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ON SOME STOPPING AND IMPULSIVE CONTROL PROBLEMS
WITH A GENERAL DISCOUNT RATE CRITERIA

BY

LUKASZ STETTNER (WARSZAWA)

Abstract. Optimal stopping and impulsive control problems are
studied with a general, depending on the state of the process discount
rate g. The criteria considered and results obtained are closely related
to the type R(g) of a discounted semigroup (T%). For the case where
R(g) < 0, the continuity of value functions and the form of optimal
stopping and impulse strategies corresponding to the ordinary dis-
counted functional are shown. The case R(g) = 0 is studied under the
assumption of uniform ergodicity and existence of a bounded positive
eigenfunction for (T%), and then the ergodic stopping and impulsive
control with long run average cost problems are solved. .

1. Introduction. Throughout the paper we shall assume that X = (Q=D[0, x), E),
F,, F, x,, 6,, P,) is a given nonterminating, right continuous, homogeneous
Markov process with values in (E, &), a locally compact, separable state space
E, endowed with Borel o-field &. Moreover, we make the assumption that
Markov semigroup (P,), which corresponds to X (by definition P, f (x) = E, f (x,)
for - bounded Borel functions f), transforms the space C0 of contlnuous
vanishing at infinity functions on E into itself.

We shall consider functionals which  are discounted with rate g(x,)'

depending on current position x, of the process X. We assume g belongs to the
space.C of all continuous bounded functions on E. Since we admit g to be also
negative, it should be rather called “interest rate” in these cases. Nevertheless
we shall use the notion “discount” in a general context and allow both positive

-and negative discount rates. Another interpretation of g will be given after

formula (6).
For geC define the semigroup

(M T¢f () = g (eXp(—fg(X)dS)f(xt))-

From [7] (Lemma 4 Chapter II, Section 4), we get

Epis
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LemMmA 1. T?:Cy—C, for t 2 0.
Control problems we shall study in the paper depend on the asymptotic

bahaviour of the semigroup (7¥) which characterizes the type of semigroup.
def

Definition 1. R(g) = inf ¢t~ !log||T?l|, where || || stands for supremum
t>0
norm, is called type of the semigroup (TY).
ProrosiTion 1. The following formulations are equivalent:
(i) R is a type of the semigroup (T?).
(i) R= hm ¢! logl|T”|l

(iii) R = “inf {B:lim sup [le=# T?|| = 0}.
t— oo

(iv) R mf{B Upipl(x) = & "‘“"L”"Tgl(x)dteC for every o > 0}.

(v) R =t"1logr, r,=sup {M.I Aea(Th}, o (T?) being the spectrum of TY.

Proof. The equivalence of (ii), (iii), and (iv}) is obvious. For the proofs of (i),
(i) and (v) we refer to [9].

In the paper we study various stopping and impulsive control problems.
The purpose of optimal stopping is to find Markov time t minimizing the
functional o

@ L= E{fop(- gl fox)ds+ep (- [ge)dr)c(x)

for f,ceC, as well as to characterize the value function

(3) - _ v(x) = infI_(1).

We consider also an impulsive control ¥, defined as a sequence (z,, £,) of
Markov times 7, and state random variables £,. Under control ¥ the process is
shifted at times 7, to &,. With each impulsive strategy V' we associate a suitable
probability space & = Q" and measure PY (for a construction we refer to [14]
and [19]). Denote by (y,) a controlled trajectory, ie., for we @, y,(w) = X~ (w,),
if te[ty-1, [, 70 =0, y,, () = &, (@;, ..., w,), where x| stands for the i-th
path of the constructed on @ controlled process (see [14]). Then xi; ! is the
position of the controlled process before instantaneous shift to ¢,
TIf"R(g) <0, then we minimize the functional

t

@ 1) = B {[exp(=Ja0)dn) ) ds+

+ 3 exp(=Yg0)dn (1, &),
0 .

i=1

where he C(E x E), and h(zy)=a>0, f(z2)=>0 for z, yeE.
The case R(g) =0 is investigated under additional assumptions:
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(A,) X is uniformly ergodic, ie. there exist L, y >0 and an invariant
measure 7, such that for every ¢ eb& — the set of all bounded Borel func-
tions, t = 0,

©) 1P, —m(@)ll < Le™[lgl.

(A) g(x)=Au()(u(x))"", ue C(E), u(x) > b > 0 for xcE, uc D(4) — domain
of weak infinitesimal generator 4 of X. ,

Examples of processes satisfying (A ) are given in [15]. Sufficient conditions
for which (A,) is 'satisfied are formulated in section 5. The proofs of the
conditions are based on an analytical result concerning the existence of strictly .
positive eigenfunctions for a class of positive linear operators, which we prove
in Appendix. For R(g) =0 we consider impulsive control problem with the
long run average functional - ,

6) J, (V)—hmmeV{fexp( '_zg“(y,)dr)f(ys)ds+

t—> 0

+ Y gu<rexp(— :f:g(ys) ds)(c (D + 4 (E)}

x(E% {g exb(— i'g(y,)dr)ds}) _i,

where c(y)=a >0, f(y), d(y) =0 for yeE, c, d, feC.

The function f in (4) and (6) can be interpreted as “holding” or “running”
cost, while h(x, &) and ¢ (x)+d(£) stand for the cost incurred for the shift from
x to & For g =0 the functional (6) coincides with the long run average
functional studied in [15], [17], [18], and [19]. In general case, the term g can
be read as stopping or failure intensity. The fact that we allow g to be also
negative corresponds to the selfrestoration of the model.

