
COMPLEMEN~ OM oeceulrpLmc rrweQerALgTaEs 
FOR MULTILINEAR FUNCTIONS IN STABLE RANDOM VEm4)IraS4' 

Ahtract. Let B and V be real separable &nach spaws and d lee 
a p s i r i v e  integer. k t  M :  @I--+ V h a mcasuabta symmetric 
multilinear function, and let X bc a B-valued symetric p-stable 
raadam vector. It is shown that if O < q < pJ2, ahen the finiteness of .  
E ]IM(;Y, . . . , X)#$ is net suficient for the vaiidity of the inrpartanr 
part oftbe dmaupliog inequdi~es. k natural condition, in terns of the 
spectral measu1.c; of X and an dpbraic equation i~~vofving M3 i s  
proposed and it is prsved that this condition ensures demupliag 
ineqwlities for alt qe(O, p). This result complements de Awsra's 
dewupling jnequalrries br muttilinear functrons in 5-vdued symmet- 
ric gsrable m d o m  vectoss. 

%. Pm&aductioa. Rmntly, several authors e3, 4, 6, 73 have studied decoup- 
ling in~qudities fox: multilinear functions jn random vasiaMes both for their 
intgnsic value a well as for their appli~afi~rn (e.g,, mdliple stacha~tic 
integrals), A. de: Acosta [I3 has proved decoupling inequalities for multilirzear 
fu~~ctians in BanacG space valued p-stable rallclom vectors, Ci 4 p < 2. There are 
two main f-e&ures which cltistiniaish El] frola other papers where various 
dceotpphg inqualitits are proved: (i) The ranelom vectors cousidered for the 
decoupliag inequalities in El] nre genuinely infinite-direrensionai ; and (G) the 
decoupling inequditi~s for qth adder mamerrtt; of mu1"rilinear ra.ild.ea functian 
are provideal where q not only takes values in the interval [I, min {I,  p))  but 
also it may take certain values lms than 3. (the conave case), 

TP ~ ~ S C U B S  the: result of [dl mare precisely, let M be a mcaswaMe 
nulliIinf~rtr j~ncrbvz (i.e., lixxar In each variable when tEhc other variables arc 
held fixed) from d-pmdu& of st separable Bamach space B into another 
=parable Ba~rach spa= V,  anit let X he a &-valued sy~~metr ic  p-stable random 
ve~tar. A. de Acosta intraduced the condition 





functional analysis, This makes our proof non-elementary and, in fact, quire 
lengthy, Our proof, on the other hand, his the adwantage that the naethads 
used in it have the potential. of being &opted far studJling decioupling 
inequalities for ~ e r t ~ n  other idnite-dirnensifiona1 random vwtors (e.g., 
non-symmetric stable, semistable]. Furthermore, ow mthods of proof (and our 
condition) shed some light in clarifying the retation between de Acosta's 
somewhat "abstract" formulation el decotaplixrg inequaIi~es and the works 
[3, 4, 73 which discuss decoupling inequalities for more '%eonereten multilinear 
frxnctions in random variables. 

2, Two E~amples;. &fare discussing the examples, we introduce some 
natations and conventions which will remain fixed throughout this note. A12 
Barrach splrcres considered here are assumd to be defined over the field R of 
red numhrs; a11 measures on a metric space are assumed to be defined on its 
Bore1 rr-algebra; for a measure p on a separaMe metric space, supp(lc) will 
denote the subport of p; tbe measurability of a funclion from one metric space 
to mother metric space would always mean relative to their Boael 6-algegebrw. 
Throughout, N and B ( p )  s @ = fSI, , a,, . , ,) denote, respectivdy, the set. of 
positive integers a d  a sequence of indepndmt symmetric stmdard p-stable 
rmdom variables for a fixed p E (0, 2). 

Now we are ready to present our first example which, as we noted in the 
Introduction, asserts that (A,) is not sufficient to ensure the right-had side 
inequality in (Dl,) for any g g (0, ~ 1 2 ) .  

E x a m p l e  2,1. Fix any p ~ f Q . ,  2); and choose: reid numbers ojcz(O, 1) 
satisfying 

- 
C a f ( l + l a g l / a j ) < m  and s$'=rn, 

j=  1 j -  1 

Let B = I,, V -- R, d - 2 and X = zLLj- '@B,e, ,  when (e,) is the standard 
basis of I,; findly, for every  EN, let M,: l, x l ,  r-. R be the bilinear farm 
defined by 

so (A,) i s  saaisficd far every q E (0, p/2), Let now g e (0, pf2)  be fixed; then if the 
right-hand dde of [DI,) were valid, we would have 



Since, for every rz, 

using the manetone convergence theorem, (2.2) and a proprty of stable 
randam variaMes, we have 

Now, since7 by the first cclndition in (2.1) a ~ ~ d  bposl t ion  26,4,J of Ell], z,> kyi #,lF < m a.s., the right-hand side and hence the left-hand side of (2.3) is 
finite. Thus zJ?' "=,& lsil3 < m n.s., therefore, by ihe quoted propositions of 
11 11, zy7, nf{' -C m; but this ~ntradicts (2.1). 

