PROBABILITY
AND
MATHEMATICAL STATISTICS

Vol 11, Fase, 1 (1990), p. 117

COMPLEMENTS ON DECOUPLING INEQUALITIES
FOR MULTILINEAR FUNCTIONS IN STABLE RANDOM VECTORS*

BY

BALRAM S. RAJPUT anp JAN ROSINSKI (KNOXVILLE)

Abstract. Let B and V be real separable Banach spaces and J be
a positive integer. Let M: BV be a measurable symmetric
multilinear function, and let X be a B-valued symmetric p-stable
random vector. It is shown that if 0 < g < p/2, then the finiteness of |
EM(X, ..., X} is not sufficient for the validity of the important
part of the decoupling inequalities. A natural condition, in terms of the
spectral measure of X and an algebraic equation involving M, is
proposed and it is proved that this condition ensures decoupling
inequalities for all ge(0, p). This resuli complements de Acosta’s
decoupling inequalities for muiltilinear functions in B-valued symmet-
ric p-stable random wvectors.

1. Introduction. Recently, several authors [3, 4, 6, 7] have studied decoup-
ling inequalities for multilinear functions in random variables both for their
intrinsic value as well as for their applications (e.g, multiple stochastic
integrals). A, de Acosta [1] has proved decoupling inequalities for multilinear
functions in Banach space valued p-stable random vectors, 0 < p < 2. There are
two main features which distinguish [1] from other papers where various
decoupling inequalities are proved: (i) The random vectors considered for the
decoupling inequalities in [1] are genuinely infinite-dimensional; and (ii) the
decoupling inequalities for 4" order moments of multilinear random function
are provided where g not only takes values in the interval [1, min {1, p}) but
also it may take certain values less than 1 (the concave case). )

To discuss the result of [1] more precisely, let M be a measurable
multilinear function (i.e., linear in each variable when the other variables are
held fixed) from d-product of a separable Banach space B into another
separable Banach space ¥, and let X be a B-valued symmetric p-stable random
vector. A. de Acosta introduced the condition

(A) E M (X)|% < oo,
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where ge(0, p) is fixed and M (x) = M (x, ..., x). Under the additional con-
dition that M is symmetric (e, M (x,, ..., Xz} = M (Xyqy, ..., Xpq) for every
permutation 7 of (1, 2, ..., d)), he showed that if ge(p/2, p), then (A)) ensures
the decoupling inequalities

where X, ..., X, are independent copies of X and the constants ¢ and
C depend only on p, g and d (and not on B, ¥, M or X). However, it turns out
that if g (0, p/2), then (A,) is not sufficient (contrary to the assertion in [1]) for
ensuring the important and difficult part (i.e, the right-hand side) of (DI,). We
substantiate this by presenting a counterexample; the proof in [1] for this case
has an oversight, which we also point out. This material constitutes the
contents of Section 2 of this note.

We must point out here that de Acosta’s proof of the validity of the right
side of (DI,), for the case g&(0, p/2), is indeed correct if one makes the stronger

' assumption that (A,) is satisfied for some r&(p/2, p). In view of this remark and
the discussion above, a version of de Acosta’s theorem, for which the proof
given in [1] is valid, can be stated as follows:

Let ge(0, p); assume E |M (X)||} < oo if ge(p/2, p), and E IM(X)]y < oo,
for some v =r(g)e(p/2, p) if (0, p/2]; then the decoupling inequalities (D1,)
hold. Thus, in particular, if (A,) is satisfied for all r&(0, p), then the inequalities
-(D1,) are valid for all ge(0, p).