When R(g) =0, we shall use the following convention:

def

 E.{G(1)} = liminfE,{G(x A T)}, ‘ e
(7) T—w | |
E {G()HE,{H@)})™? def = liminfE, {G(x A T)}( AH@ A T))

T 0

for any functional G, H and Markov time 7. ‘

Main result of the paper is a complete characterization of opt1ma1 stopping
and impulsive strategies for problems formulated above. An idea of a general
(also negative) discount rate has appeared first in [22]. Positive general
discount rates were considered for controlled diffusions in [11]. The paper
generalizes results known for a constant discount rate from [14], [15], [17],
[19], and [20]. Moreover, in a special case for g = 0, optimal ergodic stopping
and impulsive control with a long run average cost are obtained in a shorter
and simpler way than in [15]. The technics applied in the optimal stopping are
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based on suitably adapted old results due to Fakeev [4], [5], and Mackevicius
[12], [13]. Ergodic impulsive control is. studied following ideas from [19].
2. Regularity of optimal stopping value function-case R (g) < 0. The aim of
this section is to prove the continuity of value function v(x) of stopping
problem (2), when R(g) <0. We start with the following
LEMMA 2. If R(g) <O, then '

]

®) ) B {fexp(- f(g(xs)¥ﬂ)ds)dt}éc Jor B < R(g) -
and T o . |
9) , supsup E, {exp(— jg(xs) ds)} >0  as t— 0.

t2t xeE o . B Rt

Proof. By Proposition 1 (iv), (8) is obviously satisfied. Since g is bounded,
for 0 < B < |R(g)| there exists an a > 0 such that

0 t .
p(x) Z E {[exp(— [(9(x)—B)ds)dt} >a>0 for xeE.
o 0
Thus

0 < sup supE {exp (- jg(x)ds)}

12t xeE

< aflsup éupEx{exp( jg(x )ds)p(x )}

12t xeE

e sup sup{oj?exp(— g(g(xs)—ﬂ)ds)dte‘”’}

t2t xeE
a lplle -0 ast-owo

~and this completes the proof of (9).

TuaeoreM 1. If R(g) <O, then veC.
Proof. Let, for T> 0,

AT s ’ AT

(10) vT(x)=infEx{ j exp(—jg(x,)dr)f(xs)ds+exp(— j' g(x,)dr)c(xt,\r)}.

We show first that v, apprommates v, uniformly in x, as T— co. In fact, for any
&> 0 there exists a 7,(x) such that

e (x) Te(x)

v(x) > E{f exp(— g g(x)dr) f (x)ds+exp(— | g(x)dr)c(x,e)} 2.

Then, since U(, Ifl(x) is bounded, R(g) <O,
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te(x) AT s
O0<v,()—v(x)<E,{ [ exp(—[g(x,)dr)f(x)ds+
0 -0 ’
(x) AT ‘ 7s(X) 5
+exp(— g gx)dr)c (X 1)} —E { | exp(— [g(x,)dr) f(x)ds+
0 0
g (x) '
+exp(— [ glx)dr)c(xe,q)}+e
p .
T T Te(x) s —
< Ex {ch(x) > T [_eXp(_* Ig(xr) dr) j €Xp (_ jg(xr) dr)f(xs) ds+
N o T T -

T g (X)

96 d)eler)exp(~ ] 9.6 dr) (¥, )]} +e

O Sy Ny

+exp(—

< E, {exp(— § 9(5)dr) Uy If](xz) + 2llell sup E. (exp (= [ g () dr)} +
0 0

=T
T

+e& < Qllell+11U, If1ll) sup E, {exp(— [ g (x,)dr)} +e—¢

t2T

uniformly as T— o0. )
Thus it remains to prove the continuity of v, (x). This fact does not depend
on the type of the semigroup and is formulated independently of Theorem 1.

ProrOsITION 2. Let
tAT s
(A1) = inf E{ ] exp(—[g(x)dr)f(x)ds+
1€ In(T) 0 0 ]
tAT

+CXp(—' j g(x,)-dr)c(x,AT)},.
0
where 7 ,(T) is a family of all Markov times with values in
{0,27"T,...,27"(2"—=1) T, T}. Then v}eC and
(12) - v (x) = vy (x) uniformly on compact sets as n— co.

Prodf. Put, for kbeb_sf,
0, k(x) = min {c(x), E, {g exp(— :[g(x,) dr) f (x)ds+exp(— [g(x,) d!r)k(x,)}}.

Then (see [13], Lemma 4)
(13) . CURX) = Q3 ere(x).

Thus, from Lemma 1, v, eC.
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The proof of the convergence (12) is similar to that of Th. 1, [12].

LEMMA 3. For any compact K, ¢ >0, T> 0, there exists a compact set
K, o K such that

(14 supP_ {x,¢ K, for some te[0, T]} <e.

xeK

LEMMA 4. Let @ denote metric in E, compatible with the topology such that
every closed ball is compact. Put O4(x) = {y€eE, ¢(x, y) < }}.

Then -
- (15). Ve 0,550 VE, — compact Ino Vi< o Vxeky P {Xi ¢.0,s (x)} <e.