As pstnted out in the Zntrvdu~lion and implied by the above exampe, there 
is an oversight in the proof given iu [I] for ensuxing the right-hand side of'(D1,) 
under (A,), for every fixed y e(O, pI/Z), T h i s  oversight is poii~rted out via the 
folltuwing simple example, 

Ex a m  p E e 2+2, Towards the end of the proof of the main theorem gven in 
[I], it is  iocnrrect? y assumed rhae if3 for a fa& q E (0 (0, p/%k [Aq) is satisfied, then 
one can find an r E fp/2, p) such that (A,) is satisfied (i.e., E I[@ (x) 11 < a). But 
this is fdse: Lei B = R2, Ir = R ,  d = 2 ,  M f x ,  y] -- (Ax,  y) ,  where 

(recall that 8, i s  a atandard symmetric p-stable smdom variable):); them 
~ [ a ( X ) j "  - E [B,f3 = -.= for every r ~ ( p / 2 ,  p)  and yet E ~Ji?(x)l" ca for 5111 

q E (09 P J ~ $ =  



M~!~i!ineaal. fiknctlo'ioas 5 
.-. 

3, The Decaaapll'rag taequalides. Example 2.1 raises the obvious question: 
Under what naturzil condition(s) on the p-stable random vector X a d  the 

multilinear function M, GLE one ensum decnupliag inequdities? 
A careful look at de Acostak spaper [I] and the works 13, 4, 73 (whish 

deal with decovpling inequditfes for more concrete muttiEnear functions in 
independent random variables) reveals: (i) All the papers [J, 4, 43 r e q o i ~  
rhat the function, d&ming the concrete multilinear function, ass rune value 
zero on the "diagonals"'; and, (ii) this condition i s  essential for ensuring 
decoupliarg inquallties, for all q ~ ( 0 ,  PI; and yet an andog of which is 
lacking in de Acosta's ffarmulation. Note tbrzt it is preeisdy tlae violation of 
this crucial condition in Example 2.1 which, in most part, forws the right 
side of (Dl,) to fail. These observations and Exampk 2.2. suggest that in 
order for ensuring (IDES, for all g ~ ( 0 ,  p), one must find a eondiliotl (in 
terns of M a d  distributioaal properties of X)  which is a suitable sub- 
stitute of the above: noted condition for the abstract muItibnear functions 
and which, at the same time, does. not dlow a ph~aomenon like in Exam- 
ple 2.2 to occur? A condition which meets these two requirements is the 
fallowkg : 

t o t  X and M be as .in the seeond paagraph of ht-radurrtion; the condition 
we require s f  M (relative to X) is rhat, for every xi, j = 1, , . . , 4 belongi~g to 

supp (ax) + 

In order to gain some insight about {DC), let B = R", BEN,  m 3 4 V == R, 
and M fx, , . . . , x,) = p ( i l  , . . . , id) xlj, . . . xdia7 where. xj = (x j , ,  . . . I x j I J ,  
j = 1 , . . , , d, and f (i,, . . . , id) E R; findly kt X = It,, . . . , (,n)I where f s arc 
symmetric independent p-stable randord variables. Then, recalling that cr, is 
conmatrated on { k ej:  j = l f, . . ., m), where ej bas 1 at the jth entry and 
0 dsewhese, one verifies easily that M satisEes (DC) if and only if the fuii~lrion 
-f assme5 ~ a h e  zero at: the diagonals; i s . ,  f ( i , ,  . . . , .id) = Q, whanever twa or 
more iis; are identical. Thus, in this case PC)  eoin.c;ides with the condit-joa 
mentioned above and used in *the ppe r s  [3, 4, '71. 

