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Abstract. Optimal stopping and impulsive control problems are 
studied with a generaI, dependmg on the state of the process discount 
rate g. The criteria considered and results obtained are closely related 
to the type R(g)  of a discounted semigroup (q). For tho case where 
R @ )  < 0, the continuity of value functions and the form of optimal 
stopping and impulse strategies corresponding to the ordinary dis- 
counted functional are shown, The case R (9) = 0 is studied under the 
assumption of uniform ergodicity and existence of a bounded positive 
eigenfunction for (q, and then the ergodic stopping and impulsive 
control with long run average cost problems are solved. 

1. Introduction Throughout the paper we shall assume that X = (a = D [O, a), E), 
F,, F, x,, B,, P,) is a given nonterminating, right continuous, homogeneous 
Markov process with values in (E, b), a locally compact, separable state space 
E, endowed with Borel a-field 8. Moreover, we make the assumption that 
Markov semigroup (P,), which corresponds to X (by definition P, f (x) = Ex f 1x3 
for bounded Borel functions f), transforms the space C, of continuous 
vanishing at infinity functions on E into itself. 

We shall consider functionals which, are discounted with rate g(xJ, 
depending on current position x, of the process X. We assume g belongs to the 
space C of all continuous bounded functions on E. Since we admit g to be also 
negative, it should be rather called "interest rate" in these cases. Nevertheless 
we shall use the notion "discount" in a general context and allow both positive 
and negative discount rates. Another interpretation of g will be given after 
formula (6). 

For g EC define the semigroup 
t 

(11 s f  (4 E,(~XP(- Is(x3 d 3 f  (xJ). 
0 

From f7] (Lemma 4, Chapter 11, Section 4), we get 
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LEMMA 1. Tf: C, + C ,  for t 2 0. 
Control problems we shall study in the paper depend on the asymptotic 

bahaviour of the sernigroup (v) which characterizes the type of semigroup. 
Def in i t ion  1. R(g)  !!! inf t-'logllV11, where 11 1 )  stands for supremum 

t 1 0  

norm, is called type of the semigroup (v). 
PROPOSI~ON 1. The following formulations are equivalent: 
(i) R is a type of the semigroup (c). 
(ii) R = iim t-I logllyll. 

t-+ m . - 
(iii) R = inf ( p  : lim sup I le-at Tf  11 = 0) . 

t - m  
m 

(iv) R=inf(fl:Un+pl(~)!!! j e - ( u * b l t ~ l ( x ) d t ~ ~  for euery a > 0 } .  
0 

(v) R = t- l log r,, I., = sup {lkl:A E s(q)),  a (V) being the spectrum of c. 
P r o  of. The equivalence d (ii), (iii), and (iv) is obvious. For the proofs of (i), 

(ii) and (v) we refer to [9]. 
In the paper we study various stopping and impulsive control problems. 

The purpose of optimal stopping is to find Markov time T minimizing the 
functional 

(2) 1, (z) = E,  ( j exp ( - J g Cx,) dr) f (x$ ds + ~ X P  ( - S Q (4 dr) ~ ( ~ 3 1  
0 0 0 

for f, CEC, as well as to characterize the value function 

v (x) = inf Ix (T) . 
r 

We consider also an impulsive control T! defined as a sequence' (z,, 5,) of 
Markov times z, and state random variables 5,. Under control Vthe process is 
shifted at times zn to l,. With each impulsive strategy Vwe associate a suitable 
probability space a = P and measure P t  (for a construction we refer to [14] 
and [19]). Denote by h) a controlled trajectory, i.e., for w E 0, y, (w) = x:- ' (w,), 
if t E [z,- T,[, z,, = 0, y,, (a) = 5, (a1, . . . , a,), where xf stands for the i-th 
path of the constructed on 0 controlled process (see [14]). Then x;y1 is the 
position of the controlled process before instantaneous shift to ti. 
- If- R (g) < 0, then we minimize the functional 

m T i  

+ C ~ X P  ( - C g (YJ dr) h (xf [ ti)) 7 

i =  1 0 

where h E C(E x E), and h (z,y) 2 a > 0, f (2) 2 0 for z, y E E. 
The case R(g) = 0 is investigated under additional assumptions: 
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(A,) X is uniformly ergodic, i.e. there exist L, y > 0 and an invariant 
measure T, such that for every V E  b& - the set of all bounded Bore1 func- 
tions, t 2 0, 

(A,) g(x) = ~ls(x)(u(x))-l, UEC(E), u(x)  2 b > 0 for X E E ,  U E D ( A )  - domain 
of weak infinitesimal generator A of X. 

