemma (2.3) there 
exists a sequence &,LO such that an&,+ oo and 

. . n 

(2.29) Q ;  C Xi:n I(- rn,-~,.,n,,)(Xi:n)+O, 
i = k ( n ) +  1 

n-?(a) 

(2.30) an-' C Xi:n l ( E d m , m ) ( X t : n ) + O ,  
i = l  

both in L1 as n+m. 
In accordance with (2.11) we may write 

If we center (2.31) at the mean, which obviously exists by Lemma (2.3), then 
we have convergence to zero in I? as claimed in Lemma (2.1) (b). Note that the 
first term of (2.31) can be treated as in (2.16), whereas the second and the third 
term tend in L? to zero by (2.29) and (2.30). Thus the proof is complet'e. 

(2.4) Remarks. (a) If k < I/a, then the mean of X k : ,  does not exist 
whenever q # 0 (use (2.21)). 
- (b) In view of the convergence (1.1) there exists a ~ L E R  such that 

provided the assumptions of Lemma (2.1) hold. We do not need the assumption 
k (n) + P. (n) = o (n) of [4]. In the special case, where Y is a one-sided stable 
distribution, i.e. min (p, q) = 0, we may choose k(n)  = 0 or r (n) = 0, whicfi also 
seems to be new. 
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In the next section we give a selfcontained proof of (2.32) without making 
use of (1.11, which also yields a stronger convergence result. 

3. Convergence in probability and L' to stable type distributions. First we will 
introduce new random variables Zi,, which are equal to Xi,, in distribution. 
Then we are able to prove convergence in probability or I? to Yfor the new 
random variables. 

Let Y,, Y,, . . . , Fly y,, . . . be two sequences of jointly independent random 
variables with common exponential distribution with mean 1. As in-(2;4) define 

and for o r ~ ( O , 2 )  set, for k E N, 

The law of iterated logarithm (LIL) shows that(2) 

A,: = (r;lia-yk) 
k = l  

is almost surely convergent (cf. (2.4)). By definition, 

is an independent copy of A,. It turns out (by the arguments below or known 
results of the literature) that A, is a one-sided stable distribution whose LCvy 
spectral measure vanishes on (- m, 0). For o l >  1 the random variable A, is 
centered at its mean, whereas the mean does not exist for a d 1. 

In the sequel we will introduce, more generally than in (2.5), 

for k = 1, . . . , n, where [ ] denotes the Gaussian bracket. As in (2.5) we see 
that for 

(=) Elementary computation yields 
00 

Iyr-k-llUl < co. 
k =  1 - -  

The LIL shows Irk- kl = 0 (Jk,/loglog k), and by the mean value theorem we obtain 
IT;- '/"- k-'Ial d KIT,- kl k-'/"-' for k 2 k,. Thus 3.3 follows since u < 2. 
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equality in distribution 

V.7) 
D 

. * -  9 xn:n) = ( z l # m ,  . - *  , Zrn.") 
holds. 

(3.1) THEOREM. Assume (2.1)-(2.3) and (2.7). Let k and r be non-negative 
integers. 

-(a) Then the following assertions hold: 

and 
n - r  r 

in probability as n -, co. 
The centering constants di,, are equal to 

E(Zi,,) if l /a  < min (i, n+1- i ) ,  
t i -  a,n = { 

otherwise. 

(b) Assume in addition that l/a < k + 1 < k (n) < n + 1 - l/a, and 
l / a  < n + 1 - r (n) < n -P < n + 1 - l /a ,  respectively, then the sequence of random 
variables (3.8) and (359, respectively, converges in L!. 

The proof relies on the following well-known lemma showing that for 
sufficiently large k the expectations of the random variables of (2.6) are 
convergent to each other. 

(3.2) LEMMA. Under (2.1)-(2.3) we obtain, for k > l/a, 

Lemma (3.2) can be deduced from 181 and [9], sectidn, 4.1. Note that (3.1 1) 
also follows from Lemma (2.3). The convergence of 

(3.12) a,lE(Xk:nlf-EO,,O)(Xk:R))+-q-llaEr ( i 'I u l ( -~ ,o) (G1la) )  

is obvious. The assertion (2.20) yields that 

becomes arbitrary small for large E .  Similar arguments show that the 
expectation of the positive part of Xk:, asymptotically vanishes. 
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P r o  of of T h e  orem (3.1). As in (2.6) we note that, for fixed i, 

(3.14) G- 1 z ~ , ~  + - q l / ~  r; 114 

and for i < [n/2] 

almost surely as pa + co . Note that it is enough to prove (3.8). Assume first that 
the conditions of (b) are satisfied. Then it is well-known that the convergence of 
the L!-norms and the almost sure convergence(3) show that (3.14) holds in L1. 
Consequently, -- 