The central part of this note is contained in Section 3 where we propose
a natural condition (in terms of the spectral measure oy of X and an algebraic
equation involving M) and prove that this condition ensures (DI ) for all values
of g&(0, p) (Theorem 3.1); this complements the above noted de Acosta’s result.
A motivation for introducing our condition and some reflections on its essence
are discussed in the beginning of Section 3. Here we would like to mention two
of its desirable features. First, it is easily accessible, through algebraic and
analytical methods, and can be verified much more readily in certain specific
cases comparing to the verification of (A,) (see Proposition 3.7 and Example
3.8). Second, this condition is not only sufficient for (DI,)) to hold, for all
ge(0, p), but is also necessary provided M is bilinear and oy is supported by
finitely many points (Remark 3.9). We suspect that this later fact is true in
general. Tn addition to the contents of Section 3 noted above, Section 3 also
contains a corollary and another remark and statements of three propositions.
These propositions are needed for the proof of Theorem 3.1; their proofs are
relegated to an appendix which constitutes the contents of Section 4.

The main part of the proof (ie., the proof of the right-hand side of (DI)
given in [1] is very simple indeed both for the ideas used and the details
involved. The main ideas used in our proof of Theorem 3.1 are also simple;
however, in order to carry out the details of the proof, we have to rely upon
several more advanced results and the concepts from probability theory and
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functional analyms This makes our proof non-elementary and, in fact, quite
lengthy. Qur proof, on the other hand, has the advantage that the methods
used in it have the potential of being adopted for studying decoupling
inequalities for certain other infinite-dimensional random vectors (e.g.,
non-symmetric stable, semistable), Furthermore, our methods of proof (and our
condition) shed some light in clarifying the relation between de Acosta’s
somewhat “abstract” formulation of decoupling inequalities and the works
[3, 4, 7] which discuss decoupling inequalities for more “concrete” multilinear
functions in random variables.

2. Two Examples. Before discussing the examples, we introduce some
notations and conventions which will remain fixed throughout this note. All
Banach spaces considered here are assumed to be defined over the field R of
real numbers; all measures on a metric space are assumed to be defined on its
Borel g-algebra; for a measure u on a separable metric space, supp(p) will
denote the support of u; the measurability of a function from one metric space
to another metric space would always mean relative to their Borel o-algebras.
Throughout, N and &(p)=0=(0,, 0,, ...) denote, respectively, the set of
positive integers and a sequence of independent symmetric standard p-stable
random variables for a fixed pe(0, 2).

Now we are ready to present our first example which, as we noted in the -
Introduction, asserts that (A is not sufficient to ensure the right-hand side
inequality in (DI,) for any ge(0, p/2).

Example 2.1. Fix any pe(0, 2); and choose real numbers a;€(0, 1)
satisfving

2.1) Y, af(l+logl/a) < oo and Y a¥?=co.
i=1 i=1
Let B=1,,V=R,d=2and X = Z;g ,J"*70;e;, where {e;} is the standard

basis of I,; finally, for every neN, let M,: I, x1,— R be the bilinear form
defined by

R

M,(x, y) = 3 a;j%7{x, e <y, e
. j=1
Now, if ge(0, p/2), then

n

EM, (X) = E Ii Gl < S dE0) < co;

so (A) is satisfied for every g&( 0, p/2). Let now ge (0, p/2) be fixed; then if the
right-hand side of (DI,) were valid, we would have

(22) EIM (X)9= B(Z a,03)' < CEIM, (X, X")| = CE;z a; 6,0

i=

where C = C(p, ¢, 2) is independent of n, 6 = (0} is an independent copy




4 ‘ B. 8. Rajput and J. Rosinski

of § and
X = Z joRr Bje;.

i=1
Since, for every n,

E|M,(X)"=E Z(\/"} )“‘f“——m(fﬂl,m,ﬁgﬂ,,,o,o O,

using the monotone convergence theorem, (2.2) and a property of stable
- random variables, we have

23)  E|(/ay0y,%..s /0,00 .. P
= SupE (/a, 0,5 ..., /2,0, 0,0, .. )2

"
< Csup E]j; a;0,0

= CsupE,E, [Z a; 0,07

= CE|0,1sup E( ¥, |a;8,/7)%"

n i=1

= CE|0,1E |(a, 04, ..., a,0,, .. )]I?