we record a few nol.e notations and definitions which we will need :all1 

the sequel, Let 6: B , ,  . . . , B, be: separable Bnn&ch spaces asad yfbe a map from 
R,  x . . . x S3, into 1F"; than w@ say that f is separately traeaarsible (resys. sep~rutely 
eotztimaus) iff is measurable {msp. wntinuous) in ewcEl variable wbcn the sther 
vzt~ables are held fiixed, k t  d, k n ~  I?; then we shdl me the nobtion JIIAld for 
the set 11, . . . , kJd; and the notations B ,,,, and for the d-twplcs in J,,,$ 
with distinct coordinates and for the set Y,n,,\D,n,d, re~pecdwely. Whenever cl is 
known from the context, we shall delete the lettar d from these notations, Now 
we are redy  to state the main result of this not@? camplamenting the earlier 
quoted result of de Acosta. 
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THEOREM 3.1. Let ~ E ( O ,  23, d E N ,  and k t  B a32111 V be any separable Barrack 
spaces; k t  X be a B-wzE8~ed symmetric p-stable random vector. TFien,for m e l y  
s p m t r i c  separately measurable snzdirili~zearfuncth M: Rd r-t V satisfiilsg (DC), 
dacouplirtg i r a ~ ~ E i t & s  (DI,) hold for .a[/ q ~ ( 0 ,  p), 

(As a conseqtrence of skis and CavoDat.y 3.5 ${sat fofilows, E 11 ,@ [X)]l$ c rn for 
ail' q E (0, pjil. 

For the proof of this theorem, we shaPl need the following three results. The 
first of these (Propasition 3.2) is a restatement of Theorem 6.6 of L8-j aud i s  
kcluded bece for ready reference and because we make extensive use of the 
m t a ~ a r r  introduced in its statement for our proof of Theorem 3.1. The second 
;result (Proposition 3.3) strem well krrowu, but since we are unable to find 
a reference for it, WE have indudd it here dong with a short proat The third 
result (Proposition 3.4) smms new and interesthg. fn the followin& we first 
state these prclpositions, and also a cordary; then, using these, we present the 
proof of Theorem 3.1. The proofs of these propositions will be given, as noted 
earlier, in the appendix. 

P~aposr~rio~ 3.2. Let- p Be a symzenic p-stabk pro-ab, mraswe or% n separable 
Banach space B wftft spectral memure tr on 85, the boundary of the unit sphme of 
B. Then, $or every n E N ,  a m  c a ~  construct sr partition (AE,": , . *, At$ At:+ I) of 
supp(~), such that 

eonverge in proh. and in Li EE Lq /a, F,  B; ES), jbr every g E (0, p), to d: ra~lelomt~ 
uecbor Y with Y(v - y, where A is ntay (rear) symnwt~ic p-stab& r9adom 
ma.wrc: on dS with cot7li3aol mea~urt. o. 

PRQPOS~IQN 3.3. Let q E (0, a) and d E N ;  and let d1ll . . -, dd) be iadepen&nt 
cop&$ afa sequence ~fRademacherjanctions. Then t k r e  exist positive constavtfs 
c, is ce, (q) a d  C, = 6, ($1 (depmzding only on q) such thcai, Jbr ~ U E P ~  PIE N and 
!or every separable Ni!bm spnce ,I& the sfolEo;rsiw ineqrru~ib~~s hold: 



where at ;, &lad l-.,", are arbitrmy eknaer~ts of H t a d  R, respectiuely, arid 

(Ineq~aiities (3-3) cat1 be referred go ns a conrractiopz priwipte.) 
P ~ a ~ o s r s r o ~  324. Ltrb B1, . . . , B, and V be separable B~rrach spaces ar.rd let 

MI  B, x . , , x B,w P' be a separately meusurabb mui~$/ixse~rJuyd<tion; thea M is 
(jointly) c:ontira&totss and Reace 

for every ((x, , . . . , x,) E iBl x . . . x &. 
This proposition immediately yidds the following result: 
COROL~ARY 3.5. LCC B and V be separable Bat~a,?acla spaceq and let X,, . . . , X, 

be B-valered idepedenr ra~ldor~a vectors sathfyiny E /IXj1I4 c GO, j = 1, - - . , d, 
far some q 3 Q Thcrz, for every separately mreasurtsbl~ multiiinear. fu~tctiofa 
M : Bd t-t V9 m e  has E 1144 (XI, . . . , X,)tlq K (Compare this with Lemma 
6) of CI1.E 

Now we are ready ta present our proof af Theorem 9-1. 
Pro  of aE T heorern 3.1. As we noted earlier in this note, the mcult part 

of tfie pmof is to establish the pigbt-hmd side of (Dl,) for all q E(O, p). Once 
this is estabbished, the left-hand side inequality foHows from de AcostaB proof, 
because the: fight-hand side of (DI,] and Corallaw 3.5 imply (A,) for all 
4fC% PI* 

Now we shall estaMisb f he validity of the cigj~i-hand side of (Dl,) for ail 
q ~(0, p). This praof is divided into two parts; in the first part we prove the 
result under the additional assumption that V is finite-dimensional, and, in the 
se;ecoaad, we grove it for the generat I.: The. proof of tifie first part itself i s  divided 
into four stcp~, for simplicity. 

