PROBABILITY AND MATHEMATICAL STATISTICS

Vol. 10, Fasc. 2 (1989), p. 271-276

ON A LIMIT THEOREM AND INVARIANCE PRINCIPLE FOR SYMMETRIC STATISTICS*

BY

V. MANDREKAR (MICHIGAN) AND B. V. RAO (CALCUTTA)

Abstract. The paper contains direct proofs of two important theorems. First of them (Theorem 0.6) was formulated and proved by Dynkin and Mandelbaum [2], the second one (Theorem 1.2) – by Mandelbaum and Taqqu [3].

0. Introduction. The purpose of this note is to give a direct proof of some recent important results of Dynkin and Mandelbaum [2]. This also provides immediately the results in [3] with a very simple proof. This is achieved by avoiding the use of Poisson process.

Let us set up some notation. Let (X, Σ, μ) be a probability space and (X^k, Σ^k, μ^k) be the k-fold produce probability space. Let $h_k(x_1, \ldots, x_k)$ be a symmetric function of k variables. We call it *canonical* if

$$\int h_k(x_1, \ldots, x_{k-1}, y) d\mu = 0$$
 for all $x_1, \ldots, x_{k-1} \in X^{k-1}$.

Let X_1, \ldots, X_n be an i.i.d. X-valued random variable on a probability space with distribution μ . As in [2], define

$$\sigma_k^n(h_k) = \begin{cases} \sum_{1 \le s_1 < \dots < s_k \le n} h_k(X_{s_1}, \dots, X_{s_k}) & \text{for } k \le n, \\ 0 & \text{for } k > n \end{cases}$$

Let

$$H = \{(h_0, h_1, \dots): h_k \text{ canonical and } \sum_{k=1}^{\infty} \frac{1}{k!} ||h_k||_2^2 < \infty\},\$$

where h_0 is a constant and $|||_2$ is the norm in $L^2(X^k, \Sigma^k, \mu^k)$. On H define

$$||h||^2 = \sum_{k=0}^{\infty} ||h_k||_2^2 / k!.$$

H is the so-called *exponential* (Foch) space of $L_0^2(X, \Sigma, \mu)$ ($\varphi \in L^2(X, \Sigma, \mu)$ with $E\varphi(X) = 0$). It is a Hilbert space under coordinate addition, scalar

^{*} This research was supported by ONR N00014-85-K-0150 and the Air Force Office of Scientific Research Contract No. F 49620 85C 0144.

multiplication and || ||. For each $\varphi \in L_0^2(X, F, \mu)$, $h^{\varphi} \in H$ with $h_k^{\varphi} = \varphi(x_1), \ldots, \varphi(x_k)$. It can be easily seen that sp $\{h^{\varphi}: \varphi \in L_0^2(X, F, \mu)\}$ is dense in *H*. Define, for each $h \in H$,

(0.1)
$$Y_n(h) = \sum_{k=0}^{\infty} n^{-k/2} \sigma_k^n(h_k).$$

Since $\sigma_k^n(h_k) = 0$ for k > n, this is a finite sum. Also, let

(0.2)
$$Y_n^t(h) = \sum_{k=0}^{\infty} n^{-k/2} \sigma_k^{[nt]}(h_k).$$

The main purpose is to show directly that

$$Y_n(h) \xrightarrow{D} \sum_{k=0}^{\infty} \frac{I_k(h_k)}{k!}$$

where $\stackrel{D}{\rightarrow}$ denotes convergence in distribution and $I_k(h_k)$ denotes Ito-Wiener multiple integral of h_k with respect to Gaussian random measure W with $EW(A) W(A') = \mu(A \cap A')$.

In the next section we discuss the convergence of $Y_n^t(h)$. We observe that for $\varphi \in L_0^2(X, \Sigma, \mu)$

$$Y_{n}(h^{\varphi}) = \sum_{k=0}^{n} n^{-k/2} \sum_{1 \leq s_{1} < \ldots < s_{k} \leq n} \varphi(X_{s_{1}}) \ldots \varphi(X_{s_{k}})$$
$$= \sum_{k=0}^{n} \sum_{1 \leq s_{1} < \ldots < s_{k} \leq n} \frac{\varphi(X_{s_{1}})}{\sqrt{n}} \ldots \frac{\varphi(X_{s_{k}})}{\sqrt{n}} = \prod_{1}^{n} \left(1 + \frac{\varphi(X_{i})}{\sqrt{n}}\right)$$