Both Lemma 2. and 3 are based on the continuity of semigroup (P,) on C,.
Lemma 3 is proved in [13], Lemma 2. The proof of Lemima 4 is almost
identical to Lemma 2.5 in [2], where a compact state space was considered.

For any Markov time 7 < T define

(16) 1, =2""kT if 27"(k—1)T<1<2"kT.

Take £> 0 and the compact set K. Since ¢ is continuous, there exists
a d > 0 such that ¢ (x, y) < d(xe K, yeE) implies |c(x)— ¢(y)| < & From (15)
one can find an N such that, for n > N, Markov time 1 < T,

17 - supP.{o(x,, x,) =0, xeK} <e.

xeK

Thus

(D)L, (5)] < IE. {] exp(— [g(x)dr) £ (x) ds+
0

Tn

exp(— [g(x)dr)(c(x)—cx )+
0

+IEfoxp(— J o (x)dr) (1 —exp (= { g (x)dr)e(x, )}

< SNTIN 27T, fexp(— [(5)dr) Kx,emsoenne ) <5 (6 ()= O )1+
0
+2lclle” 191 (P, (%, £ K )+ Py (0 (%, X4) > 8, %, € Ky)+ el el (1 -2~ Tl

< |IflleTheh 27" T eeTlel 4 4glic|le™ o1 4 ||c||e o1 (1 — 2 "Tlla ),

This estimate is uniform for x e K. Letting n— oo, since ¢ could be chosen
arbitrarily small, we obtain the uniform convergence of v to v, on compact set
K. Thus (12) is satisfied and the proof of Proposition 2 is completed.
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Since vy € C, we have vy € C, and the proof of Theorem 1 is also completed.

Remark. Continuity of the value function v for R(g) <0 can be also
obtained via the penalty method approach (see [14], [18], [21]). Nevertheless,
since Proposition 2 is applied later on to the case R{g) = 0, we preferred an
alternative proof based on ideas from [12]. The convention (7) can also be
applied to the case R(g) < 0, since by virtue of quasileftcontinuity of X (Th.
3.13 [2]) and Lemma 2, for any Markov time 7, I .(t A T)—1_ (1) as T— o0,
and (7) does not lead to’ amblgulty

3 Optlmal stopping Bellman equation. We shall now prove that the value
function v is a solution to so-called Bellman equation written either in a form of the
optimal stopping problem (24) or identity (28) for a suitably chosen Markov times z,.

First of all we recall and adapt some results from [4]. Let 7 be a family of
bounded Markov times, ie. such Markov times t for which there exist
constants K(z) < o0 such that t(w) < K(r) for we Q. Taking into. account
convention (7) and Remark following Theorem 1, we see that for R(g) < 0 the
infimum over all Markov times 7 is equal to infimum over-teZ. Thus to
characterize the value function v(x), it is sufficient to consider Markov times
from the family 7 only. Put

(18) C fi=f fx)exp(— } g(x,)dr)ds+exp(— g g(x,)dr)c(x,).
0 0 .

Suppose (v(x,):>o is bounded, right continuous. Fix xeE. Then right
continuous submartingale

(19) h, & infessE {ff(x)exp( j'g(x,)dr)ds+exp(—ig(x,)dr)c(xt)lft}
t<ted 0] 0

is the largest right continuous submartingale majorized by f,. The proof of the
existence of right continuous version of (19) as well as its maximality property
is similar as in [5], Th. 1 and 2. Moreover, following [4], Th. 1, we obtain

ot s t
20) h, = [ f(x)exp(— [g(x,)dr)ds+exp(— [g(x,)dr)v(x) P,ae.
(V] 0 1]
For any €4, define family of random variables

21 h(t) = infess E {j exp(— ig (x,)dr) f (x)ds+exp(— Eg (x)dr)c(x,)IF.}.

TS 0T

Obviously h(t) = h, P, ae., for t > 0. If h(7) = h, P, a.e., for Markov time
1, we say that an aggregation property for t is satisfied.
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PROPOSITION 3. Suppose v(x,) is bounded, right continuous. Then, for
any 1€7

(22) ' h(t)=h, P ae,

x
i.e. aggregation property is satisfied.

Proof. We exploit some ideas from the proof of Proposition 2.14 in [3].
Let 7 (Q) be the family of Markov times from Z with rational values. Then,
for 1€ 7 (Q), h(z) = h,, P, a.s. Moreover, from Lemma 2.13 in [3], h(z), 1€ 7,
are right continuous in expectation. Therefore, for 1€ 7, E h(t) = E h,. Let
te 7. Then, for some T > 0, 7(w) < T for e Q. For AeF,, define 1,(T) =t if
weA and T if w¢ A. Clearly, 7,(T) is a Markov time from J .and

E h(TA(T)) E {XAh(T)}+E {XE\Ah T)} E,(h m(T))=E (B} +E, {XE\AhT}-

Finally, for any 1€, AeF, E,{yx,h(t)} = E,{x,h;}. Thus (22) holds.
CoroLLARY 1. If v(x,) is bounded, right continuous, then

@) k@) = | fx)exp(= [o()d)ds+exp(— g (x))o(x) Pyas.

for any te 7.

Proof Since both left and r1ght hand sides of (20) are right continuous, for
any t€J we have

| h, = j fx) éxp(— j'-g(x,) dr)ds+exp(— }g(x,) dr)v(x,) P, as.
[ 0 0
Now, from (22) we obtain (23).