Now, since, by the first condition in (2.1) and Proposition 26.3.3 of [11],
Z} a6 < o as., the right-hand side and hence the left-hand side of (2.3) is
finite. Thus h J= llf 6% < oo as., therefore, by the quoted propositions of
[11], Zmli a?’? < co; but this contradicts (2.1).

As pcmted out in the Introduction and implied by the above example, there
is an oversight in the proof given in [1] for ensuring the right-hand side of (DI,)
under (A,), for every fixed ge(0, p/2). This oversight is pointed out via the
following simple example.

Example 2.2. Towards the end of the proof of the main theorem given in
[1], it is incorrectly assumed that if, for a fixed ge(0, p/2), (A,) is satisfied, then
one can find an re(p/2, p) such that (A,) is satisfied (i.., E [M (X)[|} < o). But
this is false: Let B=R* V=R, d =2, M(x, y) = {Ax, y>, where

:ﬂl' ‘ 0,
Am[] 0] and X—(ﬁ1>

(recall that 6, is a standard symmetric p-stable random variable); then
E|N (X) = E|0," = oo for every re(p/2, p) and yet E|M(X)lf < «o for all
q€(0, p/2).
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3. The Decoupling Inequalities. Example 2.1 raises the obvious question:

Under what natural condition(s) on the p-stable random vector X and the
multilinear function M, can one ensure decoupling inequalities? ‘

A careful look at de Acosta’s paper [1] and the works [3, 4, 7] (which
deal with decoupling inequalities for more concrete multilinear functions in
independent random variables) reveals: (i) All the papers [3, 4, 7] require
that the function, defining the concrete multilinear function, assume value
zero. on the “diagonals”; and, (ii) this condition is essential for ensuring
decoupling inequalities, for all ge(0, p); and yet an analog of which is
lacking in de Acosta’s formulation. Note that it is precisely the violation of
this crucial condition in Example 2.1 which, in most part, forces the right
side of (DI,) to fail. These observations and Example 2.2 suggest that in
order for ensuring (DI,), for all ge(0, p), one must find a condition (in
terms of M and distributional properties of X) which is a suitable sub-
stitute of the above noted condition for the abstract multilinear functions
and which, at the same time, does not allow a phenomenon like in Exam-
ple 2.2 to occur! A condition which meets these two requirements is the
following:

Let X and M be as in the second paragraph of Introduction; the condition
we require of M (relative to X) is that, for every x;,j =1, ..., d, belonging to
supp (o), :

(DC) M(%y, ..., x) =0, whenever x; = x; for some i+#]j.

In order to gain some insight about (DC), let B = R", deN, m =d, V = R,
and  M(xy, ..., X)) =2 f (s s i Xgsy oo Xayys  Where  x;=(x;, .0, X,
j=1,....,d, and f(y, ..., i)€eR; finally let X =(&,, ..., £,), where &s are
symmetric independent p-stable randoni variables. Then, recalling that gy is
concentrated on {+e; j=1,..., m}, where ¢; has 1 at the j* entry and
0 elsewhere, one verifies easily that M satisfies (DC) if and only if the function
[ assumes value zero at the diagonals; ie., f(i;, ..., i) = 0, whenever two or
more i,'s are identical. Thus, in this' case (DC) coincides with the condition
mentioned above and used in-the papers [3, 4, 7]

Now we record a few more notations and definitions which we will need in
the sequel. Let V, B,, ..., B, be separable Banach spaces and f be a map from
B, x ... x B, into V; then we say that fis separately measurable (resp. separately
continuous) if f is measurable (resp. continuous) in each variable when the other
variables are held fixed. Let d, k,e N; then we shall use the notation J, , for
the set {1, ..., k,}%; and the notations D, , and L, , for the d-tuples in J,_,
with distinct coordinates and for the set J, ,\ D, ,, respectively. Whenever d is
known from the context, we shall delete the letter 4 from these notations. Now
we are ready to state the main result of this note, complementing the earlier
quoted result of de Acosta.
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TureoreM 3.1. Let pe(0, 2), deN, and let B and V be any separable Banach
spaces; let X be a B-valued symmetric p-stable random vector. Then, for every
symmetric separately measurable multilinear function M: B*+~ V satisfying (DC),
decoupling inequalities (D1)) hold for all qe(0, p).