Part I. Wc: assume, in adition, that Y i s  bite-dimmsi~nal; and let 
p - 9(X), md a = sx. Then, ur;ing the natations inlrodrrwd in the statem- 
of Proposition 32,  we have y - 9 (Y) ( = 2 (XI), and 

kx 

Ir = P-Jim = P-lim [g (Aj@)] - ' ( f xa (dx)) R (A?'), 
R n j51 A?" 

Hence, since M: .Bd- Y is jain'6ly continuous, by Propasition 3.4 we have 

f3,5) ;)(n Y)= P l h  I@ ( X I )  = P-lirn a!:) .,,, A (Af.":))". . A (A'f':t), 
II n W k ,  

where 
[ U ( A ~ ? - - * ~ ( R $ ' ) ~ - W (  j xa(d;a], . * a ,  1 X B ~ ( ~ X ) ) .  

dl;' A!? 

The ,first step in this proof is  $0 show that 
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Recalling that Srl -: JhL\D,, (3,t3) iis equivalent fa showing that 

wlzich, since V is finite-dirnensisnai, is in turn equivalent to showing that 

w71 P-lim y fa!:? ,,,, J A ( A t ) ) ,  * .  A ( A t f )  = 0 
n Z~l,rr, 

J far every fixed y is VS, the topolcrgjcal dual of F": VVe Raw f i x  a y E V*; and prove 
(3.7). We first note the identity 

this can be proved wing standard properties of Bochnefs h t e g ~ a l s ,  This 
identity along with (DCf yield 

far every B E  EXn with = is, r -=z 8. The last quatim, along with the facts that 
diameter ( ~ f y l )  G I%- I ,  A!" supp (c) G dS [see (3.1)) and (3.41, immediately 
yjeld l[a~;~.,,9i, 11, < C ~ s t .  (Ilrl) n- far every i E hn and n; hence, far every ra and 
 EL*,^, 
(3.81 IY ..., id31 G Const* (M) n-' lly IIP- 
Mow kt g be a Bore1 measurable map from KO, LJ -, 8S such that Eeb (gll (A)$ 
= g(A)/a(aQ for every Barel set A of'aS, and let A'(-) = rr(aS) LebC9), and A" 
be a symmetfic p-stable ralldom masure on LO, 11 with mtltrol measure A'. 
Then, since a(A) ==,Rr(g- "4)), it f~ l l ews  that 

(3.91 2 ( 1: Y Iaf:"!,.,,id)A (At" a . - ((At")) 
iaLg, 

- S ( x  y{al . :". , . , iJA'(Cj~]. .sA'fC~"))  for wery n, 
f ~ L k *  

where Cf,"" g- "A?;"), J .=: I ,  , . . , d. Let A''" deriote the product random 
masure of d identical mndom measurns R" (see Theorem 4.1 of [la]). Then, by 
defining 

y a ,  ) if I f , ,  . . . , rd) E C$l x . . . x 6c8, I E Lk,, 
otherwise, 

we can W F ~ L C  

3 )  JJ (a$:! JA'(C$)). . . n.l (C?il) 
2 ~ & k ~  

= 1.. . jJg ( 1  , , . . . , $1 A*t""f(dt,, . , . , dt,) for every EE N .  
IU,IP 



Wow, since by (3.12),x, (i,, . . . , t,f -+ O unifordy on 1ld as n -+ m, it follows, 
by the ague l a t :  similar ta tbat for showing the countable addi t i~ ty  of the? 
product random measure in Theorem 4.1 of [IO], that the sight-hand side of 
(3.10) converges to zero in prob. Consequently, by (3.91, the validity of (3.7) (and 
hewe of (3.6)) is established. 