The results formulated so far in this section will be applied to show that
v satisfies the so-called Bellman equation (see (24), below).

PROPOSITION 4. Assume v(x,) is right continuous, bounded. Then

(24) ' v(x) = inf E {_[(exp( ig(x,) dr) f(xs)b ds+exp(— ig(x,,) dr)v(x,)}.

ted

~ Proof. We follow the proof of Lemma 1.4 and Lemma 2.5 in [19].
Let

25 ©(x)= infEx {} exp(— }g(x,) dr) f (x,) ds+exp(— ig(x,,) dr)v(x,)}.
Then & (x) < v(x) Let 6,=1, 0, T€J be such that

E, {ajnexp(— j;g(x,)dr)f(xs)ds+exp(— fg(x,)dr)c(xa")lF,}lh(r) as n— o
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Then
009 < Ec{J exp(- ié(x,) dn) £ (e)ds +exp(— | gx)dr)e(x,)
and, letting n— o, from (23) we obtain
06 00 < Eh(e) = E{Jexp(~ [a(x)an) (e ds--oxp(— Jg ) dr)o(x)}.

Since t was arbitrary, v(x) < #(x) and, consequently, v(x)= 7(x).
. The next proposition provides formulas for some Markov"times for which
the infimum in (24) is achieved. _ :
PROPOSITION 5. Suppose v(x,) is right continuous, bounded, and for ¢ >0
define ‘

27) 17, =1nf{s > 0:v(x) = c(x)—¢}.
Then, for any deterministic T= 0, ¢ > 0,
; AT H s tenT
(28) ov(x)=E.{ | exp(— Jg(x)dr)f(x)ds+exp(— [ g(x)dr)v(x., .7}
0 0 0

Proof. We adapt the proof of Lemma 1.5 and 1.6 in [19]. R
For any ¢ > 0 there exists a é-optimal bounded Markov time 7(J) and

(29) lim I, (’c (5)) = v(x).
310
For T>0
) () s 7(d) : :
(30 v(x)<E{[ exp(—[gx)dr)f(x)ds+exp(— [ g(x)dr)v(x.q)}
0 0 _ 0

. 7()

< Ex {Xt(ﬁ) <Tg A T:( j exp(f jg(xr) dr)f(xs) ds+
0 V]

()
+exp(— bf g(x,) dr)(c(x.q) )— &)} +

t(d) s
+E {Xenr<c0( | exp(— fg(x)dr) f(x)ds+

0 0
(d) ‘
+exp(— | g(x,) dr)c(x,(a))}
0

T(9)

= Ix (T (5)) - SEx {X;(a) <tzAT €Xp ( - (J; g (xr) dr)} .
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Letting 4]0, from (29) we obtain

(31) limP, {t(5) <1, A T} =0.
810 .

Since (h,) is submartingale, we have

(32) U(x) = Ex E {hta ATA 1:(‘5)} E {h,(a)} E {h (T (5 )}
Letting 4]0, from (29) and (31) we get

(33) U(x) llm E {hr,- ATA .,_.(5)} E {htc A T} E {h (T /\ T)}
810,
< lim E {h(‘t (5))} = v(x).
510

Therefore, from (20), . : o o o-
AT s AT

U(X)ﬁEx{hfaAT}=Ex{'£ eXp(“gg(x,)dr)f(xs)dS+f=XP(— g g(x)dr)v(x, . 1)},

and the proof is completed.

4. Optimal stopping and impulsive control — case R(g) < 0. We are now in
a position to solve the optimal stopping problem for R(g) < 0.

THEOREM 2. If R(g) <0, then

(39 : 1o = Inf {5 = 0:v(x)) = c(x,)}
is an optimal stopping time, i.e.,
(35) v(x) = I.(7o).

Proof Since, from Theorem 3.13 in [2], the Markov process X is
quasileftcontinuous, for T > 0 (adapting the consideration following formula
(3.21), Chapter I in [14]) we .obtain

(36) 7, ATlty AT, P as. for e—-0."

By Theorem 1, veC, so we can apply Proposition 5 and again from the
quasileftcontinuity of X and (36) we get

woAT s : . woAT

37 v(x) = E{ g exp(— [ g(x)dr) f (x)ds+exp(— I g(X)dr)v(xfoAT)}

Thus ‘
(38)  v(x)=1I,(tg A T)+E,{fs,>rexp(— fg(x,)dr)(_v(xr)—C(xr))}-

Since, from (9),

. T
(39)  IE, {Xs>rexp(— [ g(x,)dr)v(xg)—c(xp))}|
.0

< |lv—cll sup {E.exp(— [g(x)dr)} -0 as T—oo0,
2T 0
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using the quasileftcontinuity of X and Lemma 2 we obtain (35).
The remaining part of this section is devoted to impulsive control. We
assume we can shift to a compact set U < E only. Write

(40 B © v (x) =inf J (V)
and
(41) Mo (x) £ inf [h(x, )+<p(¢f)]
- . o geU . - T

THEOREM 3. Suppose- R(g) < 0. Then v, eC and is a unique solutwn to the -

Bellman' equation

(42) v, (x) =infE, { jz.ex'p (— f g(x,)dr) f(x)ds+exp(~ g g(x,)dr) Mo, (x)}.
T 0 .

