A FORMULA FOR THE DENSITY OF THE NORM OF STABLE RANDOM VECTORS IN HILBERT SPACES

Abstract

BY TOMASZ ŻAK (Wroclaw)

Abstract. Let μ be a symmetric p-stable measure on a Hilbert space H. The distribution function of the norm $F(t)=\mu\{x:\|x\|<t\}$ is absolutely continuous on $(0, \infty)$. We prove an explicit formula for the density $F^{\prime}(t)$ and some of its consequences.

1. Introduction. Let μ be a symmetric p-stable measure on a Banach space $(E,\|\cdot\|)$. Consider the distribution function of the norm, i.e. $F(t)=\mu\{x:\|x\|<t\}$. It is well-known ([3], [8], [9]) that F is absolutely continuous with respect to the Lebesgue measure on ($0, \infty$) (apart from one possible jump if $1 \leqslant p \leqslant 2$). The properties of the density $F^{\prime}(t)$ were investigated (even in more general setting) for $0<p<1$ in [5]. It was shown that

$$
\begin{equation*}
F^{\prime}(t)=\frac{p}{t} \int_{E}\left[\mu\left(U_{t}\right)-\mu\left(U_{t}+x\right)\right] d v(x) \quad \text { for } t>0 \tag{1}
\end{equation*}
$$

where $U_{t}=\{x:\|x\|<t\}$ and v is the Lévy measure of μ. The crucial point in the proof of this formula was the fact that the absolute continuity of F implied that, in a neighbourhood of the origin,

$$
\begin{equation*}
\mu\left(U_{t}\right)-\mu\left(U_{t}+x\right) \leqslant c_{t}\|x\| \tag{2}
\end{equation*}
$$

where c_{t} are bounded on half-lines (a, ∞). Since, for $0<p<1$, the integral

$$
\int_{\{\|x\|<1\}}\|x\| d v(x)
$$

is finite, we could prove formula (1). From (1) we deduced the asymptotic behaviour of $F^{\prime}(t)$, when t tends to infinity (cf. [5]). If $1 \leqslant p<2$, the problem is' more difficult. The estimate (2) is not strong enough, but it is easy to see that the estimate

$$
\begin{equation*}
\mu\left(U_{t}\right)-\mu\left(U_{t}+x\right) \leqslant c_{t}\|x\|^{2} \tag{3}
\end{equation*}
$$

is sufficient, where c_{t} are bounded on every half-line (a, ∞).

In this paper we show that (3) holds for all $p \in(0,2]$ if E is a separable Hilbert space. As a corollary we get formula (1) and some of its consequences like boundedness and behaviour at infinity. The problem of boundedness of $F^{\prime}(t)$ is important for the Berry-Esseen type estimates in the Central Limit Theorem in Banach spaces with the stable limiting law.

In the Hilbert space these densities were examined by Pap [6]. He showed that, for $1<p<2$, the density $F^{\prime}(t)$ is bounded, but he used the Hölder's inequality, hence he could not examine the case $p=1$. We use his idea to prove our Theorem 2. Later, in [2], Bentkus and Pap investigated the smoothness of $F(t)$ in Banach spaces,-when the norm is of a particular form, for example, if it is induced by a bilinear functional. Using characteristic functions, they managed to show that, under additional assumptions, F has a number of derivatives, and if E is a Hilbert space, then $F^{\prime}(t)$ is bounded for $1<p<2$. They also gave an asymptotic estimate of $F^{\prime}(t)$.

In our paper we obtain formula (1) for $F^{\prime}(t)$ which enables us to show that $F^{\prime}(t)$ is bounded for every $p \in(0,2)$ and to give an asymptotic estimate for $F^{\prime}(t)$ at infinity. Our methods are quite elementary (especially for Gaussian measures) and do not depend on characteristic functions and sophisticated symmetrisation inequalities used in [2]. We use only the fact that any symmetric p-stable measure can be obtained as a mixture of Gaussian measures (see Proposition 1).
2. Notation and basic facts. Throughout the paper H denotes the separable Hilbert space with its norm $\|\cdot\|$. We write $U_{t}=\{x:\|x\|<t\}$. We consider symmetric p-stable, $0<p \leqslant 2$, measures μ on H. If $p=2$, then this measure is Gaussian and we usually denote it by γ. To avoid triviality, we always assume that $\operatorname{dim} \operatorname{supp} \mu \geqslant 2$. If μ is a symmetric p-stable measure on H, then there exists a σ-finite measure v on $H, v\left(V^{c}\right)<\infty$, for every open neighbourhood V of the origin and such that $\mu=\lim \exp \left(v \mid V_{n}^{c}\right)$ for $V_{n} \searrow\{0\}$. The measure v is called the Lévy measure of μ, and $v(r A)=r^{-p} v(A)$ for every Borel set A and $r>0$. There exists a finite measure σ on the unit sphere S_{1} in H such that, if $r(x)=\|x\|$ and $s(x)=x /\|x\|$,

$$
\begin{equation*}
\left.v\right|_{U_{\varepsilon}^{c}}\{x:\|x+y\| \in A\}=\int_{S_{1}}^{\infty} \int_{\varepsilon}^{\infty} \mathbb{1}_{A}(\|r s+y\|) \frac{d r}{r^{1+p}} d \sigma(s) \tag{4}
\end{equation*}
$$

for every $\varepsilon>0$ and a Borel set A. We call σ the spectral measure for μ.
In the sequel all absolute constants will be denoted by c_{1}, c_{2}, \ldots By F we denote the distribution function of the norm:

$$
F(t)=\mu\{x:\|x\|<\grave{t}\}
$$

We prove the estimate (3) for Gaussian measures and next apply it to stable measures using the following

Proposition 1 ([4], [8]). Let X be a symmetric p-stable vector in H with the
distribution μ and with the spectral measure σ. Put $M^{p}=\sigma\left(S_{1}\right)$ and

$$
c_{p}^{-1}=\int_{0}^{\infty} x^{-p} \sin x d x
$$

Let $X_{1}\left(\omega_{1}\right), X_{2}\left(\omega_{1}\right), \ldots$ be a sequence of i.i.d. random variables with the exponential distribution $\mathrm{P}\left\{X_{1} \geqslant x\right\}=\exp (-x)$ for $x>0 ; \Gamma_{n}=X_{1}+\ldots+X_{n}$. Let $\left(g_{i}\left(\omega_{2}\right)\right)_{i=1}^{\infty}$ denote a sequence of i.i.d. Gaussian random variables with $E g_{1}=0$ and $E\left|g_{1}\right|^{p}=1$, and let $Z_{1}\left(\omega_{1}\right), Z_{2}\left(\omega_{1}\right), \ldots$ be a sequence of i.i.d. random-vectors with values in H and with the distribution $L\left(Z_{1}\right)=\sigma / \sigma\left(S_{1}\right)$.