Examples of processes sadsfying (A,) are given in [15]. Sufficient conditions 
for which (A,) is 'satisfied are formulated in section 5. The proofs of the 
conditions are based on an analytical result concerning the existence of strictly 
positive eigenfunctions for a class of positive linear operators, which we prove 
in Appendix. For R(g) = 0 we consider impulsive control problem with the 
long run average functional - .  

t S 

(6) J,  (V) = lim infE,Y { j  exp (- j g (y,)  dr) f b,) ds + 
t+co 0 0 

71 

+ C xri 6 texp ( - 1 9 b5) ds) (c (xi; '1 + d (ti))) x 
i = l  0 

1 .  S 

x (E:: {J""P(- Jg(~,)dr)ds})-l> 
0 0 

where c(y)La>O, fb), d b ) > O  for ~ E E ,  c, d, f € C .  
The function f in (4) and (6) can be interpreted as "holding" or "running" 

cost, while h (x, l) and c (x)+ d (0 stand for the cost incurred for the shift from 
x to e. For g = 0 the functional (6) coincides with the long run average 
functional studied in [15] ,  [17], [Ig], and [19]. In general case, the term g can 
be read as stopping or failure intensity. The fact that we allow g to be also 
negative corresponds to the selfrestoration of the model. 

When R(g) = 0, we shall use the following convention: 

Ex {G (r)} lim i d  Ex {G (r A T)] ,  .. . 

(7) T-m 

for any functional G, H and Markov time z. 
Main result of the paper is a complete characterization of optimal stopping 

and impulsive strategies for problems formulated above. An idea of a general 
(also negative) discount rate has appeared first in [22]. Positive general 
discount rates were considered for controlled diffusions in [ I l l .  The paper 
generalizes results known for a constant discount rate from [14], [15], [17], 
[19], and [20]. Moreover, in a special case for g = 0, optimal ergodic stopping 
and impulsive control with a long run average cost are obtained in a shorter 
and simpler way than in [15]. The technics applied in the optimal stopping are 
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based on suitably adapted old results due to Fakeev [4], [ 5 ] ,  and Mackevicius 
[12], [13]. Ergodic impulsive control is studied following ideas from 1191. 

2. Regularity of optimal stopping value function-case R(g)  < 0. The aim of 
this section is to prove the continuity of value function v(x) of stopping 
problem (2), when R (g) < 0. We start with the following 

LEMMA 2. If R (g) < 0, then 

Proof.  By Proposition 1 (iv), (8) is obviously satisfied. Since g is bounded, 
for 0 < < IR@)l there exist8 an a > 0 such that 

m t 

p ( ~ ) ~ ~ , ( J e x p ( - ~ ( g ( x ~ ) - ~ ) d s ) d ~ ) ~ a > O  for x e E .  
0 0 

Thus 
Z 

0 G SUP sup Ex (exp (- 1 g (x,) ds)) 
s 3  i X E E  0 

L 

G a-  SUP sup E x  {exp (- 1 g (x3 ds) P ( 4 )  
s 3 t  X E E  0 

00 t 

= a-I sup sup{J exp(- J(g(xJ-f l )d~)dte-~~) 
73 t X E E  r 0 

< a-I IIpll e-Pt+O as t+ co 

and this completes the proof of (9). 
THEOREM 1. If R (g) < 0, then v E C. 
Proof .  Let, for T > 0, 

We show first that v, approximates u, uniformly in x, as T+ co. In fact, for any 
E > 0 there exists a z,(x) such that 

Then, since Uo If 1 (x) is bounded, R @) < 0, 
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T 

+ E  G (211cll+IIUo l f l l J ) su~E~{ex~( -  j g ( x r ) d r ) ) + ~ + &  
r B T  0 

uniformly as T+ m. . 
Thus it remains to prove the continuity of vT (x) .  This fact does not depend 

on the type of the semigroup and is formulated independently of Theorem 1. 
PROPQSITION 2. Let 

Z A T  S 

(11) v g x )  = inf Ex( J exp(- j g t x , ) d r ) f  (x$ds+ 
T E % ( T )  o o 

T A T  

+ exp ( - J g (x,) dr) c (x ,  A T)), 
0 

where ( is a family of all Markov times with ualues in 
(0, 2 - " T ,  ... , 2-"(2"-1)T, T ) .  Then GEC and 

(12) _ v';. ( x )  -+ vT (x )  unifornaly on compact sets as n + oo . 
Proof.  Put, for k ~ b C ,  .- 

Qt k ( x )  = min { c  (x) ,  Ex {j exp ( - J g (x,)  dr) f ( x 3  ds + ~ X P  (- 1 g (x,) dr) k ( ~ 3 ) ) -  
0 0 0 

Then (see [13],  Lemma 4)  

Thus, from Lemma 1, I$,, EC. 
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The proof of the convergence (12) is similar to that of Th. 1, [12]. 
LEMMA 3. For any compact K, E > 0, T >  0, there exists a compact set 

K ,  2 K such that 

(14) supP,(x,$K, for some t f [ O , T J ) < & .  
XEK 

LEMMA 4. Let Q denote metric in E,  compatibb with the topology such that 
every closed bull is compact. Put O,(x) = (y E E ,  e (x, y )  < 6)). 

