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Abstract. Exponential bounds are studied for , 

P(IIX, + . . . . +X,II > t), where (XI, .. . , X,) denotes a sequence of 
independent random variables with values in a real separable Banach 
space (B, 11 11). In our results the usual boundedness assumptions on 
llXlll, ... , IIXnll, are replaced by hypotheses on the weak ldnorm of 
the sequence (flX111, .. - 3 IIX"II). 

The following problem arises often in probability and statistics: 
"XI, . . . , X, being independent, centered and square integrable real-valued 
random variables (r.v.), having for sum S,, how to bound for every positive x, 
the quantity P (IS,] > x)?" A classical bound is of course given by Tchebichev's 
inequality 

(0.1) P(IS,I > x) 5 var (S,)/x2, 

but, if it is easy, that bound is usually not very sharp. Many authors have 
studied bounds in which the square function involved in (0.1) is replaced by 
a function f which is more efficient, at least for big values of x: 

The central-limit theorem and the strong law of large numbers have 
suggested to consider situations in which f (x) is of the type exp(- ax2) 
(Hoeffding's inequality [ 5 ] ,  Bernstein's inequality [2]). The functions exp (: ax) 
and exp (- ax Log (x + 1)) also appear in many efficient inequalities (Yurinskii's 
inequality [12] for big values of x, Bennett's inequality If]). F O ~  such special 
functions f, inequalities like (0.2) are called exponential inequalities. These sharp 
inequalities of course don't apply to arbitrary r.v. X,. Roughly speaking the r.v. 
X, have to be relatively small either almost surely (if there exists a positive 
constant M bounding almost surely all the IXJ) or in mean. For making more 
precise the kind of restrictions which have to be made on the r.v. X,, we will 
state in a table some famous exponential inequalities. As above (XI, . .. , X,) 
will be a sequence of independent, centered and square integrable real-valued 
r.v., having for sum S,. 
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We use the following notation: sn = Jm Vt > 0, P(IS,I > t) = g( t ) .  
The first column of the table gives the name of the inequality, the second 

one precises the restrictions made on the r.v. X,, the third one the domain in 
which it applies, and the last one the bound for g(t) .  

Remarks. 1. In the above inequalities M denotes a positive constant. 

2. In Fuk-Nagaev's result the following notation has been used: (y,, . : . , y,) 
- denotes a sequence of positive numbers, y is such that y 2 sup (y, , . . . , y,J and 

Bernstein [2] 

~ o l m o ~ o r o v  [6] 

Prohorov [I I] 

Hoeffding [ 5 ]  

Bennett[l] 

Fuk-Nagaev [3] 

. - The second order integrability assumption made on the r.v. 'Xk are not 
needed - in  Fuk-Nagaev's result; .but their inequality is sharp only if 

P(IX,I > y,) is small, which requires that the distribution functions of the 
k = l  

10.3 

] 0, + cc [ 

] 0 ,  + cc [ 

] O , + a , [  

10, +m[ 

lXAl I Mas.  

-. - -  

IX,I I M s, a.s. 

IX,I < M s, a.s. 

a, 5 X, b, as. 

V r = 2 , 3  ,... 
E IXJ 5 Mr-' E (X i )  

r.v. X, have a good tail behaviour. 

3. Exponential inequalities have also been extended to vector valued r.v.; we 
will state a result of that kind, that we will need later: . 

-2t2 
2 exp 

(Z; = r (h-a# 

I P(IX,I > ~k)+ 

2 mP (:- r$ + $) L~~ r: + I)) 
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PROPOSITION 0.1 (YURINSKII [12]). Let (B, 11-[I) be a real sepurabIe Banach 
space, equipped with its Borel c-field a. Let XI, ... , X ,  be independent 
(By Il*ll)-vahed r-v., which are strongly square integrable and such that 

Then 

-g+; E((S~I( 
V t  > 0, P(IISnI1 > t )  I exp 

-. (z:.,EllXJ2+y)' -- 
where of .course S, = XI + . . . . + X,. 

