PROBABILITY AND MATHEMATICAL STATISTICS Vol. 11, Fasc. 1 (1990), pp. 47–78

MOUVEMENTS BROWNIENS ASYMÉTRTQUES MODIFIÉS EN DIMENSION FINIE ET OPÉRATEURS DIFFÉRENTIELS À COEFFICIENTS DISCONTINUS

Michèle Mastrangelo Mouloud Talbi

Abstract: We consider a partial differential equation of parabolic type on $\mathcal{E} = R^d$ $(d \in N_*),$

$$\frac{\partial u}{\partial t}(x,t) = Lu(x,t), \quad x \in \mathcal{E}, t \in R_+,$$

$$u(x,0) = f(x), \quad u(\cdot,t)/\partial \mathcal{E} = 0$$
(1)

where $L = (C1_{\mathcal{V}} + D1_{\mathcal{W}})\Delta + \delta_{\mathcal{S}}A\nabla$, \mathcal{V} and \mathcal{W} being two subdomains of \mathcal{E} such that $\mathcal{E} = \mathcal{V} \cup \mathcal{W} \cup \mathcal{S}$, $\mathcal{V} \cap \mathcal{W} \neq \emptyset$ and \mathcal{S} being a \mathcal{C}^2 -variety. The functions C and D are \mathcal{C}^2 on \mathcal{E} , δy is the surface-vector-measure on \mathcal{S} , A is a function defined on \mathcal{S} which will be precised later on, $\delta_{\mathcal{S}}A$ is a generalized drift, ∇ [resp. Δ] is the classical gradient [resp. Laplacian operator] on \mathbb{R}^d .

We give, via a modified skew Brownian motion, a stochastic resolution of (1) - L being considered as a generalized infinitesimal generator - and we study the continuity properties of the transition probability densities and of their derivatives at the neighbourhood of S.

2000 AMS Mathematics Subject Classification: Primary: -; Secondary: -; **Key words and phrases:** -

THE FULL TEXT IS AVAILABLE HERE