-. .- 

in L1 as n + m .  Thus there exists a sequence kf(n)-4 k(n) such that 
-. - 

q/ (k' (n) + 1) + 0 and 

i = k + l  

in I! as n + m. On the other hand, it is easy to see by Lemma (2.1) (b) that (4) 

is a Cauchy sequence in L1. Hence (3.17) and the almost sure convergence in 
(3.3) imply that 

k' (n) k 

(3.18) an- C (Ziqn-  di,J -+ - pa ( A l  - C (Tr  l ia - yi)) 
i=k+l  i =  1 

in L? as n + oo . If we now observe that, by Lemma (2.1) (b), 
- k(n) 

(3.19) an-' C (Zi,n-di,n)+O 
i = k'(n)+ l  

in L! as n + oo, then the desired I! -convergence of (3.8) follows from (3.18). 
In the situation of Theorem (3.1) (a) we remark that for k < i < l /a  

assertion (3.14) remains true, which proves the convergence in probability of 
(3.8) in the general case. Hence the proof of Theorem (3.1) is finished. 

(3.3) Discussion. Theorem (3.1) has various applications which are 
mentioned below. Let us keep in mind that for each index set I c {I, . . . , n) we 
obtain by (3.7) the equality in distribution of 

and recall the definition of the centering constants d,,, (cf. (3.10)). 

(3) The assertion is known to be Vitali's theorem. 
(4) Note that f, is a Cauchy sequence in L? iff f,-fjl,, +O for all sequences j(n)-+ co, j (n )  < n. 
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(a) If we choose k (n) = n -r (n) with min (k (n), r (n)) + co , then 
n - r  m 

in probability as n + a, and in L! whenever 

(3.22) l / u < k + l  and l / u < r + l .  
-. - 

Note that Wo,, is a stable distribution. Thus we have convergence to 
Wo,, in L1 for a >  1. 

(b) Assume that k(n) and r(n)  satisfy (2,7). Then we conclude that 

R (n) n - r  
(3.23) ' [ C (Zi,n.-di, n) + C {zi,n - di.n)] + K,r 

in probability as n + co and in L1 if (3.22) holds. Note that for p = 0 the random 
variable Wono is one-sided stable and we may choose r(n) = 0. In this case we 
can substitute rk,n+l in the definition of Zk, ,  by rk (2.4). 

(c) If we are not interested in the pxplicit form of the centering constants b, 
in (1.1), then the proof above becomes quite simple and we-obtain a short 
probabilistic proof for the sufEciency of conditions (2.1) and (2.2) for the 
convergence to a stable random variable (1.1). Let us sketch the proof. 
From (3.14) and (3.15) we conclude that there are k'(n) and rr(n) such that 
min (k' (n), r' in)) + a, and 

in probability. If we now use Lemma (2.1) (a), and the almost sure convergence 
of (3.3), then there exists a bn such that (1.1) holds. 

Let sign($ denote the sign of a real x. 
Under the assumptions of Theorem (3.1) we obtain the subsequent result. 
(3.4) COROLLARY. Assume a < 8. (a) We haue . 

and 

n-r  m 

(3.26) a,-." z sign (Zi, ,,) lZi,.l ,pdr f;@'" 
i = n+ 1 -r(n) i = k + l  

in probability as n + oo. 
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(b) AssumeinQddition/?/ct< k+1 < k ( n ) < n + l - f i / u , a d f l / u < n + l - r ( n )  
G n -r < n + 1 -&, respectively. Then the sequence of random variables (3.25) 
and (3.26), respectively, converges in I?. 

Pr  o of. Define 

(3.27) xi = sign (Xi) lXiI 

having the inverse distribution function 

Thus Lemma (2.1) applies to sign(Zi,,) J ~ ~ , , l f l .  Assume first that the condi- - 

tions of-@) are satisfied As in (3.17) we obtain a sequence k' (n) = min (k (n), q (n)), 
where q ( n ) - ~ o o  as n+co and 

On the other hand, Lemma (2.1) yields 

k In) 
(3.30) a i B  (sign (Zi,n) IZi,,lP - E  (sign (Zi,,) lZi,,l9) + 0 in C.  

i = k 1 ( n ) + l  

From [6], section 5, we recall that, for pJa+ E < 1, E > 0 and i > j /a,  

uniformly in n. Applying a similar formula for IZ, + 1 - i , n l B  m )  (Zn+ 1 - i,J, we 
see that, for 0 < q < 1, 

k (n) 
(3.32) an-@ C E(lZi,.lB)+O as n+ CQ. 

i = k'(n)+ 1 

A monotonicity argument shows the same result for q = 0 or q = 1 .  
Combining (3.29j(3.32), we obtain as in the proof of Theorem (3.1) the result, 
which completes the proof of Corollary (3.4). 