Let us observe that, for any $\varepsilon > 0$,

$$\sum_{j} P(|\varphi(X_{j})| > \sqrt{\varepsilon j}) = \sum_{j} P(|\varphi(X_{1})|^{2} > \varepsilon j) \leq C ||\varphi||_{2}^{2} < \infty.$$

Hence by Borel-Cantelli lemma, a.s. (for $j \le n$) $|\varphi(X_j)| \le \sqrt{\varepsilon} j \le \sqrt{\varepsilon} \sqrt{n}$ for $j \ge \text{some } N(\omega)$ $(N(\omega) < \infty)$. But

$$\prod_{1}^{n} \left(1 + \frac{\varphi(X_j)}{\sqrt{n}} \right) = \prod_{1}^{N(\omega)} \left(1 + \frac{\varphi(X_j)}{\sqrt{n}} \right) \prod_{N(\omega)}^{n} \left(1 + \frac{\varphi(X_j)}{\sqrt{n}} \right)$$

giving for a.s. w, so

$$\lim_{n} Y_{n}(h^{\varphi}) = \lim_{n} \prod_{N(\omega)}^{n} \left(1 + \frac{\varphi(X_{j})}{\sqrt{n}} \right).$$

Thus WLOG, we can assume for n large $|\varphi(X_j)/\sqrt{n}| < 1$ a.s. for all $j \le n$ and

$$Y_n(h^{\varphi}) = \prod_{1}^n \left(1 + \frac{\varphi(X_j)}{\sqrt{n}}\right).$$

Symmetric statistics

Taking log on both sides and expanding log(1+x) we have

$$\log \prod_{1}^{n} \left(1 + \frac{\varphi(X_{j})}{\sqrt{n}}\right) = \sum_{1}^{n} \frac{\varphi(X_{j})}{\sqrt{n}} - \frac{1}{2} \sum_{1}^{n} \frac{\varphi(X_{j})^{2}}{n} + \varepsilon_{n}(\varphi),$$

where $\varepsilon_n(\varphi) \xrightarrow{P} 0$ by the WLLN and since max $|\varphi(X_j)/\sqrt{n}| \xrightarrow{P} 0$ by Chebychev's Inequality, i.e. the $(Y_n(h^{\varphi})) \xrightarrow{D} \exp[I_1(\varphi) - \frac{1}{2} ||\varphi||_2^2]$. Using Cramér-Wold device and the above argument we get

(0.3) LEMMA. For any finite subset $\{\varphi_1 \dots \varphi_k\} \subseteq L^2(X, \Sigma, \mu)$

$$(Y_n(h^{\varphi_1}), \ldots, Y_n(h^{\varphi_k})) \xrightarrow{D} (\exp(I_1(\varphi_1)) - \frac{1}{2} ||\varphi_1||_2^2, \ldots, \exp(I_1(\varphi_k) - \frac{1}{2} ||\varphi_k||_2^2).$$

As a consequence, we get for $\{\varphi_i, i \in I\}$ a finite subset of $L^2(X, \Sigma, \mu)$ and $\{c_i, i \in I\} \subseteq \mathbb{R}$,

(0.3)'
$$Y_n(\sum_{i\in I}c_ih^{\varphi_i}) \xrightarrow{D}_{k=0}^{\infty} \frac{I_k(\sum_{i\in I}c_ih^{\varphi_i}]_k)}{k!}.$$

We now observe that for $h, h' \in H$,

(0.4)
$$E\left[Y_{n}(h)-Y_{n}(h')\right]^{2} = \sum_{k} \binom{n}{k} n^{-k} ||h_{k}-h'_{k}||^{2} \leq E||h-h'||^{2},$$

since $E\sigma_k^n(h_k - h'_k)\sigma_l^n(h_l - h'_l) = \binom{n}{k} ||h_k - h'_k||^2 \delta_{kl}$ (by [2], p. 744). Also,

(0.5)
$$E\left(\sum_{k=0}^{\infty} I_k(h_k)/k! - \sum_{k=0}^{\infty} \frac{I_k(h_k)}{k!}\right)^2 = ||h-h'||^2.$$