Let .
(43) A 1o = inf {s > 0:v;(x,) = Mo, (x,)},
and let £E€b& be such that _

(44) Mo, (9) = h(x, £(x))+0, (£()-

Then V =(%,, &), where

(45) ' fl=’C0,...,fn+.1='E,’I+TOOG;’;5~...,

) E,,=§(xg"-1) forn=1,2,...
is optimal. . o '
~ Proof. If v, eC, then, from Theorem 2, 7, is opt1mal in (42) Smce h is
strictly positive, 7, — oo, and taking into account (9) we easily obtain (see [14])
that any bounded continuous solution to (42) coincides with v; given by (40).

It remains to show the existence of solution v; to (42) But it easily follows
from Theorems 4 and 5 [23]. :

5. Eigenfunctions and eigenmeasures. As we suggested in Introduction,
assumptions (A;) and (A,) play a fundamental role in the method we.apply to
solve ergodic control problems. We formulate first the conditions under which

' (A,) holds; and then undet (A,) and (A,) prove a kind of uniform ergod1c1ty of

the semigroup (7Y) in the case where R(g) =
We start with the following
Definition. A function peC, p>0, p#0, is called eigenfunction for
a semigroup (7TY) iff there exists a j such that, for every t > 0, T¢p(x) = e’ p(x).
PROPOSITION 6. Let (E, &) be a locally compact separable space, m a probabi-

_lity measure on E. Suppose (P,) is a semigroup corresponding to right continuous,

5 — Probability 10.2
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nonterminating, homogeneous Markov process on E, .and, for every t > 0, there

exist .

() oo >q(®)>1 such that P,: I¥(m)— C(E),

@) o> 1 such that for every pel¥ (m)={peli(m): ¢(x) >0, m ae} one
can find a(p) >0 for which . .

@ a@<PoM<eal) mae

Then, for every geC(E), there exist a unique j and a unigue up to
multiplicative constant ue C (E) u(x) =2b>0 forxe E and some b > 0, such that

47 ‘ TTfu(x)=e"u(x) fortz _ 7
Proof. Suppose geC(E) Consider the semigroup (T9). From (i), in the
same way as in the proof of Lemma 4, Section 4, Chapter II [7], we show that
T¢: I (m)—> C(E). '
Since, for @eL% (m), .
(48) ~thel P o (x) < T“(p(x) < e'””” P,o(x) for xeE,

from (46) we get

@9) ”NM@<W¢M<Qﬂ”M@

and T¢1(x) > e *lol,

Therefore we can apply Proposition A, (see Appendix). Thus for everyt =0
there exist unique y, and u,eC(E), Ilu,II =1, such that TYu,=yu,. Let
Tu, = e’u1 Since, for any n, T%-,u, = e’* 1ul, one can put u,-: = u, with
7a-1 = e™"", Since TYu,(x) is right continuous, T?u, = é¥u, for every t=20.
The proof of Proposition 6 is completed.

As a corollary we obtain Theorem 4.1 [6]. .

COROLLARY 2. Siuppose (E, &) is compact and the transition p?dboblllty
P,(x,") has a density p(t, x, y) with respect to probablllty measure  m, such that,

. for some a(?) and A1),

50) - 0<a(t)<p(t X, 'y)<A(t) for x, yeE, t >0,
Gn 'thanpamwmm 0 fore>0 "

' Then for any geC(E), there exists a unique strzctly pos:twe ezgenfunctwn

u for semigroup (TY).

Proof. One can easily check that the assumptlons of Proposmon 6 are
satisfied. S

Remark. Some other criteria for the existence and uniqueness of eigenfun-
ctions can be found in [8]. -
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From propos1t1on 2 if u is (T?) eigenfunction, ie. TYu = e" u for t > 0, then

< R(g). If, in addition, u is bounded away from zero, i.e. u(x) = b > 0 for
er, then clearly j = R(g). o

COROLLARY 3. Suppose R(g) =0 and there exists strictly positive eigen-
function u for semigroup (TY). Then (A,) is satisfied.

Proof. We have TYu = u for t > 0. Thus ueD(A) — domain of weak
infinitesimal operator and Au—gu =0, ie. g= Auu™'.

The following Lemma will be useful in calculations.

LemMA 5. Under (A Tfu=u for t>0, and T

(52) - ‘- R u(x exp( fAu(x)(u(x)) 1 ds)

s P martmgale ‘

Proof. From (A,) the rlght hand 51de derivative d* (T{u)/dt =0fort > 0.

- Therefore T{u =u for t >0, and as an easy consequence we get (52).

" The characterization of optimal strategies in [17] and [20] was-in terms of
invariant measures corresponding to semigroup (P,). In general discount case
we need an analog of invariant measure for semigroup (T%).

Definition. A probability measure m, on E is called an ezgenmeasure for
(TY9) iff, for any @ebé,

(53) [ T2 p(x)m,(dx) = [ (x)7,(dx).

THEOREM 4. Assume (Al) and '(Az). Then there exists an eigenmeasure n, for
(TY) and a measure 7, such that for some Land v > 0,

(54) " sup|T7 @ (x)— u(X)n(u‘l)n((PH ||<Pu‘1llllu||le"" for ¢ebs.

xeE

Proof. From Lemma 5 »
(55) P4(t, x, B) = (u(x)) g {xB(x,)u(x exp( j'g(x)dr)}

is a transmon probability. Obviously

(56) ¢, P(t,x, B)<P'(t, x, B)<c,P(t, x, B) for Be8,

where ¢, = b|jul|~te *Iel, ¢, = |lu|lb~* eliol
Denote by p(t, x, ) a.nd p(t, x, y) the densny of the absolutely contmuous
component of P(t, x, -) and P*(t, x, -), respectively, with respect to m. Thus

657 ept,x ) <P XN <epEx,y)  ac for yek.