4. Asymptotic independence. As an application of Theorem (3.1) we will 
establish an asymptotic independence result for sums of truncated random 
variables. Observe that under the assumptions of Theorem (3.1) (a) the random 
variables 

k (n) 

(4.1) an-' (Xi:n-di,n) 
i =  1 

and 
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are asymptotically independent with a joint distribution 

(4.3) (-41/" A , ,  A,) .  
It turns out that instead of the random variables (4.1) and (4.2) the 

investigation of truncated random variables yields the same result. We 
generalize results of [ll], [4] and [3], which proved, for certain centering 
constants C;j)(j  = 1, 21, the asymptotic independence of 

n 

(4.4) a l l  ( C x; - Cil)), -. 

.- 
i= 1 

and - 

with the same joint distribution as in (4.3). Here we write X+ = max (Xi, 0) and 
X i  = min (Xi, 0). Theorem (4.1) is an immediate consequence of Theorem (3.1). 

(4.1) THEOREM. Assume that conditions (2.1H2.3) are satisjied. Let E ,  + O  and 
&+O. We introduce the centering constants . 

(4.6) 
E(Xi:n l(-m,Ekan)(Xi:n)) if l/a < i < n+ 1 -l/a, 

otherwise, 

and 

(4.7) c y i  = 
E(Xi:n l(Enam,m)(Xi:,r)) if I/E < i < n+ 1 - l/uy 

otherwise. 

Then 
n n 

(4'8) ('il z CXi (I(-  m,Ekan) (Xi)-ci,'il, a,1 z KXi l(Ena,, m )  (Xi)-cl%) 
i = l  i = l  . 

converges in distribution to 

Proof.  Without restrictions we may assume that E ,  3 0 and E: < 0 since 
the variance of the central portion vanishes, i.e. 
. 

n 

14-10) Var (a ,  l C Xi I[- l,nlon, 1E~1a.l (Xi)) < [ J x2 dF (XI] + O  
i =  1 [ -  IEnlan, l~nlanl 

(cf. (2.14) and (2.15)). 
Note that (4.10) also holds whenever a,I&,I remains bounded since na; -P 0. 

Recall from section 3 that 
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Turning to the random variables Z , , ,  it suffices to prove the convergence in 
probability for each component of (4.8). Assume first that E, = EL = 0 for each n. 
In this case we write 

(4.12) c - and c!:; + 

for the centering coefficients (4.6) and (4.7). By Discussion (3.3) (b) we obtain 

in probability as n 4 op_.- Assume p # 0. Then X+ lies in the domain of 
attraction of the one-sided stable law pi/" A ,  and, similarLy, we obtain 

Combining (4.13) and (4.14) we conclude 

Note that for p = 0 assertion (4.15) follows from Discussion (3.3) (b) which 
then yields (4.14). Assume now that 6, 8 0 with E,-+O. Then 

n 

(4.161 a t 1  C CZi,nl(e,a,,m)(Zi,n)-~!~~-Z~n+~!%+I 
i = l  

n 

= an- l [ C ( 2 i . n  1(0,E,a.l (Zi,n)-E (Zi, n l (o ,E,a , l {Z i ,n) ) )  + 
i = l  

+ C E (Zi, n 1(0, enan] (Zi, n))I 
nf 1 - l j a s i c n  

By the same arguments as in ( 4 . 1 0 )  we see that (4.16) converges to zero in 
probability as n 4 co. Hence the proof of Theorem (4.1) is complete. 

Finally we will prove an asymptotic result for self-norming sums(') or 
t-statistics (see [7] and references therein) of the type 

In [7] it is proved that (4.17) converges in distribution if Xi belongs to the 
domain of attraction of a stable law with index ct < min(2, r), where Xi is 
assumed to be symmetric or ol < 1. 

Here is an example yielding convergence in probability for a more general 
class of distributions. 

('1 For a recent discussion of selt-normalized sums cf. M. Csor g6 and L. H or v h  t h, Asymplof ic 
. representation of self-normalized sums, Prob. Math. Statistics 9 (1988), p. 1527 [added in proof]. 

4 - Probability 10.2 
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I (4.2) Example. Assume (2.1H2.3) and let Zip ,  and dip ,  be as in Theorem 
(3.1). For ol < r 

I in probability as n + m. Here Wos0 denotes the stable law defined in (3.21). 
Note that the convergence in probability of the denominator of (4.18) can 

be seen as follows. Write 

Then we can apply (3.26) to ZA instead of Zi , ,  showing that we can define 
r (n) = n and P' = 0. Thus, by Corollary (3.4), 

n m 

In the case a < 1 the centering constants can be cancelled out. Note that 

I I 

then WoSo must -be substituted by WOgo +d, where d is a suitable shift. 
I 

5. Absolutely trimmed sums. In this section we will treat another trimmed 
I partial sum where the k largest absolute values are neglected. For references 

concerning this problem cf. [4] and references therein. In the case k = 0 we 
obtain a representation for stable random variables of the type introduced by 
LePage, Woodroofe and Zinn [7]. It turns out that for the special random 
variables &,the trimmed sums are convergent in probability. Subsequently we 
study the trimmed sums 

where v,, denotes the order statistic with the index n+ 1 - i  of the absolute 
values IZi,nl, i = 1, . . . , n. For each n~ N let CT,, = (aln, . . . , a,,) be a random 
permutation such that 

Then define 

(5.3) ai,  n = sign (Zni,, n). 