Then 

Both Lemma 2 and 3 are based on the continuity of semigroup (P,) on C,. 
Lemma 3 is proved in [13], Lemma 2. The proof of Lemma 4 is almost 
identical to Lemma 2.5 in [2], where a compact state space was considered. 

For any Markov time r < T define 

Take E > 0  and the compact set K. Since c is continuous, there exists 
a S > 0 such that ~ ( x ,  y) < 6(x E K ~ ,  Y E  E) implies Ic(x)- c(y)l < E .  From (15) 
one can find an N such that, for n 2 N ,  Markov time T < T 

(17) s u p P x ( e ( x , , ~ , ) > ~ , ~ , ~ K 1 ) < ~ .  
X E K  

Thus 

< 1 1  f 1leTII9 I I  ~ - " T + ~ ~ T I I  9 I I  +4EllclleTII 9 I 1  + llclleTll g I I  (1 -eZ-"TIIg I I ) ,  

This estimate is uniform for x E K. Letting n -+ co, since E could be chosen 
arbitrarily small, we obtain the uniform convergence of v v o  vT on compact set 
K. Thus (12) is satisfied and the proof of Proposition 2 is completed. 
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Since v", C, we have v ,  E C, and the proof of Theorem 1 is also completed. 
Remark. Continuity of the value function u for R(g)  < O can be also 

obtained via the penalty method approach (see [14], [la], [21]) .  Nevertheless, 
since Proposition 2 is applied later on to the case R(g)  = 0 ,  we preferred an 
alternative proof based on ideas from [12].  The convention (7) can also be 
applied to the case R(g)  < 0, since by virtue of quasileftcontinuity of X (Th. 
3.13 [2]) and Lemma 2, for any Markov time z, I, ( T  A T )  + i , ( z )  as T- t  co , 
and (7) does not lead to ambiguity. 

-. 
3. Optimal stopping--&ham equation. We shall now prove that the value 

function v is a solution to so-called Bellman equation written either in a form of the 
optimal stopping problem (24) or identity (28) for a suitably chosen Markov times t, 

First of all we recall and adapt some results from [4]. Let k be a family of 
bounded Markov times, i.e. such Markov times r for which there exist 
constants K (7) < cn such that r (a) < K (7) for w E 62. Taking into account 
convention (7) and Remark following Theorem 1 ,  we see that for R(g)  < 0 the 
infimum over all Markov times z is equal to -infimum over ~ € 5 .  Thus to 
characterize the value function v(x) ,  it is suficient to consider Markov times 
from the family F only. Put 

Suppose ( ~ ( x , ) ) ,  2 0  is bounded, right continuous. Fix x E E. Then right 
continuous submartingale 

r s T 

(19) h, inf essE. {j f ( x3  exp (- 1 g (x.) dr) ds + exp (- I Q (x.1 dr) c (x.1 IF,} 
T<TE.T 0 0 0 

is the largest right continuous submartingale majorized by f,. The proof of the 
existence of right continuous version of (19) as well as its maximality property 
is similar as in [5], Th. 1 and 2. Moreover, following [4 ] ,  Th. 1, we obtain 

f 

For any z EF, define family of random variables 

(21) h (7) = inf ess E, { j exp ( - j g (5) dr) f (XJ  + exp (- 8 (x.1 dr) c (x.1 Fr). 
r , < a ~ F  0 0 0 

Obviously h( t )  = h,, P ,  a.e., for t 2 0. If h(z )  = h,, P, a.e., for Markov time 
z, we say that an aggregation property for T is satisfied. 
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PRO~SITIQN 3. Suppose v (x , )  is bounded, right continuous. 7hen, for 
any z E F, 

(22) h(r)  = hT Px  a.e., 

i.e. aggregation property is satis$ed. 
Proof.  We exploit some ideas from the proof of Proposition 2.14 in [3]. 

Let Y(Q) be the family of Markov times from F with rational values. Then, 
for z E 5 (Q), h ( z )  = h,, P ,  as .  Moreover, from Lemma 2.13 in [3], h (z), z  E F, 
are right continuous in expectation. Therefore, for z E Y, Ex h  (z) = E,h,. Let 
T E ~ .  Thensfor some T > O,z(o) < Tfor ~ E Q .  For A~F,,definez,(T) = zif 
w E A and T if m 4 A. Clearly, z, (T)  is a Markov time from F. and 

Exh b n  (T)) = Ex { ~ n  h ( ~ ) }  +E,  {xE\A~UJ]  = Ex ( h u ( ~ i )  = E x  I~a'r) + E x  ( ~ a n h , ) .  

