PROBABILITY AND MATHEMATICAL STATISTICS Vol. 11, Fasc. 1 (1990), pp. 19–36

CONDITIONS FOR CONVERGENCE OF NUMBER OF CROSSINGS TO THE LOCAL TIME APPLICATION TO STABLE PROCESSES WITH INDEPENDENT INCREMENTS AND TO GAUSSIAN PROCESSES

J. M. Azaïs

Abstract: Let $X(t), t \in R$, be a real valued stochastic process admitting a local time and let $X_{\varepsilon}(t), \varepsilon \in R^+$, be a family of *smooth* processes which converge in some sense to X(t). We exhibit sufficient conditions for L^2 -convergence of the number of crossings of $X_{\varepsilon}(t)$ to the local time of X(t), after normalization.

Two main cases are considered for X(t), stable processes and Gaussian processes. Two main cases are considered for $X_{\varepsilon}(t) : X_{\varepsilon}(t)$ being the convolution of X(t) with a size ε approximate identity and $X_{\varepsilon}(t)$ being the size ε polygonal approximation of X(t).

Such a convergence is shown to hold for both approximations when X(t) is a stable process with independent increments with index $\alpha > 1$.

Convergence of crossings of the polygonal approximation is shown to hold for a Gaussian process under technical conditions.

2000 AMS Mathematics Subject Classification: Primary: -; Secondary: -;

Key words and phrases: -

THE FULL TEXT IS AVAILABLE HERE