Assume also that the three sequences defined above are independent.
Then.for every Borel set A we have

$$
\begin{equation*}
\mathbf{P}\{X \in A\}=E_{\omega_{1}} \mathbf{P}_{\omega_{2}}\left\{c_{p} M \sum_{i=1}^{\infty} \Gamma_{i}\left(\omega_{1}\right)^{-1 / p} g_{i}\left(\omega_{2}\right) Z_{i}\left(\omega_{1}\right) \in A\right\} \tag{5}
\end{equation*}
$$

3. Estimates for the Gaussian measures in R^{n} and H. Let γ be a symmetric Gaussian measure on H. Assume that supp $\gamma=H$ and that $\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{n} \geqslant \ldots$ are the eigenvalues of the covariance operator of γ. It is well known that we can choose an orthonormal basis $\left\{e_{i}\right\}$ in H in such a way that γ is the distribution of a series

$$
\sum_{i=1}^{\infty} \sqrt{\lambda_{i}} \theta_{i}(\omega) e_{i}
$$

where $\left(\theta_{i}\right)_{i=1}^{\infty}$ are i.i.d. with the distribution $N(0,1)$. We are interested in behaviour of the distribution of the norm of

$$
S_{n}(\omega)=\sum_{i=1}^{n}\left(\sqrt{\lambda_{i}} \theta_{i}(\omega)+r_{i}\right) e_{i}, \quad \text { where } r=\left(r_{1}, \ldots, r_{n}\right) \in R^{n}
$$

In the sequel by \tilde{a} we always denote $\min (a, 1)$ for every $a \in R$.
Lemma 1. The distribution function of $\left\|S_{n}(\omega)\right\|$ is absolutely continuous on $(0, \infty)$. If we denote its density by $f_{r}(t)$, then there exist constants $c_{1}, c_{2}>0$ such that, for every $r \in R^{n},\|r\|<1$ and $t>0$,

$$
\begin{equation*}
f_{r}(t) \leqslant \frac{c_{1} t}{\left(\tilde{\lambda}_{1} \tilde{\lambda}_{2}\right)^{1 / 2}}, \quad \text { where } \tilde{\lambda}_{i}=\min \left(\lambda_{i}, 1\right) \tag{a}
\end{equation*}
$$

and
(b)

$$
\left|\frac{d}{d t} f_{r}(t)\right| \leqslant \frac{c_{2} t}{\left(\tilde{\lambda}_{1} \tilde{\lambda}_{2}\right)^{5 / 2}} .
$$

Proof. For every $s, h>0$ we have

$$
\begin{align*}
\mathrm{P}\left\{s<\left\|S_{n}(\omega)\right\|<s+h\right\}= & \mathrm{P}\left\{s^{2} \leqslant\left\|S_{n}(\omega)\right\|^{2} \leqslant(s+h)^{2}\right\} \tag{6}\\
& =\mathrm{P}\left\{s^{2} \leqslant \sum_{i=1}^{n}\left(\sqrt{\lambda_{i}} \theta_{i}(\omega)+r_{i}\right)^{2} \leqslant(s+h)^{2}\right\} .
\end{align*}
$$

The distribution function of $\left(\sqrt{\lambda_{i}} \theta_{i}(\omega)+r_{i}\right)^{2}$ is absolutely continuous on $(0, \infty)$, hence $\left\|S_{n}(\omega)\right\|$ has absolutely continuous distribution.

We estimate the density of the distribution of $\left\|S_{2}(\omega)\right\|^{2}$.
Let us put, for $t>0$,

$$
h_{i}(t)=\frac{1}{2 \sqrt{2 \pi \lambda_{i} . t}}\left[\exp \left(\frac{-\left(\sqrt{t}+r_{i}\right)^{2}}{2 \lambda_{i}}\right)+\exp \left(\frac{-\left(\sqrt{t}-r_{i}\right)^{2}}{2 \lambda_{i}}\right)\right] .
$$

The density $g(t)$ of the variable $\left\|S_{2}(\omega)\right\|^{2}$ is the convolution of h_{1} and h_{2} :
(7) $g(t)=\int_{0}^{t} h_{1}(t-x) h_{2}(x) d x \leqslant \frac{1}{2 \pi\left(\lambda_{1} \lambda_{2}\right)^{1 / 2}} \int_{0}^{t}[(t-x) x]^{-1 / 2} d x=\frac{c_{2}}{\left(\lambda_{1} \lambda_{2}\right)^{1 / 2}}$.

It is evident that $g(0)=0$.
Let us denote by $R(x)$ the density of

$$
\left\|S_{n}(\omega)-S_{2}(\omega)\right\|^{2}=\sum_{i=3}^{n}\left(\sqrt{\lambda_{i}} \theta_{i}(\omega)+r_{i}\right)^{2}
$$

Since

$$
\begin{aligned}
\mathrm{P}\left\{s^{2}<\left\|S_{n}(\omega)\right\|^{2}<(s+h)^{2}\right\} & =\mathrm{P}\left\{s^{2}<\left\|S_{2}(\omega)\right\|^{2}+\left\|S_{n}(\omega)-S_{2}(\omega)\right\|^{2}<(s+h)^{2}\right\} \\
& =\int_{0}^{\infty} \mathrm{P}\left\{s^{2}-x<\left\|S_{2}(\omega)\right\|^{2}<(s+h)^{2}-x\right\} R(x) d x \\
& \leqslant \sup _{x \geqslant 0} \mathrm{P}\left\{s^{2}-x<\left\|S_{2}(\omega)\right\|^{2}<(s+h)^{2}-x\right\} \\
& \leqslant \frac{c_{2}}{\left(\lambda_{1} \lambda_{2}\right)^{1 / 2}}\left[(s+h)^{2}-s^{2}\right]
\end{aligned}
$$

from (6) we get that $f_{r}(s) \leqslant c_{1} s /\left(\lambda_{1} \lambda_{2}\right)^{1 / 2}$. We now estimate $f_{r}^{\prime}(t)$. Denote by $k_{r}(t)$ the density of the distribution of $\left\|S_{n}(\omega)\right\|^{2}$; then

$$
k_{r}(t)=\int_{0}^{t} g(t-x) R(x) d x
$$

Observe that $k_{r}\left(t^{2}\right)=f_{r}(t)$, hence $f_{r}^{\prime}(t)=2 t k_{r}^{\prime}\left(t^{2}\right)$ and $k_{r}^{\prime}(t)$ exists because k_{r} is a convolution of smooth functions $h_{i}(t)$. If we show that