Finally, for any z E Y, A E PI, Ex { x ,  h ( z ) )  = Ex {x, h,) . Thus (22) holds. 
COROLLARY 1. If V(XJ is bounded, right continuous, then 

for any TEF.  
Proof.  Since both left and right hand sides of (20) are right continuous, for 

any ZEY we have 

L S I 

h, = 1 f (x,)  exp ( - 1 g (x,) dr) ds f exp (- 1 9 (x,) dr) v  ( ~ 3  f', 
0 0 0 

Now, from (22) we obtain (23). 
The results formulated so far in this section will be applied to show that 

v satisfies the so-called Bellman equation (see (241, below). 
PROPOSITION 4. Assume v (x,) is right continuous, bounded. Then 

T s r 

(24) v (4 = inf Ex ( j (exp ( - J g (xr) dr) f ( x 3  ds + exp t - j g (xr) dr) v ( ~ 3 ) .  
FES 0 0 0 

Proof.  We follow the proof of Lemma 1.4 and Lemma 2.5 in [19]. 
Let 

Then 6 ( x )  < v ( x ) .  Let a, 2 z, a,, TEY be such that 
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Then 
U" x 8, 

v (x) < E, ( j exp (- 1 g tx,) d ~ )  f ( 4  d~ + ~ X P  (- 1 9 Ix,) dr) c(%JI 
0 0 0 

and, letting n + co, from (23) we obtain 
r s z 

(26) (4 Ex h (z) = Ex {J exp (- J g (x,) d r ) f  (x,) ds + exP (- S g (x,) dr) v b3S. 
0 0 0 

Since r was arbitrary, u ( x )  < v'(x) and7 consequently, v ( x )  = v"(x). 
The next proposition provides formulas for some MarkovDtimes for which 

the infimum in (24) is achieved. 
P ~ o w s ~ n o ~  5. Suppose v(x,) is right continuous,- bounded, and for c > 0 

define 

Then, for any deterministic T2 0, E > 0, 

Proof. We adapt the proof of Lemma 1.5 and 1.6 in [19]. 
For any a > 0 there exists a &optimal bounded Markov time z(6) and 

lim I, (2 (6)) = v (x) . 
8 1 0  

For T2 0 
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Letting 6J0, from (29) we obtain 

lim P,  {t (6) < z, A T )  = 0. 
6 10 

Since (h,) is submartingale, we have 

(3 2) v ( x )  = E, ho G E, {hTc T A ria)) Ex { h z ~ >  = { h  (' ('))I. 
Letting 610, from (29) and (31) we get 

(33) v ( 4  6 lim Ex {kc A T A .,dl) = E x  ( h ,  A T I  = E x  ( h  (% A 

44 0-- 

6 lim Ex (h(2 (6))] = u (x). 
S l O  

Therefore, from (20), 
rcn T s re n T 

v ( x ) = E , { ~ , , ~ }  =Ex( J ev(-jg(xJdr)f lxJds+ex~(-  J Q ( ~ J ~ ~ ) V ( % ~ A T I ) ,  
0 0 0 

and the proof is completed. 

4. Optimal stopping and impulsive control - case R (g)  < 0. We are now in 
a position to solve the optimal stopping problem for R ( g )  c 0. 

THEOREM 2. If R { g )  < 0, then 

(34) z, = inf (s 2 0: v (x$ = c ( x 3 )  

is an optimal stopping time, i.e., 
(35) v ( 4  = Ix ('0) - 

Proof.  Since, from Theorem 3.13 in [2], the Markov process X is 
quasileftcontinuous, for 7' 2 0 (adapting the consideration following formula 
(3.21), Chapter I in [14]) we obtain 

(36) Z , A T ~ ~ ~ A ~ P P , . S .  for E-0. 

By Theorem 1, VEC, SO we can apply Proposition 5 and again from the 
quasileftcontinuity of X and (36) we get 

0 0 

Thus 

- 
Since, from (9), 

7 

d llv -ell sup {Ex  exp (- f g (x,) dr) )  + O  as T+ co, 
T ~ T  0 
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using the quasileftcontinuity of X and LRmma 2 we obtain (35). 
The remaining part of this section is devoted to impulsive control. We 

assume we can shift to a compact set U c E only. Write 

(40) v, (x) = inf J,(v) 
v 

and 

(41) Mq(d inf [h(x ,  t)+rp(S)]. 
- - -. 