The scccmd step is te show that 

. for every q E (0, p), where A1, . . . , Ad are illdependent rropies sf A. Let r be 
a sequence sf ir1dependeira.t Rademacher random variables, and let i-fl'X" . . , ,, tJdb2 

and @ff"  . . , , hl(ddt be independent rando~n vectors with 9 (di)) = 9 (a*) md 
9 (43""' )- 2 (81, i = 1, . . . , d. Then, for every fixed y E V* and q E (0, p), 

where E ,  denotes the expectation mlative to bdemacher sequerrces, and 
btj a..y = (a?:! .".* ,) if 1 E ssld . T . q  id = 0 otherwise. Now, by (3.3) and (3.X), 
we see that the last expression 

k,, 
< 2' ( E  / A  (dq13d, where A(") = U Aj?, 

i= a 

Clearly, the ~xpressian on the right-had side of the last illequality converges 
ta 0 as iz -+ m; this shows that 

E l  1  BY;! .... i d ) h l ( A i ~ ) . . . ~ , ( A f ~ ' ) ~ + O  85 IZ4M,' 
f ~ l ~ k ,  

for every fixed y E V"; thus, since V is finite-dimensiond, the proof of (3.1 1 )  is 
immed:diak. 

Let 

where Ais are as abotse. Then, by Proposition 3.2, .fYj@" ccoaverges in Li to 
a random vector, say Yj, for each j' .= 1 ,  . . , , d 
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The third step in this pu t  of the proof is to show that, for every q ~ ( 1 9 ,  pj3 

To see this, we: note that 

(by iadepndenc~l), But since E ]I qca'llt and E 11 Ji.JI{;, j = 1, . . , , d and 
n = 1, 2, . .., are all unifomrly bounded and E llX(')-- YJI"3a for a11 
i = 1, . . . , ca!* as m: -+ m, the last expression in the above inequalities converges 
to zero as n --P m, which proves (3.12), 

Ta thjs*faa-srth and final step, we complete the proof of the right-hand side of 
(DT,) for all q E(O, p), when V is finite-dimensional, From (3.6) and the %act That 
2 (X) = 9 (Y), we have, for any fixed q E (0, p), 

Tbe right-hand side of this inequality, by Theorem 3.1 of Krakawiak and 
Szulga C39 or by de AcostaVs theorem quoted in Section I (nets: that 
E [lztefi, Ctfl:!..,,id IAc') - - - (~t"t// b 00 for all q E 0 7  PI) 

G cb, q9 d j l i m i l ~ f ~  11 ~ ~ ; : . ~ - p i d ~ l ( ~ ~ ~ ) s e . h d ( ~ ! ; l ] [ ~ ; r  
r - r m  irDk, 

where qcn)"s and AJs are as deEned above, But since, by (3.11) and (3.121, the 
last expression above is equal PO C@, g,  4E' lilk3(F1, . . . , &)//$ and s i tm 
9((Xi) = $? (V;.], i = 1,  . . I 8, the proof of the right-hand islequafityr of[DIJ, far 
q ~ ( 0 ,  p), in the case w~fieze CI is finite-dimensional, is complete. 

Part X I .  For t h ~  gensral V ;  first we n a k  that, by the Bansfckx-Maur 
theorem, V can be assumed as a subspace of C LO, 91. Let (hi) b ~ :  the standard 
S~hauder basis of' CEO, 11, and (&I he the eorresgondjlklg soordinate ffunc- 
tiowals. Then, as is well known 

where Pk (XI = xj= I bj Jllj{x), and 11 .li, denotes the supremum norm. Let 
P,(V = Ir', and M, -- Pk a k - 1, 2, . . . Then t", i s  Enite-dimensional and 



Mk satislies (DC) for every  EN. Thus, from what we have pmved above, 

E IIM,(x)IIQ, G CCp, g ,  d ) E  IIMkCX,, ..., X,)IEF", far all k .  

The proof of the right inequality of {DI,), for every y EQO, p), ROW follows by 
the monotone convergence theorem and (3.13). Finally, note that in view af 
Corollay 35, we also get, as a consequence of this inequality, that 
E ll#(x)ll$ < XI for J 1  q~[Oi ,  p). 

Remark 3.5, A careful look at de Acosta's proof in [I] reveals the 
followkg important fact: Assuming that (A,) holds far a31 ~ ~ ( 1 0 ,  p), the 
fight-hand side of (DL,) holds;, for all g ~ ( 0 ,  p), without the assramptian of 
symmetry on M. In view af this and in view of the fact that we needed 
symmetry of M in our proof of Theorem 3.1 only at one place, namely where 
we used de tteosta's TTZleorem, it folIows that under (BC) the ajghf-hand side 
of (DEJ is valid without the s etry %sumption s n  MI We may dsa paint 
out here that the left-hand side of (DlY) 45 false without the symmetry 
assumption on M .  In fact, take B = R', V = R, d - 2, M ( x ,  y )  =. ( A x ,  y>ll 
where 

recall that 0, ar~d 0,  are independent symmetric p-stable randam variables 
and P is an independent copy of X. Then & ( X )  EZ 0 and thus B I@ (X)Iq -- O 
for any q ~ ( 0 ,  p) and yet E [ M ( j c ,  y)I4 = Eft?, 0'2-0,0;19 2 0. 