$$
\begin{equation*}
\left|g^{\prime}(t)\right| \leqslant \frac{c_{4}}{\left(\tilde{\lambda}_{1} \tilde{\lambda}_{2}\right)^{5 / 2}} \tag{8}
\end{equation*}
$$

then, since $g(0)=0$, we infer that

$$
\left|k_{r}^{\prime}(t)\right|=\left|\int_{0}^{t} g^{\prime}(t-x) R(x) d x\right| \leqslant \frac{c_{4}}{\left(\tilde{\lambda_{1}} \tilde{\lambda_{2}}\right)^{5 / 2}}
$$

and, finally, $\left|f_{r}^{\prime}(t)\right| \leqslant c_{2} t /\left(\tilde{\lambda}_{1} \tilde{\lambda}_{2}\right)^{5 / 2}$. Now we show that (8) holds. Substituting $u=x / t$ in (7), we get

$$
g(t)=\frac{1}{8 \pi\left(\lambda_{1} \lambda_{2}\right)^{1 / 2}} \int_{0}^{1}[(1-u) u]^{-1 / 2} X_{1}^{t}(1-u) X_{2}^{t}(u) d u
$$

where

$$
X_{i}^{t}(x)=\exp \left(\frac{-t\left(\sqrt{x}+r_{i} / \sqrt{t}\right)^{2}}{2 \lambda_{i}}\right)+\exp \left(\frac{-t\left(\sqrt{x}-r_{i} / \sqrt{t}\right)^{2}}{2 \lambda_{i}}\right)
$$

Let

$$
Y_{i}^{t}(x)=\exp \left(\frac{-t\left(\sqrt{x}+r_{i} / \sqrt{t}\right)^{2}}{-2 \lambda_{i}}\right)-\exp \left(\frac{-t\left(\sqrt{x}-r_{i} / \sqrt{t}\right)^{2}}{2 \lambda_{i}}\right)
$$

Easy calculations show that

$$
\begin{align*}
& \text { 9) } g^{\prime}(t)=\frac{-1}{16 \pi\left(\lambda_{1} \lambda_{2}\right)^{1 / 2}} \int_{0}^{1}[(1-u) u]^{-1 / 2}\left[\frac{1}{\lambda_{1}}(1-u) X_{1}^{t}(1-u) X_{2}^{t}(u)+\right. \tag{9}\\
& \left.+\frac{1}{\lambda_{1}} \frac{r_{1} \sqrt{1-u}}{\sqrt{t}} Y_{1}^{t}(u) X_{2}^{t}(u)+\frac{1}{\lambda_{2}} u X_{2}^{t}(u) X_{1}^{t}(1-u)+\frac{1}{\lambda_{2}} \frac{r_{2} \sqrt{u}}{\sqrt{t}} Y_{2}^{t}(u) X_{1}^{t}(1-u)\right] d u .
\end{align*}
$$

Let us divide the right-hand side of (9) into four integrals and observe that the absolute value of the first and the third integral is less than $\left(\lambda_{1}^{-1}+\lambda_{2}^{-1}\right) g(t)$. It is easy to see that estimating two remaining integrals it is sufficient to do it for one of them:

$$
\sup _{t>0} \int_{0}^{1}[(1-u) u]^{-1 / 2} \frac{r_{1} \sqrt{1-u}}{\sqrt{t}} Y_{1}^{t}(u) X_{2}^{t}(u) d u=c_{5}<+\infty
$$

(recall that $\left|r_{1}\right| \leqslant 1$ by assumption).
By elementary inequality $\left|e^{-x}-e^{-y}\right| \leqslant|x-y|$ for $x, y>0$, we get

$$
\begin{aligned}
\left|\frac{1}{\sqrt{t}} Y_{1}^{t}(u)\right| & =\frac{1}{\sqrt{t}}\left|\exp \left(\frac{-t\left(\sqrt{1-u}-r_{1} / \sqrt{t}\right)^{2}}{2 \lambda_{1}}\right)-\exp \left(\frac{-t\left(\sqrt{1-u}+r_{1} / \sqrt{t}\right)^{2}}{2 \lambda_{1}}\right)\right| \\
& \leqslant \frac{2\left|r_{1}\right| \sqrt{1-u}}{\lambda_{1}} \leqslant \frac{2}{\lambda_{1}} .
\end{aligned}
$$

Finally,

$$
\left|g^{\prime}(t)\right| \leqslant \frac{1}{8 \pi\left(\lambda_{1} \lambda_{2}\right)^{1 / 2}}\left(\frac{c_{6}}{\bar{\lambda}_{1}^{2}}+\frac{c_{7}}{\bar{\lambda}_{2}^{2}}\right) \leqslant \frac{c_{3}}{\left(\tilde{\lambda}_{1} \tilde{\lambda}_{2}\right)^{5 / 2}},
$$

which completes the proof.
Now we prove a theorem which is the crucial point of the paper.
Theorem 1. Let γ be a distribution of the series

$$
\sum_{i=1}^{n} \sqrt{\lambda_{i}} \theta_{i}(\omega) e_{i}
$$

where $\left(e_{i}\right)_{i=1}^{n}$ is the standard basis in R^{n} and $\left(\theta_{i}\right)_{i=1}^{n}$ are i.i.d. with the distribution $N(0,1)$, Assume that $\lambda_{1} \geqslant \ldots \geqslant \lambda_{n}>0$ and let $r \in R^{n}$ with $\|r\| \leqslant 1$.

Then there exists an absolute constant $c>0$ such that

$$
\begin{equation*}
\gamma\left(U_{t}\right)-\gamma\left(U_{t}+r\right) \leqslant \frac{c}{\tilde{t}\left(\tilde{\lambda_{1}} \tilde{\lambda}_{2}\right)^{5 / 2}}\|r\|^{2} \tag{10}
\end{equation*}
$$

Remark 1. It is obvious that the left-hand side of (10) is less than 1.
Remark 2. Observe that by virtue of the well-known Anderson's inequality we have $\gamma\left(U_{t}\right)-\gamma\left(U_{t}+r\right) \geqslant 0$. In view of Proposition 1 we infer that the same is true for symmetric stable measures.