Note that there may exist different 6,  satisfying (5.2). This leads to different 
random variables (5.1) and (5.3). In all cases we obtain the same asymptotic 
result. Next we similarly treat the limiting model. Consider the sequence 
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Let I$ denote the i-th largest absolute value of the vector (5.4) and let a,, 
similarly as above, be the sign of the component of (5.4) which contributes to &. 
Note that in this case the random variables 6, are uniquely defined with 
probability 1. 

Before we can prove our main result we need some preparations. Let E, 

denote the one-point measure at x. 

(5.1) LEMMA. (a) (c?,)~,, is an i.i.d. sequence with common distribution 
PC, + qE7 1 -  

(b) The injnite vectors (8i)iEN and (V&,, are stochastically independent of 
.. -- 

each othq.  
(c) and Ti are equal in distribution for each i 2 1. 
(d) The random variable 

. .. - 
qr 

I 
I 

(5.5) r = C ViK- @-q)yS I 

i = l  
I 
I 

I 

is almost surely convergent. 
(e) There exists a constant y such that 

almost surely. 
P r o  of. (a) For fixed i E N and n 2 2i consider 

which converges by (3.14) and (3.15) almost surely to I I 

(5.8) (- q l / f f  r- 1 1 ~  - q l t ~  r; l l a ,  F- 1/01 p i l a  F; 1 1 9 .  I 
1 Y . - - ,  1 3 ... Y I 

Thus we see that 

(5.9) , and 6 i ,n-+6i  

almost surely as n + ao. Thus assertions (a) and (b) immediately follow from the 
asymptotic independence result of [7j, Lemma 1. Note that also (c) is 
a consequence of (5.9). 

In order to prove (d) and (e) note that 

exists. We will only sketch the proof of the existence of y. It is well-known that 
for a <  1 
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Thus we may restrict ourselves to the case a 2 1 .  Then it is well-known that 

We will show that y is the limit of a Cauchy sequence (5.10). Consider 
n < m. By (5.12) we obtain 

which becomes arbitrary small if n, m 2 no are large enough. The rest of the 
proof of (5.10) fbllows the same line. Without restrictions assume that 
O < p <  1 .  Define 

A 

(5.1 4)  M ( n ) =  C l111(6i) and N ( n ) = n - M ( n ) .  
i =  1 

Thus M (n) is binomial distributed at sample size n with parameter p. Note 
that 

Since 

N(n)  M (fi) 

(5.1 6)  ~ ( r ; l ~ - y ~ ) + A ~  and ~ ( ~ F " " - Y ~ ) + A ~  

almost surely as n+ co, it suffices to prove that 

almost surely. Thus by (5.10) it remains to prove the almost sure con- 
vergence of 

This assertion will be proved by a standard argument applying LIL to 
M(n). Note that (5.18) is bounded above by 

(5.1 9 )  ([.PI - min ( [ n p ]  , M (n))) ( M  (a) - 1) - l Ia  + 0 

almost surely as la + oo since 

(5.20) [np] - M (n) = 0 ((n log log a)'/'). 

The other inequalities are treated similarly and Lemma (5.1) is proved. 
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(5.2) THEOREM. Assume (2.1H2.3) and (2.7) and let k 2 0 be an integer. For 
the random variables Z i4 ,  and the centering constants di,,, (3.6) and (3.10) we have 

in probability as n + oo . - 
P r o of. Assume first that k (n) = n - r (n). Then 

n 

(5.22) 6' (Zi , , -d i , , )  -q l Ja  A l  +piP A ,  
. - -  i =  1 

in probability. By (5.9) 

I 

in probability as n + co . Combining (5.22) and (5.23) we obtain the result from 
I 

Lemma (5.1) (e). If k (n) < n-  r(n), then we may apply Lemma (2.1) showing 
that the central part tends in probability to zero. Thus the proof of Theorem 
(5.2) is complete. 

! Concluding remarks. Assume above that k = 0 and k (n)  = n -r (n). Then, by 
Theorem (5.2), 

in probability. Note that 

The random variable r is up to the centering constants of the same type as 
the random variable S* in [7], Theorem 1. 

For ol > 1 the results of section 3 show that (5.24) converges in P .  

Acknowledgment. The author benefits from a discussion with D. M. Mason. 
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