The restrictions made on the r.v, X, in the above exponential inequalities 
are of various kinds: 

in Bernstein's or Hoeffding's result the r.v. are supposed to be small as.; 
in Bennett's they are supposed to be small in mean; 
in Bernstein's, Hoeffding's or Bennett's result the restrictions are made 

individually on every r.v.; 
in Kolmogorov's, Prohorov's or Fuk-Nagaev's inequalities the restrictions 

involve the whole sequence of r.v., . . . 
The aim of the present work is to obtain exponential inequalities under 

a different kind of hypothesis on the r.v. X, - which will be supposed ( B ,  11 11) 
valued. The idea is to use information on the whole sequenoe (IIX, 11, . . . , IIXn(l), 
information under which each of the llXkll is relatively small. More precisely 
that information will be that the sequence ((\XI((, . . . , ((X,(() has a small weak I, 
norm. Before to state the results we need to recall some facts on weak 1,spaces; 
this will be done in Section 1. In Section 2 we study exponential inequalities for 
sums of r.v. taking their values in a Banach space (3, I[ (1). In the appendix an 
efficient and simple exponential inequality in type r spaces will be derived from 
the method of proof used in Section 2. 

1. Weak I ,  spaces. Let 0 < p < + m be given and denote by 1 ,  , the space 
of all sequences (a,J of real numbers such that 

sup (tP card (n: la,( > t)) < + a. 
1 > 0  

That space I,,, is called the weak 1, space. Furthermore, let's define 

if p > 1, the functional 11 I(,, , is equivalent to a norm on l,, , and I,, , equipped 
with that norm is a Banach space. In the sequel we will call the quantity 
tl(a,J1Ip, the weak 1, norm of the sequence (a,) and this for any value of p. It is 
obvious that a sequence (ah belonging to l,,, is also in co, so the 
non-increasing rearrangement (a:) of (la,i) can be defined without any problem; 
it is easy to check that 

6 - Probability 10.2 
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(1.2) Illa,)llp. m = SUP (nilP a;). 

Before to state the result of Pisier, Ftodin and Sernyonov, which is the 
prototype for the exponential inequalities that we will prove in the next section, 
we need some more notations. 

Let q > 2 be given and denote by $, the following function: 

V x E R ,  $ q ( ~ )  = exp lxt4- 1- 

For any probability space (a, 9, P) one denotes by J?'a(HP) the Orlicz 
space associated to -. $, and P: 

@ ~ ( ~ P ) = ( ~ : ( ~ ~ , F ) + ( R , B ( R ) ) : ~ ~ > O : E + ~ ( I ~ ~ / C ) < + C O ] ;  

that space will be equipped with the Luxemburg norm: .- 

I l  f llqtcrg = in& > O : W , (  If lit) 1 ) .  

The announced exponential inequality is as follows: 
PROPOSITION 1.1 ([g]). Let (or,) belonging to l,,,, 1 < p < 2, be given. 

Consider (E,) a sequence of independent Rademacher r.v. (that is taking only the 
ualues + 1 and - 1, each with probability 1/2) and define: 

Then S G pg (dP), where l / p  + l/q = 1, and one has 

where k, is a constant depending only on p. 
Remark. Proposition 1.1 is not stated as an exponential inequality, but it 

contains such an inequality implicitly: it is easy to see that by definition of 1 1  l l $ q  
one can derive the following bound from (1.3): 

Exponential inequalities similar to (1.4), for scalar valued r.v. which are 
more general than weighted Rademacher ones, have been studied in [4]. The 
main result obtained in that paper is the following one: 

PROPOSITION 1.2 ([4], Theorem 1.2). Let XI, ... , X,, be independent, 
reabvalued, symmetrically distributed and square integrable r.v. Denote by a2 the 
variance of their sum S,. Then: 

In fact, Propositions 1.1 and 1.2 above are only special cases of general 
results which apply in the more abstract setting of Banach space valued r.v. In 
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the next section we will prove these general results, that we will call from now . 

"weak I, exponential inequalities". 