Proof. For fixed $r \in R^{n}$ put $r^{k}=\left(r_{1}, \ldots, r_{k}, 0, \ldots, 0\right) \in R^{n}$. Let us write

$$
S_{n}(\omega)=\sum_{i=1}^{n} \sqrt{\lambda_{i}} \theta_{i}(\omega) e_{i} \quad \text { and } \quad S_{n}^{k}=\sum_{i \neq k} \sqrt{\lambda_{i}} \theta_{i}(\omega) e_{i}
$$

We show that, for $k=0,1, \ldots, n-1$,

$$
\begin{equation*}
\left|\mathrm{P}\left\{S_{n}(\omega) \in U_{t}+r^{k}\right\}-\mathrm{P}\left\{S_{n}(\omega) \in U_{t}+r^{k+1}\right\}\right| \leqslant \frac{c}{\tilde{t}\left(\tilde{\lambda}_{1} \tilde{\lambda}_{2}\right)^{5 / 2}} r_{k+1}^{2} \tag{11}
\end{equation*}
$$

By the triangle inequality and (11) we get

$$
\mathrm{P}\left\{S_{n}(\omega) \in U_{t}\right\}-\mathrm{P}\left\{S_{n}(\omega) \in U_{t}+r\right\} \leqslant \sum_{k=0}^{n-1} \frac{c}{\tilde{t}\left(\tilde{\lambda_{1}} \tilde{\lambda}_{2}\right)^{5 / 2}} r_{k+1}^{2}=\frac{c}{\tilde{t}\left(\tilde{\lambda}_{1} \tilde{\lambda}_{2}\right)^{5 / 2}}\|r\|^{2}
$$

Now we show (11). For fixed $k \in\{0,1, \ldots, n-1\}$ let f_{r}^{k} be the density of the distribution of $\left\|S_{n}^{k+1}(\omega)-r^{k}\right\|$; here $r^{k}=\left(r_{1}, \ldots, r_{k}, 0, \ldots, 0\right) \in R^{n-1}$. We have

$$
\begin{aligned}
I_{1}^{k}= & \mathrm{P}\left\{S_{n}(\omega)-r^{k} \in U_{t}\right\}-\mathrm{P}\left\{S_{n}(\omega)-r^{k+1} \in U_{t}\right\} \\
= & \mathbf{P}\left\{\left\|S_{n}^{k+1}(\omega)-r^{k}\right\|^{2}+\left(\sqrt{\lambda_{k+1}} \theta_{k+1}(\omega)\right)^{2}<t^{2}\right\}- \\
& \quad-\mathrm{P}\left\{\left\|S_{n}^{k+1}(\omega)-r^{k}\right\|^{2}+\left(\sqrt{\lambda_{k+1}} \theta_{k+1}(\omega)+r_{k+1}\right)^{2}<t^{2}\right\} \\
= & \int_{0}^{t}\left[\mathrm{P}\left\{\left(\sqrt{\lambda_{k+1}} \theta_{k+1}(\omega)\right)^{2}<t^{2}-x^{2}\right\}-\right. \\
& \left.\quad-\mathrm{P}\left\{\left(\sqrt{\lambda_{k+1}} \theta_{k+1}(\omega)+r_{k+1}\right)^{2}<t^{2}-x^{2}\right\}\right] f_{r}^{k}(x) d x \\
= & \int_{0}^{t}\left[\Phi\left(\sqrt{\frac{t^{2}-x^{2}}{\lambda_{k+1}}}\right)-\Phi\left(-\sqrt{\frac{t^{2}-x^{2}}{\lambda_{k+1}}}\right)-\Phi\left(\sqrt{\frac{t^{2}-x^{2}}{\lambda_{k+1}}}-\frac{r_{k+1}}{\sqrt{\lambda_{k+1}}}\right)+\right. \\
& \left.+\Phi\left(-\sqrt{\frac{t^{2}-x^{2}}{\lambda_{k+1}}}-\frac{r_{k+1}}{\sqrt{\lambda_{k+1}}}\right)\right] f_{r}^{k}(x) d x
\end{aligned}
$$

where

$$
\Phi(y)=\int_{-\infty}^{y} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right) d x .
$$

Denoting for simplicity λ_{k+1} by λ and r_{k+1} by a we get

$$
I_{1}^{k}=\int_{0}^{t} H_{\lambda}(x) f_{r}^{k}(x) d x
$$

where

$$
H_{\lambda}(x)=2 \Phi\left(\sqrt{\frac{t^{2}-x^{2}}{\lambda}}\right)-\Phi\left(\frac{\sqrt{t^{2}-x^{2}}+a}{\sqrt{\lambda}}\right)-\Phi\left(\frac{\sqrt{t^{2}-x^{2}}-a}{\sqrt{\lambda}}\right)
$$

Now the estimate depends on k. Let $k=0$ or 1 . Taking three terms in the Taylor's formula with the Lagrange form of the reminder, we have

$$
\begin{aligned}
& \sqrt{2 \pi} H_{\lambda}(x)=\frac{a^{2}}{2 \lambda}\left[\frac{\sqrt{t^{2}-x^{2}}-\delta_{1} a}{\sqrt{\lambda}} \exp \left(-\frac{\left(\sqrt{t^{2}-x^{2}}-\delta_{1} a\right)^{2}}{2 \lambda}\right)+\right. \\
& \left.\quad+\frac{\sqrt{t^{2}-x^{2}}+\delta_{2} a}{\sqrt{\lambda}} \exp \left(-\frac{\left(\sqrt{t^{2}-x^{2}}+\delta_{2} a\right)^{2}}{2 \lambda}\right)\right] \text { for } 0<\delta_{1}, \delta_{2}<1
\end{aligned}
$$

Because max $\left|x e^{-x^{2} / 2}\right|=e^{-1 / 2}$, we have

$$
\left|I_{1}^{k}\right| \leqslant \frac{a^{2}}{\sqrt{e} \lambda} \int_{0}^{t} f_{r}^{k}(x) d x \leqslant \frac{c_{8}}{\lambda}
$$

hence, for $k=0$ or 1 , we have $\left|I_{1}^{k}\right| \leqslant c_{8} /\left(\tilde{\lambda}_{1} \tilde{\lambda}_{2}\right)^{5 / 2}$.
Now, take $k \in\{2, \ldots, n-1\}$ and use the Taylor's formula with the integral form of the reminder:

$$
H_{\lambda}(x)=\frac{a^{2}}{\lambda} \int_{0}^{1}(1-s)\left[\Phi^{\prime \prime}\left(\frac{\sqrt{t^{2}-x^{2}}-s a}{\sqrt{\lambda}}\right)+\Phi^{\prime \prime}\left(\frac{\sqrt{t^{2}-x^{2}}+s a}{\sqrt{\lambda}}\right)\right] d s
$$