We rratv show that, in certain specse eases, verilfieation of (DG) is much 
easier camparing to Ibe verification of [AB). This i s  done in Example 3.8, where 
we use a condtion equivalent to (DdJS. This new condition is given no& in terms 
of thie support of the spc t rd  measme of the p-stable random vectar X, but 
rather terns of the supgofl of any F-finite masure v on the Banacb space 
appearing in the representilltinrnt of the charactedstic func.tiarr of ,F (X). Oftea it 
is  easier ta have zn expli~"i des~riptirsa of the support of v (comgariag Lo the 
description of the support of g,f; lEris observation makes this new conditian 
somcwhatt mom uselufial. We &gin with a proposition which provides the 
equiv~lence of the two cundilions: 

P~oeosrlro~ 4.7. Let. X, B, V and d be as in Thorern 3.1 und let M: lP -.s tT 
be a (not necessarity ~ ~ ~ e t l i c )  sepa~tate& tneasurable mzalt ilinaar j ia~ct  iun. Let 
IJ be a ~-fip~ibe masure on R with v ((0)) - 10 a d  S E ~ C ~  that 

9 (x) tY) = exp - j' ly (li)l" v (h)) $r uII y E B*, 
B 

Then (DCj-cuplditiaa is  t.qrcivalent LO the .fbllowi~g: 
(DC') For B W T ~  x1, . . . , 3~;d, belungirag to sugp (v), M('x.,, . , . , x,) .= 0, wlte~z- 

wer xi  = xj .for some i -# j. 



Proof. We can write 

9 fx)(~l = exp ( -5 IV I~/IIxII)I~ IbIIP y ( ~ x S Z I  = exp { - .I- IF txSIP 8, fdx)), 
B BS 

where 
( A  J I[xil~rs(dx)<a;l 

{XCO:T/I[X][FA) 

far every Burel set A c dS. Thus> 0, (A)  - *a, (A) + $a, (- A) and 

&w assme fiat (Be) does nat hold. We shall show that (DC") doas not 
hold either. We have, by om assumption, M (x,, , , . , x,) $ 0  for same 
x, , , . . , x, E supp (g,) with x i  =. xl for some i f 1. So, by (3.14), there exist 
e,, . . . , gd = -f- l7 with si = g j ,  such that zk = gk xk E s ~ g p  (ao), 1 g k d d. Hence, 
M@,, . . . , zJ = s, . . . F ~ M ( x ~ ,  . . . , xg'J 71" O1 and by the canthuity of M (see 
Proposition 3.4) there exists an s , O such that 

(3.15) M ( . . . , ad) 0 for every (ut, . . . , ud) E UI x . . . x Udl 

where U , = ( W E S :  (I t l -zk[ i  < E ) .  Set G , - ( ~ $ 0 :  x / [ x ~ ~ E U ~ ) ~  I g k k d  
Since .zk E S U ~ P  ("70). 

and shm 6, are open, G,nsugp(v) f B; and hence we can choose 
a, E G, n supp (w) such that v, = vj (note t b t  Gi - Ej), Then, by (3.1 51, 

wbi~h  F Q ~ I ~ P ~ & G ~ S  (DC'). 
' 

Suppase now that (DC") fails, so that M i x , ,  . . . , xd) f Q for same x, , . . . , x, 
EBUPP(Y) with xi = xi: for some i =$ j. Note that 8, = min {ll(llx,ll . . . , IlxdB) Cs. 
By the continrajty oaf M ,  there exists a positive 6 < ~ ~ $ 2  such that 

(note 0 q! W,). Since x, E supp (v),  x, # 0, we have 

H~BGE Wk r'7 ~ u p p  (go) $ @, and so we can choose u, E P& n aupg (go) with . 
asi = uj (note .= 4). In view of (1,15), w , ~  = a J l j z ~ ~ l S  far some ~ E H ~  andg by 
(3=16)r,. 

i l f f ( ~ , ,  ---, ad) =(I[olll . - -  / l ~ ~ d I I ) - l M ( ~ l ~  * * . r  udj P 0- 



Shce sugp(~,) s s u p p l ~ ~ ) ,  this contradicts (DC), and the proof is corn- 
pleted. 