- - 

THWREM 3. Suppose--R ( g )  < 0. Then v, E C and is a unique solution to the 
Bellman equation 

I (43) 2 ,  = inf ( S  2 0: ui (4 = Mu, (xJ}, 

and Let [ ~ b b  be such that 

(44) Mu, (x) = h ( x ,  c b ) ) + v l  (g (XI). 
Then V = Ifn, Fm), where 

(45) Z1 = z0,  ... , Z n + l  = Z,+Z~O& zny ... ' 

Fn=[(x:;') for n = 1 , 2 ,  ... 

is optimal. I 

P r o  of. If v, E C, then, from Theorem 2, z, is optimal in (42). Since h is 
strictly positive, < -+ oo, and taking into account (9) we easily obtain (see [14]) 
that any bounded, continuous solution to (42) coincides with vl given by (40). 

It remains to show the existence of solution v ,  to (42). But it easily follows 
from Theorems 4 and 5 [23]. 

5. Eigenfunctions and eigenmeasures. As we suggested in Introduction, 
assumptions (A,) and (A,) play a fundamental role in the method we\apply to 
solveergodic control problems. We formulate first the conditions under which 
(A,) holds, and then under (A,) and (A,) prove a kind of uniform ergodicity of 
the semigroup (v) in the case where R(g)  = 0. 

We start with the following 
Defini t ion.  A function p E C, p 2 0, p f 0, is called eigenfunction for 

a semigroup (c) iff there exists a j such that, for every t 2 0, c p  ( x )  = er p (x). 
PROPOSITION 6. k t  (E, 8) be a locally compact separable space, rn a probabi- 

lity measure on E. Suppose (PJ is a semigroup corresponding to right continuous, 

5 - Probability 10.2 
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nontermimting, howroge~leous Markov process on E, and, for every t 2 0, there 
exist 

(i) rn > q (t) > 1 such that Pi: L4 (m) + C (E), 

(ii) g > 1 suck that for every rp EL'$ (m) = {q E E(m): q~ (x)  2 0, m a.e.1 one 
can find a(q) 2 0 for which 

Then, for every g~ C(E) ,  there exist a unique j and a unique u p  to 
nfultiplicative constant u E C (E),  u (x )  3 b > 0 for x E E and some b > 0, such that 

-- - - 
(47) y u ( x ) = e i t u ( x )  fur t > O .  

Proof. Suppose g E C (E). Consider the semigroup (m. From (i), in the 
same way as in the proof of Lemma 4, Section 4, Chapter I1 [7], we show that 
c: L4 (m) + C (E). 

Since, for cp E LQ, (m), 

(48) e-'llgll Pt(p(x) < q ( x )  < etlleI p q ( x )  for x E E ,  
from (46) we get 

(49) e-'lIgl' a(p )  6 cp (x)  4 Q elllgli a ((PI 
and v 1 (x)  3 e-*llgII. 

Therefore we can apply Proposition A, (see Appendix). Thus for every t 2 0 
there exist unique y ,  and u,EC(E), Hutll = 1, such that Fu, = y,ur Let 
n u ,  = f l y , .  Since, for any n, c-1 u, =&"-I ul, one can put ern-I = u,  with 
y,-I = e p -  . Since pu, (x )  is right continuous, P u ,  = efju, for every t > 0. 
The proof of Proposition 6 is completed. 

As a corollary we obtain Theorem 4.1 [6]. 
COROLLARY 2. Suppose (E,  8) is compact and the transition probability 

P, (x,.) has a density p (t, x, y) with respect to probability measure rn, such that, 
for some a (t)  and A (t), 

(50) o < a ( t ) < p ( t ,  x, y ) < A ( t )  for x, ~ E E ,  t > 0 ,  

(51) lim J I P  (t, x, Y )  - P (t, x,, y)l m (dy) = 0 for t > 0. ' - - . X + X O  

Then, for any g€C(E),  there exists a unique strictly positive eigenfunction 
u for semigroup (T'f). 

I Proof. One can easily check that the assumptions of Proposition 6 are 
satisfied. 

Remark. Some other criteria for the existence and uniqueness of eigenfun- 
ctions can be found in [8]. 
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From proposition 2 if u is (e) eigenfunction, i.e. Tf u = dt u for t 2 0, then 
j < R(g). If, in addition, u is bounded away from zero, i.e. u(x) 3 b > 0 for 
x E E, then clearly j = R (g). 

COROLLARY 3. Suppose R (g) = 0 and there exists strictly positive eigen- 
function u for semigroup (q). Then (A,) is sati$ed. 

P r  o of. We have T;Ju = u for t 2 0. Thus u E D  (A) - domain of weak 
infinitesimal operator and Au-gu = 0, i.e. g = Auu-I. 