Because $\sqrt{2 \pi} \Phi^{\prime \prime}(x)=-x \exp \left(-x^{2} / 2\right)$, we have to show that

$$
\sup _{0<\lambda<1}\left|I_{1}^{k}\right|=c_{9}<\infty
$$

where

$$
\begin{aligned}
I_{1}^{k}=\frac{1}{\lambda} \int_{0}^{t} \frac{u f_{r}^{k}\left(\sqrt{t^{2}-u^{2}}\right)}{\sqrt{t^{2}-u^{2}}} \int_{0}^{1}(1-s)\left[\frac{u+s a}{\sqrt{\lambda}}\right. & \exp \left(-\frac{(u+s a)^{2}}{2 \lambda}\right)+ \\
& \left.+\frac{u-s a}{\sqrt{\lambda}} \exp \left(\frac{-(u-s a)^{2}}{2 \lambda}\right)\right] d s d u
\end{aligned}
$$

Assuming $0<a$, we estimate I_{1}^{k} using Fubini theorem and Lemma 1. The first term is estimated as follows:

$$
\begin{align*}
& \int_{0}^{t} \frac{f_{r}^{k}\left(\sqrt{t^{2}-u^{2}}\right)}{\sqrt{t^{2}-u^{2}}} \int_{0}^{1}(1-s) \frac{u}{\sqrt{\lambda}} \frac{u+s a}{\sqrt{\lambda}} \frac{1}{\sqrt{\lambda}} \exp \left(\frac{-(u+s a)^{2}}{2 \lambda}\right) d s d u \tag{12}\\
\leqslant & \int_{0}^{t} \frac{f_{r}^{k}\left(\sqrt{t^{2}-u^{2}}\right)}{\sqrt{t^{2}-u^{2}}} \int_{0}^{1}\left(\frac{u+s a}{\sqrt{\lambda}}\right)^{2} \frac{1}{\sqrt{\lambda}} \exp \left(\frac{-(u+s a)^{2}}{2 \lambda}\right) d s d u \\
= & \int_{0}^{1} \int_{s a / \sqrt{\lambda}}^{(t+s a) / \sqrt{\lambda}} \frac{f_{r}^{k}\left(\sqrt{t^{2}-(\sqrt{\lambda} v-s a)^{2}}\right.}{\sqrt{t^{2}-(\sqrt{\lambda} v-s a)^{2}}} v^{2} \exp \left(-\frac{v^{2}}{2}\right) d v d s \\
\leqslant & \int_{0}^{1} \frac{c_{2}}{\left(\tilde{\lambda}_{1} \tilde{\lambda}_{2}\right)^{1 / 2}} \int_{-\infty}^{+\infty} v^{2} \exp \left(-\frac{v^{2}}{2}\right) d v d s \leqslant \frac{c_{2}}{\left(\tilde{\lambda}_{1} \tilde{\lambda}_{2}\right)^{5 / 2}} .
\end{align*}
$$

Now the second term:

$$
\begin{aligned}
& \frac{1}{\lambda} \int_{0}^{t} \frac{u f_{r}^{k}}{\sqrt{t^{2}-u^{2}}} \int_{0}^{2}(1-s) \frac{u-s a}{\sqrt{\lambda}} \exp \left(\frac{-(u-s a)^{2}}{2 \lambda}\right) d s d u \\
& \quad=\int_{0}^{1} \int_{0}^{t} \frac{f_{r}^{k}\left(\sqrt{t^{2}-u^{2}}\right)}{\sqrt{t^{2}-u^{2}}} \frac{1-s}{\sqrt{\lambda}}\left(\frac{u-s a}{\sqrt{\lambda}}\right)^{2} \exp \left(\frac{-(u-s a)^{2}}{2 \cdot \lambda}\right) d u d s+ \\
& \quad+\int_{0}^{1} \int_{0}^{t} \frac{f_{r}^{k}\left(\sqrt{t^{2}-u^{2}}\right)}{\sqrt{t^{2}-u^{2}}} \frac{s a}{\sqrt{\lambda}} \frac{u-s a}{\sqrt{\lambda}} \frac{1-s}{\sqrt{\lambda}} \exp \left(\frac{-(u-s a)^{2}}{2 \lambda}\right) d u d s=I_{2}+I_{3}
\end{aligned}
$$

The intergal I_{2} we estimate in the same way as (12). Observe that it is sufficient to prove (10) for r such that $\|r\|^{2} \leqslant t / 2$; hence we may assume that $a=\|r\| \leqslant t / 2$ because, for $0<a \leqslant 1$, we have $a^{2} \leqslant a$. To estimate I_{3} we divide it into two integrals; the first one is the following:

$$
\begin{align*}
I_{4} & =\int_{0}^{1} \int_{t / 2}^{t} \frac{f_{r}^{k}\left(\sqrt{t^{2}-u^{2}}\right)}{\sqrt{t^{2}-u^{2}}} \frac{s a}{\sqrt{\lambda}} \frac{u-s a}{\sqrt{\lambda}} \frac{1-s}{\sqrt{\lambda}} \exp \left(\frac{-(u-s a)^{2}}{2 \lambda}\right) d u d s \tag{13}\\
& \leqslant \int_{0}^{1} \int_{t / 2}^{t} \frac{c_{1}}{\left(\tilde{\lambda}_{1} \tilde{\lambda}_{2}\right)^{1 / 2}} \frac{s a}{\sqrt{\lambda}} \frac{u-s a}{\sqrt{\lambda}} \frac{1}{\sqrt{\lambda}} \exp \left(\frac{-(u-s a)^{2}}{2 \lambda}\right) d u d s \\
& \left.=\frac{c_{1}}{\left(\tilde{\lambda}_{1}\right.} \tilde{\lambda}_{2}\right)^{1 / 2} \int_{0}^{1} \int_{(t / 2-s a) / \sqrt{\lambda}}^{(t-s a) / \sqrt{\lambda}} \frac{s a}{\sqrt{\lambda}} x \exp \left(\frac{-x^{2}}{2}\right) d x d s
\end{align*}
$$

$$
\begin{aligned}
& \leqslant \frac{c_{1}}{\left(\tilde{\lambda}_{1} \tilde{\lambda}_{2}\right)^{1 / 2}} \frac{a}{\sqrt{\lambda}} \int_{0}^{1} \exp \left(\frac{-(t / 2-s a)^{2}}{2 \lambda}\right) d s \\
& =\frac{c_{1}}{\left(\tilde{\lambda}_{1} \tilde{\lambda}_{2}\right)^{1 / 2}} \int_{(z / 2-a) / \sqrt{\lambda}}^{t / 2} \exp \left(\frac{-x^{2}}{2}\right) d x \leqslant \frac{c_{1} \sqrt{\pi / 2}}{\left(\tilde{\lambda}_{1} \tilde{\lambda}_{2}\right)^{1 / 2}}
\end{aligned}
$$