2. Weak 1, exponential inequalities in Banach spaces. Let's first introduce 
some notations. 

In the whole sequel (B, 1 1  11) will be a real separable Banach space, equipped 
with its Bore1 a-field 3. We will consider sequences X = (XI, . . . , X,J of 
independent r.v., defined on a probability space ( W , F ,  P) and taking their 
values in ( B ,  g); the sum of the terms of X will be denoted by S(X) .  We will 
denote by d(X) the sum of the strong second moments of the - X,: 

(2.1) -- A (x) = ~ ~ 1 ~ ~ 1 1 ~ .  
-  in& we dckne, for every O < p < + ao, 

(2.2) Y ( X g  PI = 1 1  llxkll lip, m. 

In the symmetric case the tail. of the distribution of IIS(X)Il can be bounded 
in the following way: 

THEOREM 2.1. Let p E 11 , + co [ be given and let q be its conjugate. Consider 
X = (XI, .. . , X,) a sequence of B-valued r.v. which are independent, symmet- 
rically distributed and strongly square integrable. Then 

(2.3) Vt>O,Vc>O, P ( l l ~ ( x ) l l ) > t ~ P ( c p ( X , p ) > c ) +  

P r o  of. Let ( E ~ ) ~  be a sequence of independent Rademacher r.v. defined 
on (a, P', PI), 

Let c > 0 be fixed and define: 

A = ( w ~ i - 2 :  cp(X(w), p) I c). 

By symmetry the following inequality holds obviously for every t > 0: 

I PtAc)+POP'(II~~kXkll~A > 0 .  
Let now t = (q + I) a. 
If u 2 nl/q, it is clear that the second term in the righthand side part of the 

preceding inequality vanishes; so we suppose from now on that u < nl". 
Fix an w E A and define: 

a(w)  = P ' ( I I ~ & ~ ~ ~ ( ~ ) I I  > (q+  
There exists obviously a measurable function 8:  

O:(G?x{1,2, nIl F @ 9 ( { 1 , 2 ,  ..., n)))+({1,2 ,... , n ) , P ( { l , 2  ,..., n})) 
such that, for every w, (I]X,(,,',, ( ~ ) l l ) , ~  is a non-increasing rearrangement of 
the sequence ( ( jXj  (w)\Jlj ,. So 
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therefore 

where [I  stands for the integer part of a real number. 
By using (2.5) and L6vy1s inequality, it follows from (2.6) that 

n 

a (w)  5 2.pf(II C E ~ X ~ ( W ) ~ ( I ~ X ~ I I  s=u-~i(p-~))I~)lI  > c ~ ) .  
k = l  

,- - Integrating now the function a over the set A with respect to P, one obtains 

Using finally Proposition 0.1 for bounding the last term in the righthand 
side of this inequality one easily obtains the claimed result by choosing 
u = t / c  ( q  + 1) in (2.7). 

Remarks.  1. Let's notice that the integrability assumptions made on the 
r.v. X ,  are not needed in the proof of Theorem 2.1, because Yurinskii's 
inequality is applied to the truncated r.v. IIXkllIclixkll m-t/(,- 11,. So it is possible 
to state Theorem 2.1 in a more sophisticated way in a spirit close to the one of 
Fuk-Nagaev's inequalities - without any integrability assumption on the r.v. 
Xk, by using truncated r.v. in the quantities EIIS (X)II and A (X) involved in (2.3). 
We have not stated Theorem 2.1 in that way because it gives a bound for 
P(ljS(X)ll > t )  Which is too complicated; anyway (2.3) is efficient only if 
P ( q  (X, p) > c) is small, and this requires some integrability of the r,v. IIXkll. 

2. Inequality (2.3) is eficient only if P (q (X, p) > c) is small. Does it exist an 
efficient bound for this probability? This question is answered positively by the 
following general result of Marcus and Pisier: 

PROPOSITION 2.2 ([7] Theorem 3.3). Let (Z,) be a sequence of independent, 
positive r.v. Then, for any 0 < p < + oo and all c > 0, 

In fact, in [7] this proposition is stated and proved with a constant 262 
instead of 2e; this constant has been reduced to 2e in a proof of Zinn which can 
be found in [lo]. 