Example 3.8. Let M: (LZ LO, -+ R be gives by 

.fl, * - f;l E L2 LO3 TI3 where K E LYCCQ, TId), Let X (t), e 3 Oa, be a symmetric 
p-stable LCvy process such that Eexp {irnX[t)] - exp ( - t frslP), w E R, s > 0. Let 
X be the random vector rnduced by (X ( t ) :  O G I .G. T )  in L"0, TI. Since 

by Lemma 7-1 in E93 we get, for every f~ A2 [a, Tj, 

where v (A) = Leb (Is E [O, T ]  : I@, T3 E A ) )  for wery Barel Bet A of LZ [O;" q. 
Since it i s  easy to see that iupp(v) = (lkslTl)m[0,173 it fallaws, by rhe above 
praposition, that: (DC) is equivalent to the faU~wing: for every 
S*, - - . r  S d E I O ,  991 

whenever o, - s, For sclmc d f j, 
Clearly, every alrtisymmetric function # satisfies (3.185, but one can also 

find mmy "non-antisy~nmetrie"' fisnctiuns wkch satisfy (3.18) as welt. Thus t he  
~erihat iou of/DC" and hence also of (DC3) is easy; an the sther haad, it is not: 
cilesrg &re~tly as to why (3-3 8) implies E /d (X)fq < wcO, Of murEC, WE know, via 
Theorem 3.1, that a11 the moments E lG{x)lg are in faet,fir_litc (Remark 3.6 is 
gertjnent here). 

R e m a r k  3.9. (.in) We notcd in the Xntrodueticla that our candition (BC) is 
not only sufficient but also necessarq for: (a13 la hold, for alf q E @, g), provid~d 
M and a, saGsfy additional 11ylmfhe4~es. In fact, one .can say more: Lst B and 
Ci' be separable Banacb spaces aud M be a separately ~neasurablie symetr ic  
bibear function: BS I--, lp. kt X be a symmetric R-valued p-stable random 
vector with O=x supported on a fmite set. The11 the following statements are 
equivrilent : 

IJ) (Dl,) holds for dl q ~(0, p); 
@I) (A,) is satisfied fur all q ~ @ ,  p); 



(161) (A,,) 3s satisfxed for some q , ~ @ / 2 ~  p); 
(1V) [ D q  is satisfied, 
The proofs of these equivalences foUuw from Theorem 3-1 and the following 

t obserwtion w ~ c h  shows (111) rs (W). Mamdy, Eel supp (cr,) = (x . . , , x,~ . 
Then B(X) = 9(C;=,rnf"Ojx,), where O <mi = qx(xh .  Thus a ( ~ )  = 
CTj= rntfp mj@ Of O j  M (xi, xJ . Now, since 

E[~TT&M~~~P~:IPI)~O~M(X~~X~)/~~~<CX, forevery q ~ ( O , p ) ,  
i + j  

(111) i s  equivalent to E 1 I ~ ~ = , m F f p O ~ l M  (Xi. xi)\lP < co for some fixed 
go E ( p / 2 ,  p]. But, by kdependence, this irnpiies that E fO?lgo [IN ( x i3  xi)ll 9 < rn 
for all 3 g i g n. Thus, since q ,  p/2, N(.x,, x,) =. O for all 1 $ r' G w. 

The anxwer to the question whether (1) Implies (I'br), in general, is unknown 
to us, but, as we noted in the Introduction, tve suspea it to be aflirxna~ve. 

(b) The proof of Theolrem 3.1 can be considerably shortened and simpI1fiecl 
if the Banach space B is assumed to be of stable type p. Indeed, in this casc9 orre 
c;m ~Iaaose xy?, . . . , xe  E supg (gX) S W C ~  that the random vedors 
Y, E zk x!.) A (A!.)) emerge in Li and be (limn &f = 2' (X) 151 (see the prool 
of Theorem 3.1 for the expltdnation of the notation used here], Then [DG) 
implies that 

which yields (3d) immediately; further, (DIG) also implies that 

M {YI(IIJ1 . . . , Ypj) = M (seil, . . . , x 3  A ,  (Aif'). . . ddd ( ~ f ' i q ~  
where 

With these observations at hand, one completes the proof of Theorem 3.1 for 
general V quickly by making use of steps three and four given in Part 1 of the 
proof. The above ol~semations make it possible to bypass she lengthy steps one 
and two of Part I of the proof. In the ease of a generd Banasla space B (i.~., the 
one which is not of stable type p), these two steps are newssay, because, in this 
case, the elmeats corresponding to xFb are 

which ate: known to belong to the elosed convex hrrll of supp(cr,) and not 
nea~slbsay to s u p p ( ~ ) .  Consequently, it does not follow, a it1 bile case a b ~ ~ ,  
that M (yg" , . . , = O far t E X;kn, md this forces one to use step,ps onc and zwo 
which makes the proof c~miderably tong, 