For our purpose we choose a version of p*(t, x, y) for which (56) is satlsﬁed
everywhere.
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‘ Consider an embedded discrete time Markov process (X,4),=1.2,.. for

. _ 4 > 0. Clearly (see for example Proposition 5.6 [16]), (x,,) is apériodic. Since,

‘ under (A,), condition 5.5 (c} from [1] is satisfied, there exist a set Ceé,
7(C) > 0, and n such that

(58) : inf p(nd, x, y)> 0.

xeE,yeC

From (56) also ‘ ‘
(59) - inf - p*(nd, x,y)>0. " —

—= xeE,yeC
" Therefore condition 5.5 (b) from [1] is satisfied and there exists a unique
probability invariant measure w, for P*(n4, x, ) such that, for some 0 < 6 < 1
and k>0,

60 lIP*(nd, x, )7, (<P)II kd"lloll * for any. coebé"

Thus the transition semlgroup P}, corresponding to P" (t, x, ) is quasicom-
pact and from [20], section 2 (see also Th. 6 [16] in a more general case), 7T T, is
a unique invariant measure for P*(t, x, ) and there exist Land v > 0 such that

6) Pt x, -7l <Le Vgl for pebs, >0
| Define, for Beé”, ) _
| © - nE)= f ()™ @) () 7, ()"
B E

Then =, 1s elgenmeasure for T-;’ and from (61)
(63) IT¢ @ () — u(x) &, (@u™ )| < Le™ llpu™ || llull.
' Taking into account (62) we obtain (54).

6. Ergodic optimal stopping. Under (A,) and (A,) from (54) and Lemma 5 we
deﬁne

64 2() = E{f exp(~ [9x)d) £ (x)—u(x) 7, a7, (1)),

where, by convention (7), E, { f } is understood as -

11m1nfE {j .}

T-

Clearly zeC. Since, for Markov time 7€,



Control problems 237
E, {j) exp(— ig(x,) dr) £ () ds) = 2(x)E, {exp(~ I 9(x)dr)z(x)} +

+E {fexp(— [g(e)dr)u(x) @, (u™ ) m,(f)ds},
0 0 .
the optimal stopping value function v(x) (See (3)) satisfies

(65) v(x)—z(x)+1nfE {jexp( }g(x,)dr)ﬁ(x;)ﬁg(u‘l)rcg(f)ds}{—

+exp(— 5,‘"(’") dr) (e (x) — 2 )}

Let v(x)=z(x)=q(x), c(x)—z(x) = ¥(x). Instead of optimal stopping
problem (3) it is sufficient to consider ' R

€ T

(66) * q(x) =inf E {jexp( j’g(x,)dr)u(xs)ﬁg(u")ng(f)ds+

+exp( jg(x)dr)?’(x)} where 'PGC

THEOREM 5. Suppose (Al) (A,) are satisfied. If n,(f) >0, then q, vEC(E)
and
(67) 1, = inf{s > o:u (x) = c(xs)} = inf{s > o:q(xs); ¥ (x,)}

is an optimal stopping time.

- Pro of. It is sufficient to restnct ourselves in (66) as well as (3) to Markov tlmes
"¢ for which ’ :

tAT

i(68) liminfE, { _f exp( js'g‘(x,) dr)u(x,) 7, (u 'f) m,(f)ds+
o ,

T—w .
AT
+exp(— [ gx)dr) P (x.. )} <IPI.
O .
If (68) is satisfied, then ‘also -
AT s : . )
(69) lim 1nf(E { f exp(— [g(x,) dr)u(xs) m,(u™ ) m,(f)ds}—
T o0 o ; ’
taT

—IlﬁF’lIb E, {exp(— f g(X)dr)u(xmr)}) 1#1].

From Lemma 5 and (69)
tAT T—s

(70)  liminfE, { j' exp( j g(x,)dr)Exs{exp(—_ j g(x,)dr)u‘(xT_s)}.

T->00
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<I#N+b~ 1Ilull)( (u_l)n ()
and

(71)  LminfE, {x A Texp(— jg(x)dr}

T—w
1IIY’I|(1+b 1IIull)(7r @ m,(f)
Therefore, for any fixed N >

. . .
(72) liminf E, {r ATAN exp( fg(x)dr)} < M
- T—wo 0
and
(73) liminfE,{t A T A Nexp(— [g(x,) dr)E,, {exp(— | g(x,)dr)x
T—+ o 0 0

x‘u(xT‘_N)A}}S Myl

From Lemma 5 again, we obtain

(74) E,{t A Nexp(— [g(x)dr)} < Mllullb~% = M,.
Finally
N .
(75) | E, {t:>nexp(— [g(x)dr)f < M, N™*.

. And we can restrict ourselves to Markov times t satisfying (75). We
continue the proof of continuity of g similarly as in Theorem 1. Let

TtAN

(76)  gy(x) =infE, { f exp(— _s[g(x,)wdr)u(xs) T, (u"t) n;(f)ds +
. . T 1) 0

tAN

'+exp(— _[ g(x )dr) lI’(x,,\N)}.