Thus we get

(0.6) THEOREM. For any $h \in H$,

$$Y_n(h) \xrightarrow{D} W(h) = \sum_{k=0}^{\infty} \frac{I_k(h_k)}{k!}.$$

Proof. Let $h \in H$ and $\varepsilon > 0$. Choose

$$h' = \sum_{i \in I} c_i h^{\varphi_i}$$

such that $||h-h'||^2 < \varepsilon/2$. Now consider, for $t \in \mathbf{R}$,

$$|E(e^{itY_n(h)} - e^{itW(h)})| \leq E|e^{itY_n(h)} - e^{itY_n(h')}| + E|e^{itY_n(h')} - e^{itW(h')}| + E|e^{itW(h')} - e^{itW(h)}|.$$

Using Schwartz's Inequality and the fact $|e^{ix}-1| \leq |x|$, we get that the first and third terms of the above inequality are dominated by $t^2 E ||h-h'||^2$ using (0.4) and (0.5). Hence, by (0.3)',

$$\overline{\lim} |Ee^{itY_n(h)} - Ee^{itW(h)}| \leq \varepsilon/2.$$

As ε is arbitrary, we get the result.

Finally, we make some observations to be used later:

$$(0.7) \quad Y_n^t(h^{\varphi}) = \sum_{k=0}^{[nt]} n^{-k/2} \sum_{1 \le s_1 < \ldots < s_k \le [nt]} \varphi(X_{s_1}) \ldots \varphi(X_{s_k}) = \prod_{1}^{[nt]} \left(1 + \frac{\varphi(X_i)}{\sqrt{n}}\right).$$

Also, min(t, s) $\mu(A \cap A')$ is a covariance on $[0, \infty) \times \Sigma$ giving that there exists a centered Gaussian process W(t, A) with EW(t, A) W(s, A') = $\min(t, s) \mu(A \cap A')$. Let, for $T < \infty$,

$$H_T = \left\{ (h_0, h_1, \dots,) \in H: \sum_{k=0} T^k \frac{\|h_k\|^2}{k!} < \infty \right\}.$$

1. Invariance Principle. Let D[0, T], $T \leq \infty$, be the space of right continuous functions on [0, T] ($[0, \infty$)) with left limits at each $t \leq T$. The space D[0, T] is endowed with Skorohod topology [1]. The topology in $D[0, \infty)$ is the one described in Whitt [4]. We note that

$$X_{[nt]} = \sum_{1}^{[nt]} \left(\frac{\varphi^2(X_i) - E\varphi^2}{n} \right)$$

has stationary independent increments. So, for $\varepsilon > 0$,

$$P\left(\sup_{0 \leq t \leq T} |X_{[nt]}| > \varepsilon\right) \leq CP\left(|X_{[nT]}| \ge \varepsilon\right) \to 0$$

by the weak law of large numbers. Using this, the arguments preceding Lemma 0.3, invariance principle and Cramér-Wold device we get the following analogue of Lemma 0.3:

LEMMA 1.1. $(Y_n^t(h^{\varphi_1}), \ldots, Y_n^t(h^{\varphi_k})) \xrightarrow{D_{k,T}} (\exp(I_1^t(\varphi_j) - \frac{1}{2}t ||\varphi_j||^2), j = 1, \ldots, k),$ where $I^{t}(\varphi_{j}) = \iint_{\substack{D_{k}, T \\ k \neq j}} 1_{(0, t]}(u) \varphi_{j}(x) W_{k}(du, dx).$ Here $\overset{B_{k, T}}{\overset{B_{k, T}}{\longrightarrow}} denotes convergence in D^{k}[0, T] with respect to product topology.$

We note that W(t, A) is a Brownian motion for each $A \in \Sigma$. Thus we can choose $I^{t}(\varphi)$ continuous for each φ and a martingale in t as $I^{t}(\varphi) = \int \varphi(x) W(t, dx)$. We get, for $\{c_{1}, \dots, c_{k}\} \subseteq \mathbf{R}$ (k finite),

$$Y^{t}\left(\sum_{j=1}^{k}c_{j}h^{\varphi_{j}}\right) \rightarrow \sum_{j=1}^{k}c_{j}\exp\left(I^{t}(\varphi_{j})-\frac{1}{2}t||\varphi_{j}||^{2}\right).$$