The following Lemma will be useful in calculations. 
LEMMA 5. Under (A,), u = u for t 2 0, and - 

-. - . 
t 

(52) . Ix3 exp (- Au (x$ (u (x,)) - as) 
0 

is P,  martingale. 
' P r o  of. From (A,) the right hand side derivative d +  (T; u)/dt = 0 for t 3 0. 
Therefore q u  = u for t 2 0, and as an easy consequence we get (52). 

The characterization of optimal strategies in [I71 and [20] was.in terms of 
invariant measures corresponding to semigroup (P,). In general discount case 
we need an analog of invariant measure ,for semigroup (C). 

D e f i  n i t i on. A probability measure n, on E is called an eigenrneasure for 
(q) iff, for any E b&, 

THEOREM 4. Assume (Al) and (A,). Then there exists an eigenmeasure n, for 
(v) and a measure 7Eg such that for some E and v 2 0, 

(54) sup 1E q (XI-u (x) ii, (u-I) ng (9) I < IIv u-l H llull L-'' for rp E 6 8 .  
XEE 

Proof. From Lemma 5 

is a transition probability. Obviously 

(56) . _ c,P(t, x, B) < P ( t ,  x, B) < c,P(t, x, B) for BE&, 

where c, = bllull-.l e-'I1g11, c2 = IIullb-l etllgll. 
Denote by p (t, x, y) and pu (t, x, y) the density of the absoluteIy continuous 

component of P(t,  x, -) and PU(t, x, a), respectively, with respect to x. Thus 

(57) ~ ~ ~ ( t , ~ , y ) < p ~ ( t , ~ , y ) < c ~ p ( t , ~ , y )  a.e. for Y E E .  

For our purpose we choose a version of pu (t, x, y) for which (56) is satisfied 
everywhere. 
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Consider an embedded discrete time Markov process (x.~),, = l, l, ... for 
A > 0. Clearly (see for example Proposition 5.6 [16]), (x,,) is aperiodic. Since, 
under (A,), condition 5.5 (c) from [I] is satisfied, there exist a set CE$, 
x (C)  > 0, and n such that 

(58) inf p(nd, x, y) > 0. 
x ~ E , y s C  

From (56) also 

Therefore condition 5.5 (b) from [1] is satisfied and there exists a unique 
probability invariant measure x ,  for P" (nd, x, -) such that, for some 0 < 6 < 1 
and k > 0, 

(60) llP"(nA, x, v)-iig((p)lI < kdnllqll . for any F E  bC: 

Thus the transition semigroup P;, corresponding to Pu (t, x, a) is quasicom- 
pact and from [20], section 2 (see also Th. 6 [16] in a more genera1 case), if, is 
a unique invariant measure for P" (t, x, .) and there exist Land v > 0 such that 

(61) Ilp"(t. x, d-ri,(r)ll 9 L e-'llsll for rp ~ b 8 ,  t 3 0. 

Define, for BE 8, 

(62) n, (B) = j (U (x))- % (dx) (j (u (x))- ' E, (dx)) - I .  
B E 

Then n, is eigenmeasure for Tf and, from (61), 

Taking into account (62) we obtain (54). 

6. Ergodic optimal stopping. Under (A,) and (A,) from (54) and Lemma 5 we 
define 

OC 

where, by convention (7), Ex { . . . ) is understood as 
0 .  

Clearly ZEC. Since, for Markov time TEF, 
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the optimal stopping value function v ( x )  (see (3)) satisfies 

Let v (x) -2 (x) = q (x), c (x) -2 (x) = Y (x). Instead of optimal stopping 
problem (3) it is sufficient to consider 

'z 

+ e x p ( - [ g ( x , ) d r ) Y ( x J ) ,  where YEC. 
0 

I 

THEOREM 5.  Suppose (A,), (A2) are satisfied. If ng( f )  > 0,  then q, VEC(E), 
and 

(67) z, = inf { s  2 0 : v  (x,)  = c (x,)) = id{s 2 0:q (x,) = !P(x,)) 

is can optimal stopping time. 
Proof. It is sufficient to restrict ourselves in (66) as well as (3) to Markov times 
z for which 

T A T  

+exp(- j ~ ( X , ) ~ ~ ) Y ( X T A T ) )  GIIYII. 
0 

If (68) is satisfied, then 'also - - 
T A T  S 

(69) lim inf(Ex ( j exp ( - J 9 (x,) dr) u (x,) 7.5 (u - z, ( f 1 ds )  - 
T + m  0 0 

From Lemma 5 and (69) 
T A T  s T -s 

(70) lim inf Ex ( 1 exp ( - g lx,) dr) E ,  (exp ( - g (x,) dr) u ( X T  - 
T+ m 0 0 0 



and 

Therefore, for any fixed N 2 0, 
T .. 