From Proposmon 2, gyeC. Let for &> 0, 7,(x)eJ be e-optimal
for_g(x), ie.

4 > E, {Iexp(— Eq(x,)dr)u(xs)ﬁg(u-l)'ng(f)dw

+exp (— ]fg (x,)dr) ¥ (x,)}—e.

Then

eA N

() 0<ay(9—a(9 < Ey{ [ exp( [ge)dr)ue) @, (=, (f)ds +
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e AN

+exp(— [ g(x)dr)P(x., .0} .
0 .

—E, {;fexp(— }g(x,)dr)u(xs)ﬁg.(u_1)1ig(f)ds+
. i
+exp(— tjfg(x,)alr)SP'(x,,)}+.¢: <e+

N N , e ,
+E, {dey > nexp (— [ 9(x,)dr) ¥ (xp)} +E.{is, > vexp(— [ 9 (x) dr) ¥ (x,)}.
290 . ] ,

But _

(78)  E, {15 wexp(— :fg(x,) d) ¥ (x,)}

Te

< IPIb™ E, {0, n Es fexp(— [ g (6)dr)u(x,)IFn}}
4]

=11 Byt wexp (= [ge) dr)uen)}-

‘ Thus, takmg into account (75), we have 0 qy(x)—q(x) < e+M, N~ for
a constant M, independent of T and N. Therefore ay—q umformly as N -0,
and geC. :

. It remains to show the optimality of Markov time 7,. From Proposmon 5,
for 1, = 1nf{s>0q(x)>'1’(x) ¢} we have

.teAT g AT

(19 q(X) E{ I exP( Ig(X)dr)f(X)dHexp( I g(x)dr)q(xmr)}

Similarly as in the proof of Theorem 2, (36)37), for any T = 0 we obtam

AT

8 2t =E{ ] ox(~ [ole)dut)n,um,(f)ds+

i toAT

+axp(= | 00)d)aleo ),

" hence

(81) llmmex{tofTeXp( 'ig(x,)dr)u(xs)'ﬁ w Y, (f)ds+
T oo 0 .

toAT

+exp(— I g(x)dr) (xtoAT)} llall.
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: Replacmg ¥ by q in (68)—(75) we get
(82) E {x,o rexp(— j'g(x,)dr)} <M, T
0 . ,

From (80)

woaT

8 a@=E{ | exp(—fg(x,)dr)u(xs)ﬁg(u—l)ng(f)ds+

‘L'o/\T

;iléxp( I g(x)dr)'P(xmr)}+E {teo 7 EXD(— I 965)dr)(g G — P (x)}.

Lettmg T— oo, by’ virtue of (82) we ﬁnally obtain

oA T

q(x)—hmme { j exp(— j'g(x)dr)u(xs)n (u‘l)vr (f)ds+

T— o

toAT

Fexp(— yg(x)dr)vf(xw)}

Thus 7, is optimal for g, and from (65) also for v.

Remark. If u = constant, then g = 0. Under (A,), ergodic stopping in this
case was studied in [15] and similar results to Theorem 5 were obtained. The
proof, based on penalty method approach, was rather complicated and we
could not adapt it to our general situation. Thus we not only generalize, but.
also simplify ‘the results from [15]. :

7. Impulsive control with long run average cost criterion. In this section we
restrict the famlly of admissible 1mpulse strategles Namely, we consider only
strategies V = (z,, £,) such that™

Tp+1(0)_) =T,(wy, ..., wn)+0'n+1(mn+1)01,.(m1, v o)

.where 7, is a Markov time,

Gt (@) = Epyr (@) forn=1,2,...

and &,, is adapted to a{xs,
_ Let

) b, (x) = inf T, (V),
1 4 .

< s < 1,44} and can take any values in E.

where the infimum is over strategies V characterized above. Put

85) A% infinfE, {} exp(— js"g(x,) dr) f (x)ds+
. TX (1] (4] .

T

+exp(— ig(x,) dr)c(x)+d (9} (E, {(}) exp(— i'g(x,) dr)ds}) 1,
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where E, {i()} (E, {i(...)})'1 we understand as
0 o

AT : AT

liminfE, { j' (.. }(E { f (.. )})

T

Let

(8'6) w(x) lnfE {j.exp( ig(x)dr)f(x)—l)ds+exp(—jt'g(x)dr)c(x)}.

| THEOREM 6. Suppose (A, (A,) are satzsf ed, and (E &) is compact Then '
& . n@=
and only two cases are possible: either
(i) m,(f) = 4 and then we C and strategy: V = (%,, %), consisting of shifts at
(88) 7, 1nf{s>0w(x)—c(x)} ey Ty =T+ 7T 6,,
n=1,2,... to %, such that ' |

© w(®)+d(®) = inf [w(y)+d o1

yeE

is optlmal or ‘
() 7, (f) =4, and the strategy “do nothmg ‘is optimal.