Let $\varphi \in L_0^2(X, \Sigma, \mu)$, $||\varphi|| = 1$, and write

$$(\varphi^{k})^{t} = \varphi(x_{1}) \dots \varphi(x_{k}) \mathbf{1}_{(0,t]}(u_{1}) \dots \mathbf{1}_{(0,t]}(u_{k}).$$

Define $I_k(\varphi^k)^t = k! H_k(t, I(\varphi))$, where H_k is Hermite polynomial, i.e.

$$\sum_{k=0}^{\infty} \gamma^k H_k(t, x) = \exp(\gamma x - \frac{1}{2}\gamma^2 t).$$

274

Symmetric statistics

For $\varphi \in L^2_0(X, \Sigma, \mu)$, $\|\varphi\| = 1$, we define for $((h^{\varphi})^t = (1, \varphi^t, (\varphi^2)^t, \ldots), \forall z \in \mathbb{R}^d$

$$W(h^{\varphi})^{t} = \sum_{k=0}^{\infty} \frac{I_{k}(\varphi^{k})^{t}}{k!},$$

and extend it linearly to $(\Sigma c_i (h^{\varphi_i})^i)$. It is a martingale.

Let $h \in H_T$, $\{h(n)\}$ a sequence in sp $\{(h^{\varphi})^t, \varphi$ in CONS in $L_0^2(X, \Sigma, \mu)\} \subseteq H_T$; then

$$P(\sup|W^{t}(h(n)-h(m))| \ge \varepsilon) \le E|W^{T}(h(m)-h(n))|^{2}$$

 $=\sum_{k=0}^{\infty} T^{k} \frac{\|h_{k}(m)-h_{k}(n)\|^{2}}{k!},$

using Doob's inequality and argument as in (0.5). Define, for $h \in H^t$, $W^t(h) = -\lim W^t(h_n)$, where the limit is uniform on compact for $h_n \to h$. Then $W^t(h)$ is right continuous martingale and has the same distribution as $\sum_k I_k^t(h_k)/k!$. Now we derive the main theorem of [3].

THEOREM 1.2. $Y_n^t(h) \xrightarrow{D} W^t(h)$ in D[0, T] for $h \in H^T$ for each $T < \infty$.

Proof. Let $h \in H$ and $\varepsilon > 0$, choose $h'_k \in \operatorname{sp} \{h^{\varphi} \colon \varphi \in L^2_0(X, \Sigma, \mu)\} \ni h_k \to h$. Now define $X_{nk} = Y_n(h'_k), Z_n = Y_n(h), X_k = W(h'_k)$ and X = W(h). Then $X_{n,k} \xrightarrow{D} X_k$ as $n \to \infty$ in D[0, T] for each $T < \infty$ by Lemma 1.1. Also $X_k \xrightarrow{D} X$ as $n \to \infty$ in D[0, T] for each $T < \infty$. In addition,

$$P\left(\sup_{0 \leq t \leq T} |X_{nk} - Z_n| \geq \varepsilon\right) \leq E|Y_n^T (h - h_k')|^2 \leq T ||h - h_k'||$$

giving

 $t \leq T$

$$\lim_{k \to \infty} \overline{\lim_{n}} P(\varrho(X_{nk}, Z_n) \ge \varepsilon) \to 0$$

with ϱ being the Skorohod metric on D[0, T]. This implies (by [1], Thm 4.2, p. 25) that $Z_n \xrightarrow{D} W(h)$ in D[0, T] ($T < \infty$) giving the result.

Remark. In the above arguments we may use an interpolated version of $Y_n^t(h)$ from the beginning and use appropriate version of Donsker's Invariance Principle to conclude above convergence occurs in D[0, T] in sup norm giving $W^t(h)$ continuous.

REFERENCES

- [1] P. Billingsley, Convergence of probability measures, Wiley, New York 1968.
- [2] E. B. Dynkin and A. Mandelbaum, Symmetric statistics, Poisson point processes and multiple Wiener integrals, Ann. Statist. 11 (1983), p. 739-745.

275

V. Mandrekar and B. V. Rao

- [3] A. Mandelbaum and M. S. Taqqu, Invariance principles for symmetric statistics, Ann. Statist. 12 (1984), p. 483-496.
- W. Whitt, Some useful functions for functional limit theorems, Math. Op. Research 5 (1980), p. 67-85.

Michigan State University and Center for Stochastic Processes Indian Statistical Institute Calcutta India

Received on 13. 4. 1987