Estimating the second integral we apply the mean value theorem,

$$
\begin{align*}
& \quad \frac{f_{r}^{k}\left(\sqrt{t^{2}-(\sqrt{\lambda} x+s a)^{2}}\right)}{\sqrt{t^{2}-(\sqrt{\lambda} x+s a)^{2}}}=\frac{f_{r}^{k}\left(\sqrt{t^{2}-(s a)^{2}}\right)}{\sqrt{t^{2}-(s a)^{2}}}+ \tag{14}\\
& +x \sqrt{\lambda}(\sqrt{\lambda} \vartheta x+s a) \frac{f_{r}^{k}\left(y_{x}\right)-f_{r}^{k^{\prime}}\left(y_{x}\right) \sqrt{y_{x}}}{y_{x}^{3 / 2}}=D+x \sqrt{\lambda}(\sqrt{\lambda} \vartheta x+s a) E\left(y_{x}\right),
\end{align*}
$$

where $y_{x}=t^{2}-(\sqrt{\lambda} \vartheta x+s a)^{2}$ and $0<\vartheta<1$.
By (14) we obtain the estimate

$$
\begin{align*}
& \text { (15) } \quad I_{3}-I_{4}=\int_{0}^{1}(1-s) \int_{-s a / \sqrt{\lambda}}^{(t / 2-s a) / \sqrt{\lambda}} D \frac{s a}{\sqrt{\lambda}} x \exp \left(\frac{-x^{2}}{2}\right) d x d s+ \tag{15}\\
& +\int_{0}^{1} \int_{-s a / \sqrt{\lambda}}^{(t / 2-s a) / \sqrt{\lambda}}(1-s) x \sqrt{\lambda}(\sqrt{\lambda} \vartheta x+s a) E\left(y_{x}\right) \frac{s a}{\sqrt{\lambda}} x \exp \left(\frac{-x^{2}}{2}\right) d x d s=I_{5}+I_{6} .
\end{align*}
$$

The integral I_{5} can be estimated in the same way as I_{4} in (13), hence it remains to estimate I_{6} only. From Lemma 1 , for $x \in(-s a / \sqrt{\lambda},(t / 2-s a) / \sqrt{\lambda})$, we have

$$
\begin{aligned}
\left|(\sqrt{\lambda} \vartheta x+s a) E\left(y_{x}\right)\right| \leqslant \mid & \sqrt{\lambda} \vartheta x+s a \left\lvert\,\left(\frac{\left|f_{r}^{k^{\prime}}\left(y_{x}\right)\right|}{y_{x}}+\frac{f_{r}^{k}\left(y_{x}\right)}{y_{x}^{3 / 2}}\right)\right. \\
& \leqslant \frac{c_{2}}{\left(\tilde{\lambda}_{1} \tilde{\lambda}_{2}\right)^{5 / 2}} \frac{|\sqrt{\lambda} \vartheta x+s a|}{\sqrt{y_{x}}}+\frac{c_{1}}{\left(\tilde{\lambda}_{1} \tilde{\lambda}_{2}\right)^{1 / 2}}|\sqrt{\lambda} \vartheta x+s a| \\
& \leqslant \frac{c_{10}}{\left(\tilde{\lambda}_{1} \tilde{\lambda}_{2}\right)^{5 / 2}} \frac{t / 2}{\min \left(\frac{3}{4} t^{2}, \sqrt{\frac{3}{4}} t\right)} \leqslant \frac{c_{11}}{\tilde{t}\left(\tilde{\lambda}_{1} \tilde{\lambda}_{2}\right)^{5 / 2}}
\end{aligned}
$$

Finally,

$$
\begin{equation*}
\left|I_{6}\right| \leqslant \frac{c_{11}}{\tilde{t}\left(\tilde{\lambda}_{1} \tilde{\lambda}_{2}\right)^{5 / 2}} \int_{0}^{1} \int_{-s a / \sqrt{\lambda}}^{(t / 2-s a) / \sqrt{\lambda}} s a \cdot x^{2} \cdot \exp \left(\frac{-x^{2}}{2}\right) d x d s \leqslant \frac{c_{12}}{\tilde{t}\left(\tilde{\lambda}_{1} \tilde{\lambda}_{2}\right)^{5 / 2}}, \tag{16}
\end{equation*}
$$

which, together with (13), gives the desired result. The proof of the theorem is completed.

Let now γ be a Gaussian measure on H. Assume that supp $\gamma=H$ and that γ is the distribution of the series $\sum_{i=1}^{\infty} \sqrt{\lambda_{i}} \theta_{i}(\omega) e_{i}$, where $\left(e_{i}\right)_{i=1}^{\infty}$ is a CONS in H and $\sum_{i=1}^{\infty} \lambda_{i}<\infty$ with $\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots$

By γ_{n} we denote the distribution of $\sum_{i=1}^{n} \sqrt{\lambda_{i}} \theta_{i}(\omega) e_{i}$.
Corollary. 1. Under the above assumptions there exists an absolute constant $c>0$ such that, for every $t>0$ and $r \in H$,

$$
\begin{equation*}
\gamma\left(U_{t}\right)-\gamma\left(U_{t}+r\right) \leqslant \frac{c}{\tilde{t}\left(\bar{\lambda}_{1} \tilde{\lambda}_{2}\right)^{5 / 2}}\|r\|^{2} \tag{17}
\end{equation*}
$$

Proof. For every $r \in H$ the series

$$
S(\omega)=\sum_{i=1}^{\infty}\left(\sqrt{\lambda_{i}} \theta_{i}(\omega)+r_{i}\right) e_{i}
$$

is convergent with probability 1 , hence weakly. Lemma 1 implies that the distribution of $\|S(\omega)\|$ is absolutely continuous on $(0, \infty)$, hence, for every $t>0$, and $r \in H$,

$$
\lim _{n} \gamma_{n}\left(U_{t}+r\right)=\gamma\left(U_{t}+r\right)
$$

For every $\varepsilon>0$ we can choose an $n_{0} \in N$ such that, for $n>n_{0}$,

$$
\begin{equation*}
\left|\gamma_{n}\left(U_{t}\right)-\gamma\left(U_{t}\right)\right|<\varepsilon \quad \text { and } \quad\left|\gamma_{n}\left(U_{t}+r\right)-\gamma\left(U_{t}+r\right)\right|<\varepsilon \tag{18}
\end{equation*}
$$