(72) Iiminf~,(z A T A N ~ X P ( -  j g ( x , ) d r ) )  < M 
T + w  0 

and 
.. - - N T - N  

(73) limin€E, (T A T A Nexp(- J g(x,) dr) Ex,  (exp(- j g(x , )dr)  x 
T - r m  0 0 

From Lemma 5 again, we obtain 
* 
b 

(741 E, (T A Nexp(- J g ( x , ) d r ) )  < ~ l l ~ f l b - l  = MI. 
0 

Finally 
N , 

(75) E , { ~ z 2 ~ e x ~ ( -  Sg(x , )d r ) )  
0 

And we can restrict ourselves to Markov times z satisfying (75). We 
continue the proof of continuity of q  similarly as in Theorem 1. Let 

From Proposition 2, qN E C. Let for E > 0, T, ( x )  E 9 be &-optimal 
for q t x ) ,  i.e. 

Then 
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I But 

N 

= II Tllb-' Ex (%re N exp (- J gcxr)dr)u(xN)) -  
0 

Thus, taking into account (751, we have 0 < qN (x)- q ( x )  < E +  M ,  N - I  for 
a constant M ,  independent of z, and N. Therefore q, 4 q uniformly as N + a, 
and q~ C. -. 

It remains to show the optimality of Markov time zo. From Proposition 5, 
for z, = id (s B 0: q 1x3 3 'P (x,) - E )  we have 

Similarly as in the proof of ~georem 2, (36)-(37), for any T 2 0 we obtain 

hence 
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Replacing 'Y by q in {68)-(75) we get 
T 

(82) E , ( ~ ~ ~ b ~ e x p ( - -  Sg(x,)dr))  < M I  T-I. 
0 

From (80) 

W A T  T 

+ ~ x P ( -  S gCx,)&)~lx~,T)}+~~{~~~Tex~(-jg~~~ldr)(g(xTI-Y(~~))). - 
0 0 

Letting T+ m, by virtue of (82) we finally obtain 
r o  A T 8 

q ( x )  = l iminf~ , (  j expl- [ g ( x , ) d r ) u ( x , ) ~ ~ ( u ~ ~ ) x ~ (  f ) d s +  
T-'m 0 0 

ro A T 

+ exp (- g Cxr) dr) (%, A TI) . 
0 

Thus z, is optimal for q, and from (65) also for v. 
Remark. If u constant, then g = 0. Under (A,), ergodic stopping in this 

case was studied in [I51 and similar results to Theorem 5 were obtained. The 
proof, based on penalty method approach, was rather complicated and we 
could not adapt it to our general situation. Thus we not only generalize, but 
also simplify the results from [15]. 

7. Impulsive control with long run average cost criterion. In this section we 
restrict the family of admissible impulse strategies. Namely, we consider only 
strategies V = (z,, 5,) such that -- 

. . 

where z, is a Markov time, 

and cn+, is adapted to a (x:, zn < s < z,+ ,) and can take any values in E. 
Let 
--. 

(84) vz  (x) = i d  Jx (V), 
v 

where the infimum is over strategies V characterized above. Put 
r S 

(85) I. infinf Ex {j exp (- l g (x,) dr) f (x,) ds + 
x r 0 0 
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where E, { j (. . .I} (E.  ( j  (. . . ) ~ ) - l  we understand as 
0 0 

T A T  T A T  

liminfE,( j ( . . . ) ) ( E x {  (...)))-I. 

T - r m  0 0 

Let 
T S 't 

(86) w (x) = inf Ex {J exp ( - g (x,) dr) f b6)- A) + exP ( - 1 B (x,) dr) c (x3) 
T 0 0 0 - 

THEOREM 6. Suppose -(-Al), (A,) are satisfied, and (E, 8) is compact. Then, - 

($7) v 2  ( x )  = 1, 
and only two cases are possible: either . . 

(i) ng( f )  2- ;l and then w E C and strategy P = (fn, 21, consisting of shifts at 

(88) ?, = inf{s 3 O:w(x,) = c(xJ), ... , = fn+SIB,,, 

n = 1 ,  2, . . . to 1, such that 

w ( ) + d ( % )  = inf [ w ( ~ ) + d ( ~ ) ]  
PEE 

is optimal; OP 
{ii) %( f) = A, and the strategy "do nothing" is optimal. 
Proof. Almost identically as in (2.12H2.26) 1191, we obtain v, (x) 2 1. Let 

Then, from (85), 

(89) inf inf N ,  (z) (D, (z))- = 0 
X T 

Put 
m 

(90) z2x) = E.(J  ex^(- j g ( x ~ d r ) ~ ( x . ) - ~ - u ( x ~ ) r i , ( u - l ) n ~ t f - ~ ) )  as). 
0 0 