Proof Almost 1dent1ca11y as'in (2.12)~(2.26) [19], we obtain v, (x) > A. Let

N,@=E, {(f) exp(— ig(x,) dr)(f (x) — A)ds+exp(— (})g(x,) d)e(x)} +d(x),

D, () = E; {}exi)(— }g(x,) dr)ds}.
o 0
Then, from (85),
@ o infinf N, (z) (D, (c)) * =

X T

Put
(90) 2, () = E, {] exp(— [ (x) dr) (f (x)— 2= u(x) %, (4™ Y 7, (£~ 2) ds}.
0 0 T
In virtue of (54), z,e€ C. Moreover,

O  No@ =2, +E, {[exp(— [ g () dr)ue), ("), (f—A)ds+

+exp(— 5; g(x,)dr)(c(x) —z (x))} +d(x).
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Since, for te 7, from Lemma 5
| ©2)  |E, fexp(~ g g% dr) (e (x)—z (<)}

< E, {exp(~ g g (x,)dr)u(x)} b~ (llell +lizll) = u ()b~ (il +11z1l)
and
%3 D)= ||u||__1_’_l_’7_,vc>{i6xl)(—_§g(x,)dr)u(xs)ds} = tu(Ollull = =0 as t— oo,

we have n,(f—4) = 0. Otherwise we obtain a contradiction to (89).
Suppose m,(f)=A. Then, from (54), there exists the limit

s

T
lim E, {{exp(— [g(x,)dr)(f(x)—7)ds} < .
T- o 0 0 X ’
Since, from (93), D,(T)— oo as T— oo, for strategy V, = “do nothing” we
obtain J (V,) =4 Thus in this case v,(x) =4 and V, is optimal.
Suppose now n,(f) > A. There exists a sequence 7(g)e 7, x(g), ¢—0, such
that

N, (t(©)(Drt@) ' >0 as e—0.

IfDyy(z ( g))— oo, then taking into account (92) and u(y) > b for yeE, we
obtain -
- liminf N (2 (€) (Dx o (t () * = ﬁq(u'l)ng(f—/l) > 0.

Therefore D, (1: (¢)) should be bounded; and hence N, (z(g)) >0 as £—0.
Also ' h o
inf [w(y)+d(y)] <O.

yeE

Since, by the definition of A, we have inverse inequality, we infer that

(94) | ~inf [w(y)+d(y)] = 0.

yeE

From Theorem 5, we C, and 7, is optimal for w. For strategy V.defined in
(88) we obtain (put z, =0)

95) TN =+ E(Y pa<iexp(— [g(c)dr),
X ) T i=0 0 - .

Ti+1 AL

[ ] exn(-] g (x)dr) (f (i) — A) ds+
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‘Ti+1 AL

Wi, dexp(— | gGddr)—w(d)]+

zi

+ 3 g | jg(x)dr)[c(le Y+ (E) st )+

i=1

+w(@]+w (x)—expr(* jg(x,) dr)w(y,)} x

L x (E¥ il exb( j g(x,)dr)ds))*

From (92), (93), (88), (80), (also Proposition 5) and (94) we get

96) T T.(V)=A.

Therefore v,(x) =4 and V is optlmal when 7 (f)> A The proof of -
- Theorem 6 is completed. ,

APPENDIX |

We formulate and prove now a useful criterion for the e)ustence of posmve
eigenfunction for positive linear operator. '

ProrosiTiON Al. Let (E, &) be locally compact separable ma probabzlzty
measure on E, and T:IZ(m)— C(E), q > 1, a.positive linear operator.” Assume
Ti(x)=>a>0 for xeE and there exists a @ >1 such that, for every
pel’ (m)={peli(m), ¢(x)=>0 m ae}, one can find a(p) >0 for which

on S a(tp) To(x)<ealp) mae

T hen there exists a unique up to positive multzphcatwe constant functzon
ue C(E) and a constant y > O such that Tu = yu, and u >0 is uniformly bounded
away from 0, ie. u(x)=b >0 for xeE.

. Proof. Put P
K ={pel’ (m) . ;w);odsrp‘(x)s,gdma.e.}i‘

Let L be a positive linear functional on” K such that L(1) =1. Define
N = {(peK L(p)=1}. Obviously N is closed convex. If geN, then
L((p) =12 a(p), and ||@|lLem < 0 a(p) < ¢. Thus N.is also bounded and,
therefore weakly compact.

Let S: E(m)av—»(v+ To)(L(v+ Tv))~*. It follows almost 1mmed1ately that
S:N—N and is weakly continuous. According to Tikhonov fixed point
theorem ([10], Th. 2.7), there exists at least one fixed. point #e N. Therefore
L@+ Ta)a=u+Tid and L(Ta)a=Ta. Since L@ =1, a@ >0 and
i(x)=>a@@ m ae But Tl(x)>a>0 for xeE. Thus Ti(x)> a(u)T(l)(x)
> oada@ >0 for xeE, and L(Tid) = ad(@) > 0.
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Define u(x) = Ti(x) (L(Tu)) 1 Clearly, ueC(E) Tu (x) Tii(x) for xeE,
and u(x) = aa(@(|Tal)"* =b >0 for xeE.

It remains to show the uniqueness fo u.

Suppose Tu, =y uy, Tu, =y,u, fory,, y, > 0, uy, u,€C, u, (x), u,(x) >0

for xeE. Without loss of generality assume 7p,>7y,. Let

d = sup {§ > 0; Bu, (x) <u, (x) for every xe E}. Since u,, u, € K, there exist a,,
a, >0 such that a, <u, <gay, a, <u,<ga, m ae. and

. —du, > a,—doa, > (a,—de ay) (e ay) ' u, ma.e.
Thus because of. max1ma11ty, d > 0. Also, for some a > 0,

Uy —dy,y1tuy =y Tuy—duy)) Zayi'n>aly0a,) tu

which contradicts the maximality of d, and the proof is complete.
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