By virtue of Theorem 1 and estimates (18) we have

$$
\begin{aligned}
\gamma\left(U_{t}\right)-\gamma\left(U_{t}+r\right) & =\left|\gamma\left(U_{t}\right)-\gamma_{n}\left(U_{t}\right)+\gamma_{n}\left(U_{t}\right)-\gamma_{n}\left(U_{t}+r\right)+\gamma_{n}\left(U_{t}+r\right)-\gamma\left(U_{t}+r\right)\right| \\
& \leqslant \varepsilon+\frac{c}{\tilde{t}\left(\tilde{\lambda}_{1} \tilde{\lambda}_{2}\right)^{5 / 2}}\|r\|^{2}+\varepsilon .
\end{aligned}
$$

Taking $\varepsilon \rightarrow 0$, we get the desired result.
Remark. Using the Cameron-Martin formula we get an estimate much weaker than (17) and only for r belonging to the RKHS of γ.
4. Estimates for stable measures in H. We use an idea belonging to Pap [6]. Let μ be a symmetric p-stable measure on H. By Proposition 1 we can write, for every $t>0$,

$$
\begin{equation*}
\mu\left(U_{t}\right)=E_{\omega_{1}} \mathrm{P}_{\omega_{2}}\left\{c_{p} M \sum_{i=1}^{\infty} \Gamma_{i}\left(\omega_{1}\right)^{-1 / p} g_{i}\left(\omega_{2}\right) Z_{i}\left(\omega_{1}\right) \in U_{t}\right\} \tag{19}
\end{equation*}
$$

For fixed ω_{1} the series on the right-hand side of (19) represents a symmetric Gaussian measure $\gamma_{\omega_{1}}$. Let $\lambda_{i}\left(\omega_{1}\right)$ denote the eigenvalues of the covariance operator of $\gamma_{\omega_{1}}$ and assume that $\lambda_{1}\left(\omega_{1}\right) \geqslant \lambda_{2}\left(\omega_{1}\right) \geqslant \ldots$ Pap [6] showed that

$$
E_{\omega_{1}} \frac{1}{\left(\lambda_{1}\left(\omega_{1}\right) \lambda_{2}\left(\omega_{1}\right)\right)^{5 / 2}}<\infty
$$

From this result we deduce our next theorem.
Theorem 2. If μ is a symmetric p-stable measure on H, then there exists a constant $C>0$ such that, for all $r \in \operatorname{supp} \mu$ and $t>0$,

$$
\begin{equation*}
\mu\left(U_{t}\right)-\mu\left(U_{t}+r\right) \leqslant \frac{C}{\tilde{t}}\|r\|^{2} \tag{20}
\end{equation*}
$$

Proof. Sztencel [9] proved that for almost all ω_{1} the supports of $\gamma_{\omega_{1}}$ are equal to the support of μ, so we can assume that supp $\mu=H$, and then $\operatorname{supp} \gamma_{\omega_{1}}=H$ for almost all ω_{1}.

By Pap's result, (19) and Theorem 1 we see that there exists a constant $C>0$ such that

$$
\begin{aligned}
\mu\left(U_{t}\right)-\mu\left(U_{t}+r\right)=E_{\omega_{1}}\left[\gamma_{\omega_{1}}\left(U_{t}\right)\right. & \left.-\gamma_{\omega_{1}}\left(U_{t}+r\right)\right] \\
& \leqslant \frac{C}{\tilde{t}}\|r\|^{2} E_{\omega_{1}} \frac{1}{\left(\tilde{\lambda}_{1}\left(\omega_{1}\right) \tilde{\lambda}_{2}\left(\omega_{1}\right)\right)^{5 / 2}}=\frac{C}{\tilde{t}}\|r\|^{2}
\end{aligned}
$$

5. Formula for the density. We can now prove our main theorem. In [5] we gave an analogous formula for $p \in(0,1)$ and measurable seminorms in any Banach space. Here we show the formula in Hilbert space only, but for all $p \in(0,2)$. All the technical details are very similar to those given in [5] with one exception: now we apply Theorem 2 instead of estimate (2).
Theorem 3. Let μ be a symmetric p-stable, $0<p<2$, measure on a separable Hilbert space H. Then the distribution function $F(t)=\mu\{x:\|x\|<t\}$ is absolutely continuous and, for every' $t>0$,

$$
\begin{equation*}
F^{\prime}(t)=\frac{p}{t} \int_{H}\left[\mu\left(U_{t}\right)-\mu\left(U_{t}+x\right)\right] d v(x), \tag{21}
\end{equation*}
$$

where v is the Lévy measure of μ.
Proof. The details of the proof may be found in [5], here we sketch only the main ideas. It is easy to see that if $F^{\prime}(t)$ exists, then

$$
F^{\prime}(t)=\lim _{s \rightarrow 0} \frac{p}{t} \int_{H}\left[\mu\left(U_{t}\right)-\mu\left(U_{t}+x\right)\right] d \frac{1}{s} \mu_{s}(x)
$$

where $\left(\mu_{s}\right)_{s>0}$ is a symmetric semigroup of p-stable measures such that $\mu_{1}=\mu$. For every $t>0$ the function $f_{t}(x)=\mu\left(U_{t}\right)-\mu\left(U_{t}+x\right)$ is continuous and bounded and, for every $\varepsilon>0$,

$$
\begin{equation*}
\left.\frac{1}{s} \mu_{s}\right|_{\{x:\|x\|>\varepsilon\}} \text { converges weakly to }\left.v\right|_{\{x:\|x\|>\varepsilon\}} \text { as } s \rightarrow 0 \tag{22}
\end{equation*}
$$

By virtue of Theorem 2, for every $\varepsilon>0$, we have

$$
\begin{align*}
& \int_{\{x:\|x\|<\varepsilon\}}\left[\mu\left(U_{t}\right)-\mu\left(U_{t}+x\right)\right] d \frac{1}{s} \mu_{s}(x) \tag{23}\\
& \leqslant \int_{\{x:\|x\|<\varepsilon\}} \frac{C}{\tilde{t}}\|x\|^{2} d \frac{1}{s} \mu_{s}(x)=\frac{C}{\tilde{t}} \int_{\{x:\|x\|<\varepsilon s-1, p\}} s^{(2 / p)-1}\|x\|^{2} d \mu(x) \\
& \leqslant \frac{C}{\tilde{t}} s^{(2 / p)-1} \int_{0}^{\varepsilon s^{-1 / p}} 2 \alpha \mu\{x:\|x\|>\alpha\} d \alpha \leqslant \frac{c_{13}}{\tilde{t}} \varepsilon^{2-p},
\end{align*}
$$

because $\mu\{x:\|x\|>\alpha\} \leqslant c_{14} \alpha^{-p}$ (see e.g. [1]).
Combining (22) and (23) we deduce that, for every $\varepsilon>0$,

$$
\lim _{s \rightarrow 0} \int_{H}\left[\mu\left(U_{t}\right)-\mu\left(U_{t}+x\right)\right] d \frac{1}{s} \mu_{s}(x)=\int_{H}\left[\mu\left(U_{t}\right)-\mu\left(U_{t}+x\right)\right] d v(x),
$$

which implies

$$
F^{\prime}(t)=\frac{p}{t} \int_{H}\left[\mu\left(U_{t}\right)-\mu\left(U_{t}+x\right)\right] d v(x)
$$

This formula implies the continuity of $F^{\prime}(t)$. Indeed, let $t_{n} \rightarrow t>0$. Then, for every $x \in H, f_{t_{n}}(x) \rightarrow f_{t}(x)$, and this, in turn, implies that $F^{\prime}\left(t_{n}\right) \rightarrow F^{\prime}(t)$ (cf. [5]). This completes the proof of Theorem 3.