3. Let's now give an example of a situation in which Theorem 2.1 is more 
efficient than the classical inequalities that we recalled in the introduction. 

Consider XI, . . . , X, r,eal-valued r.v. which are independent and such that 
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Among the inequalities listed in our table, the only one which gives a bound 
in exp (- t2 )  for P (IS,\ > t )  when t is large, is Hoeffding's result. More precisely, 

e(ls,l > t )  I 2 exp (2(1 LLL)). 

Applying to this case Theorem 2.1, for p = 2, one gets 

for large values of n, this inequality is of course much better than the 
previous one. 

4. It is easy to see that Theorem 2.1, applied in the scalar setting for p = 2, 
reduces to Proposition 1.2. A short computation gives also (1.4) as a corollary 
of Theorem 1.2. So the following question is natural: Does it exist - at least in 
some particular Banach spaces - an inequality analogous to (1.4)? In the next 
section we will see that a positive answer can be given to this question in type 
r spaces. 

3. Appendix. The.type r case. We will show that in type r spaces the same 
method of proof as for Theorem 2.1 gives an exponential inequality which is 
very similar to (1.4). 

Recall that a Banach space (B,  1 1  1 1 )  is said to be of type r, 1 < r I 2, if there 
exists a constant K > 0 such that for any finite sequence (x,), <, of elements of 
B one has 

E l l  ~ k ~ k l l '  5 IIxkHr, 

where (ck), <,, is a sequence of independent Rademacher r.v. 
For instance, the space L [0, 11, 1 < r I 2, is of type r. 
In such spaces one has the following exponential inequality, which is more 

handy than that of Theorem 2.1: 
THEOREM 3.1.  Let 1 < p < r I 2 be given and denote by q the conjugate of p :  

l /p+ l/q = 1 .  Suppose that (B ,  1 1 . 1 1 )  is a real separable Banach space of type r. 
Then there exist two positive constants L(p) and M ( p ,  r ,  3) such that, for every 
sequence X = (XI, . . . , X,) of (3, 11-11)-vaIued r.u. which are independent and 
symmetrically distributed, 
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Proof  starts in the same way as for Theorem 2.1, till inequality (2.6): 

According to (2.5) and the fact that B is of type r, one has 
-. - 

I From this one easily deduces that 

I 
For bounding the righthand side of (2.6), we apply now Proposition 0.1 with 
M = cu- l / ( P - l ) :  

, From (2.5) it easily follows that, for u 2 1, 
n 

16 C llXB(,,k,(w)112 + 8 c 2 u ( ~ - 2 ) / ( p - 1 )  5 (p) C 2  u ( ~ - 2 ) / ( ~ - 1 ) ;  
k = [u4] + 1 

SO there exists a /Y = /Y(p, r, K) such that, for every u > 0, 

a(w)  5 exp 8'-- . ( ;i,> 
The proof of Theorem 3.1 is then concluded in the same way as that of 

Theorem 2.1, by integrating a over A with respect to P and by choosing 
u = t /c (g -k 1). 

Several questions raise from the above weak I, approach of the exponential 
inequalities. We will mention some of them as a, conclusion to this paper: 

In the proofs of Theorems 2.1 and 3.1, Yurinskii's bound is used as an 
ingredient; what kind of weak 1, exponential inequalities is it possible to obtain 
by replacing that ingredient by Bennett's or Nagaev's [8] results? 
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There exist exponential inequalities similar to Bernstein's result for martin- 
gales with almost sure small increments. Is it possible to improve these 
inequalities in the weak ip setting? 

Is it possible to study the asymptotic behaviour of trimmed sums of 
independent r.v. by using the same approach as for proving Theorem 2.1 or 
Theorem 3.1? 

Achowldgement. I am indebted to Michel Ledoux for several useful 
comments on the first draft of this paper. 
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