In virtue of (54), Z ~ E  C. Moreover, 
e s 

(91) N x ( z )  = zI(x)+Ex ( j"ex~( -  S ~ C x ~ ) d r ) u ( x ~ ) ~ ~ ( ~ - ~ ) ~ ~ ( f  -A)ds+ 
0 0 

7 

+exp(- Sg(x , )dr ) (c (x , ) - z (x , ) ) )+d(x) .  
0 
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Since, for o E F, from Lemma 5 

and 

we have %( f -A) 2 0. Otherwise we obtain a contradiction to (89). 
Suppose x,( f ) = 1. Then, from (54), there exists the limit 

I Since, from (93), D,(T)+ c~ as T+ CO, for strategy Vm = "do nothing" we 
obtain Jx(Vm) = A. Thus in this case v,  (x) = A and Vm is optimal. 

Suppose now K, (f ) > A. There exists a sequence z (E) E F, x (E) ,  E 40, such 
that 

N x  (E, IT (6))  (D* (c] (4) - + 0 as E 0. 

If D,(,, (z (8)) + m, then taking into account (92) and u (y) 2 b for y E E, we 
obtain 

lim inf Nx (,) (z (E)) (D, (,) (z (E))) - 2 fig (u - I) xu ( f - 2) > 0. 
E +  03 

Therefore D,(,, (z (8)) should be bounded, and hence N,(,) (z (8)) -P 0 as E + 0. 
Also 

Since, by the definition of 1, we have inverse inequality, we infer that 

(94) inf [w (y) + d (y)] = 0. 
- Y E E  

From Theorem 5, w e  C, and 7, is optimal for w. For strategy V defined in 
(88) we obtain (put z, = 0) 
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~ r o m  (921, (93), (88), (80), (also Proposition 5) and (94) we get 

Therefore v, (x) = A and P is optimal when ng (f ) > A. The proof of 
Theorem 6 is completed. 

We formulate and prove now a useful criterion for the existence of positive 
eigenfunction for positive linear operator. 

P m o s r n o ~  Al.  k t  (E, 8) be locally compact, separable, a probability 
measure on E, and T:E(m)+C(E),  q > 1, a positiue linear operator. Assume 
T l ( x )  2 a > 0 for X E E  and there exists a Q > 1 mch that, for every 
q~ L4, (m) = (9 €E(m) ,  q ( x )  2 0 m a.e.1, one can find a (q )  2 0 for which 

Then there exists a unique up to positive multiplicative constant function 
u E C (E)  and a constant y > 0 such that YA= yu, and u 2 0 is uniformly bounded 
away j+om 0, i.e. u (x)  2 b > 0 for x E E. 

Proof.  Put 

Let L be a positive linear functional on K such that L(1) = 1. Define 
N = { ~ E K :  L ( q )  = 1). Obviously N is closed convex. If q~ E N, then 
L ( q )  = 1 2 li(cp), and IIqIILgcm) < Q i i(q) d 8 .  Thus N is also bounded and 
therefore weakly compact. 

Let S: L4 (m)3v +(v + 7'') (L(v + Tu)) - l .  It follows almost immediately that 
S : N + N  and is weakly continuous. According to Tikhonov fixed point 
theorem ([IO], Th. 2.7), there exists at least one fixed point I E N .  Therefore 
L(ii+TiI)iI=ii+Tii and L(Tii)ii = TI .  Since L(E) = 1, i i ( i i ) > O  and 
I (x) 2 ii (~2) rn a.e. But Tl (x )  2 a > 0 for x E E. Thus TE (x )  2 a (u) T (1) (x)  
2 aZ(ii) > 0 for X E E ,  and L(Tii) 2 aZ(fi) > 0. 
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Define u (x) = Tii (x )  ( ~ ( ~ i i ) ) - ' .  Clearly, u E C (E) ,  Tu (x)  = Tiijx) for x E E, 
and u ( x )  2 orii(ii)(ll~iil[)-' = b > 0 for X E E .  

It remains to show the uniqueness fo u. 
Suppose Tu, = y ,  u,, Tu, = y, 1.4, for y,, y ,  > 0, u,, u, E C, u1 (x), u, (x )  > 0 

for X E  E. Without loss of generality assume y, 2 y,. Let 
d = sup (8 2 0; #? u, (x) 6 u1 (x )  for every x E E) .  Since u,, u, E K, there exist a,, 
a, > 0 such that a, d u ,  6 @a,, a,  gu, < @ a ,  m a.e. and 

u1 -du, 3 a ,  - d ~  a, 2 (a, -de a,)(@ a,)-' u, rn a.e. 

Thus, because of_ maximality, d > 0, Also, for some a > 0, 

which contradicts the maximality of d, and the proof is complete. 
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