Now we give an asymptotic estimate of $F^{\prime}(t)$ at infinity. Fix $t>0$. By Theorems 2 and 3 and by (4) we can estimate as follows:

$$
\begin{aligned}
\int_{H}\left[\mu\left(U_{t}\right)-\mu\left(U_{t}+x\right)\right] d v(x) & =\int_{S_{1}} \int_{0}^{\infty}\left[\mu\left(U_{t}\right)-\mu\left(U_{t}+r z\right)\right] \sigma(d z) \frac{d r}{r^{1+p}} \\
& \leqslant \sigma\left(S_{1}\right) \int_{0 z \in S_{1}}^{\infty} \sup \left[\mu\left(U_{t}\right)-\mu\left(U_{t}+r z\right)\right] \frac{d r}{r^{1+p}} \\
& \leqslant \sigma\left(S_{1}\right) \int_{0}^{\infty} \min \left(\frac{C}{\tilde{t}} r^{2}, 1\right) \frac{d r}{r^{1+p}} \\
& =\sigma\left(S_{1}\right)\left[\int_{0}^{1} \frac{C}{\tilde{t}} r^{1-p} d r+\int_{1}^{\infty} C r^{-1-p} d r\right] \leqslant c_{15}<+\infty
\end{aligned}
$$

By formula (21) we obtain the following
Corollary 2. Let μ and F be as in Theorem 3. There exists a constant $K>0$ such that, for all $t>1, F^{\prime}(t) \leqslant K t^{-1}$.

Remark. In [5] we showed the exact asymptotic behaviour of $F^{\prime}(t)$. Namely, if $0<p<1$, then

$$
\lim _{t \rightarrow \infty} t^{1+p} F^{\prime}(t)=\sigma\left(S_{1}\right)
$$

We conjecture that in this case the same is true.
In view of formula (1), obtained in [5] for $0<p<1$, Ryznar [7] showed that $F^{\prime}(t)$ is bounded. Repeating his arguments and using (21) instead of (1) one can show that $F^{\prime}(t)$ is bounded for all $p \in(0,2)$.

Corollary 3. In the setting of Theorem 3 the density $F^{\prime}(t)$ is bounded on $(0, \infty)$.

Proof. It is enough to show that $F^{\prime}(t)$ is bounded on $(0,1)$. Let us choose $t<1$ and fix $m \in N$. We will specify m later on. By virtue of (21) and (20) we have

$$
\begin{aligned}
F^{\prime}(t) & =\frac{p}{t} \int_{E}\left[\mu\left(U_{t}\right)-\mu\left(U_{t}+x\right)\right] d v(x) \\
& \leqslant \frac{p}{t} \sigma\left(S_{1}\right)\left[\int_{0}^{t_{0}^{m}} \frac{C}{t} r^{2} \frac{d r}{r^{1+p}}+\int_{t^{m}}^{\infty} F(t) \frac{d r}{r^{1+p}}\right] \\
& \leqslant c_{16} p \sigma\left(S_{1}\right)\left[C t^{(2-p) m-2}+F(t) t^{-m p-1}\right] .
\end{aligned}
$$

Taking m such that $(2-p) m-2>0$ and taking into account that if supp μ is infinite-dimensional, then, for every $n \in N, F(t)=o\left(t^{n}\right), t \rightarrow 0$ (see [1]), we get that

$$
\lim _{t \rightarrow 0} F^{\prime}(t)=0
$$

If supp μ is finite-dimensional, the result is well-known.
We believe that the estimate of type (3) is valid in any Banach space and that the following conjecture is true:

Conjecture. Let μ be a symmetric p-stable measure on a separable Banach space E and put $t_{0}=\inf \{t>0: F(t)>0\}$. Then for every $t>t_{0}$ there exists a constant $c(t)$ which is bounded on every half-line (a, ∞) and such that $\mu\left(U_{t}\right)-\mu\left(U_{t}+x\right) \leqslant c(t)\|x\|^{2}$.

If this conjecture is true, then formula (1) holds, and we can apply it in the investigation of properties of the density $F^{\prime}(t)$.

Addedin proof. It turned out that in general the above conjecture is false. Nevertheless, it is true in some classes of Banach spaces, e.g. in L_{p} spaces
for $p \geqslant 2$. The results are contained in the forthcoming paper "The measure of a translated ball in uniformly convex spaces" written by M. Ryznar and the author.

REFERENCES

[1] A. de Acosta, Stable measures and seminorms, Ann. Prob. 3 (1975), p. 865-875.
[2] V. Bentkus and G. Pap, On the distribution function of the norm of a stable random variable taking values in a Hilbert space, Lithuanian Math. J. 26/2 (1986), p. 211-220 (in Russian).
[3] T. Byczkowski and K. Samotij, Absolute continuity of stable seminorms, Ann. Prob. 14/1 (1986), p. 299-312.
[4] R. LePage, M. Woodroffe and J. Zinn, Convergence to a stable distribution via order statistics, ibidem 9/4 (1981), p. 624-632.
[5] M. Lewandowski and T. Żak, On the density of the distribution of p-stable seminorms, $0<p<1$; Proc. Amer. Math. Soc. 100/2 (1987), p. 345-351.
[6] G. Pap, Boundedness of the density of the norm of stable random vector in a Hilbert space, Theory Prob. Math. Statist. 36 (1987) (in Russian).
[7] M. Ryznar, Geometrical properties of Banach spaces and the distribution of the norm for a stable measure, Studia Math. (to appear).
[8] R. Sztencel, On the lower tail of stable seminorms, Bull. Pol. Ac.: Math. 32 (1984), p. 715-719.
[9] R. Sztencel, Absolute continuity of the lower tail of stable seminorms, ibidem 34 (1986), p. 231-234.

Institute of Mathematics
Technical University
Wybrzeże Wyspiańskiego 27
50-370 Wrocław, Poland

Received on 9. 5. 1987;
revised version on 6. 10. 1987