4 Appeaadix, As mentioned before, we prese~~t the proof of Propusitions 3,2, 
3.3, and 3.4 in this apllpendix- 

' 

Proaf af P ropos i t ion  3.2, Let 

Thm, from Z"heorem 6 5  of [8], {Z , )  eaarverges in prob. and in L: to a random 
vector Y with 9 (I") = p far every q ~ ( 0 ,  p). Thus, s i~ee  

and [ A  (At:, ,)I -+ 10 in prcrb. (because ~(iai;, G n- b 0) as n t a, we hzive 

Further, since 

E 11%-  YII; G ~ ~ ( E I A I A E + ~ I I ~ +  E I I ~ , , -  ~II:> 
a d  E I].& - -+ OL E lA (AE1+ ,)I" Or), as n -+ m, we also infer that { K) 
canverges l o  Y in Li for every q E (0, p). 

Proof  of Propssii ion 3.3. Far simplicity of the notation, we skaU 
abbreviate (3.2) by 

We shall prove the result. by induction on d, If d - I, then (4.1) reduses to 

1vhic;h is the; well known Rh-intehisds inequality. Note that co 3rd C, d e p d  
only on 4 and not an n, H or uis. Assame that (4.1) hold.ds for a d >, 1. Let 
a ~ i ~ , . ~ . , i & ~  1 EP-IT ieJrni,+ I 'he' 

by induction with d = li NOW let X be the Hilbert spam with elements 
x = (x,, ..., x,), x p H ,  and the inner product (x, y), =Zm1 < x i ,  y,),. 
Then, the lmr expression above can be written as 



where bf l v . " . v  ,, = (a, ,$.,,, i d , l ,  . . . a, l t s e s ,  %,,); and, by the inductiaa hypo t l~~es ,  we 
have 

Then (4.2) and (4.3) yield 

This proves [3,2); the proof of (3-3) now easily follows by using (3.2) snd 
observing that 

ll.fll%~[ i d l I i P "  ( lloil ,..%, cdAZ ,.-qg idll&) 
i%fmld i~Jk3.d 

2 */2' \!.f!lk?Kh( ~ ! a f i 9 . ~ = , ~ d ~ l ~ )  
kJn,d 

Proof of Proposi t ion  3.4. By a theorem of Banash ("r"bearrem 3, [2, p. 
153) it follows imurediately that M is separately contjnuous. Using thia and an 
induction argument, we will show that M is johtly continuous. 

If d = 2, the result is well known (see, e.g., [12, p. 1423). Assume that the. 
result is true far a d 2 2. We will S ~ O W  that i t is true for d + 1. Let Bd mX B,, , 
denate the tensor product rrf B, and B,, , endowed with the n-topology C12, p. 
434) and lei Bd @, B,, , ba the completion of f3, @,B, ,  , in this top~laa.  

For any dxed (x, , . . . , xd - I) E B1 x . . . x Bd- ; , the map 

is a separately, and hence jointly, cnntinlatrus trilinear map. W e n ~ e ~  by the 
definitions of the tensor product, the n-topology and PTQPOS~~~OE 43,4 of [12, p, 
4381, there efists a unique continuous linear map 

bxl,...,xd-l: -4 1- V 
such that 

(4.4)  XIS .. . z  Xd-1, xd? xd+l) 

. + folf@V@rJI' ( ~ , ~ ~ , I , ) E B ~ x B ~ * I .  

NOW define the map a:. B,  x ... x IS,-, x B,@ B,,, i=+ v by 

@CxI, . . : r  ~ 4 - 1 ,  Y S =  bx,,...,x, , CY). 
men using (4.41, the fact that B , & , B ~ + ,  is; ths: E--closure of the span of 
{x ,  @ X, ., , : (xd, x,, ,) E x B ~ ,  ,), i t  f d s w s  that @ is multilinear; and, since 



M is sepaately contiauous, by the Banach Steinhaus theorem we havie that 
& is a separately continuous rnul~lhear fanction: 

B ~ X  . . , - x B ~ - , x B , @ , B , , , w ~ ~  

Tbus, by the induction hypothesib is juirzkly corrtialrous. But, since 
(x,, x,, ,)w x, @ x,,, i s  conkj~uous front B, x B,., , I-. B, &,B,,, [12, p, 
4341, i t  fallows that: M Is jointly continuous, This completm the proof of &,he 

first paat; the proof of (3.4) now follows by the joint continuity of M at the zero 
lelnmenr of JJ, x ... . x 23,. a 
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