(As a consequence of thzs and Corollary 3.5 that follows, E | M (X)|} < oo for
all ge(0, p)).

For the proof of this theorem, we shall need the following three results. The
first of these (Proposition 3.2) is a restatement of Theorem 6.6 of [8] aud is
included here for ready reference and because we make extensive use of the
notation introduced in its statement for our proof of Theorem 3.1. The second
result (Proposition 3.3) seems well known, but since we are unable to find
a reference for it, we have included it here along with a short proof. The third
result (Proposition 3.4) seems new and interesting. In the following, we first
state these propositions, and also a corollary; then, using these, we present the
proof of Theorem 3.1. The proofs of these propositions will be given, as noted
earlier, in the appendix.

Prorosrrion 3.2. Let pbe a symmemc p-stabie prob. measure on a separable
Banach space B with spectral measure o on 08, the boundary of the unit sphere of
B. Then, for every ne N, one can construct a partition {AD, ..., AP, AP, .} of
supp (o), such that

(3.1) o(4W) >0, diameter (A7) <n L j=1,..., kg (AP ) <n™t
and the B-valued random vectors

kn .
= 3, [o (A1 ( { x¢ (dx)) A (AP
i=1 A

converge in prob. and in Ly = LY(Q, F, P; B), for every q(0, p), to a random
vector Y with Z(Y) = p, where A is any (real) symmetric p-stable random
measure on 0S with control measure o.

ProrosiTiON 3.3. Let qe(0, o) and de N; and let v, ..., ¥'? be independent
copies of a sequence of Rademacher functions. Then there exist positive constants
€o = ¢o{g) and C, = Cy(q) (depending only on q) such that, for every ne N and
for every. separable Hilbert space H, the following inequalities hold:

(3:2) o X My, LWMBP<E| Y a0 @)%
fedy,d iedn,a
<CH( Y lay,,.. i lE"
etn,a
and
O 11 2) B S sl U< B S fartl A
ietn,a ieln,d

< 1 1% ( )EHZ O RO 44

iedn,d
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_____ i, are arbitrary elements of H ond R, respectively, and
1f lmax = max|f, .l and | fllme=min[f, |
ieln,a i€t pn,a
(Inequalities (3.3) can be referred to as a contraction principle.)
ProrosiTioN 3.4. Let B, ..., B; and V be separable Banach spaces and let
M: B, x ... X By+— V be a separately measurable multilinear funqtian; then M is
(jointly) continuous and hence

(3.4) M (xy, ..., x)lly < Const.(M) lIxyllg, ... |x4lp,

for every (x,,...,x)eB, x ... xB,.

This proposition immediately yields the following result:

CoRroOLLARY 3.5. Let B and V be separable Banach spaces, and let X, ..., X
be B-valued independent random vectors satisfying E || X;|? < o0, j=1,...,4d,
Jor some q > 0. Then, for every separately measumble multilinear fun-ctmn
M: BV, one has E|M(X, ..., X9 < co. (Compare this with Lemma
(a) of [1])

Now we are ready to present our proof of Theorem 3.1.

Proof of Theorem 3.1. As we noted earlier in this note, the difficult part
of the proof is to establish the right-hand side of (D1,) for all g&(0, p). Once
this is established, the left-hand side inequality follows from de Acosta’s proof,
because the right-hand side of (DI,) and Corollary 3.5 imply (A) for all
q€(0, p).

Now we shall establish the validity of the right-hand side of (DI) for all
q€(0, p). This proof is divided into two parts; in the first part we prove the
result under the additional assumption that V is finite-dimensional, and, in the
second, we prove it for the general V. The proof of the first part itself is divided
into four steps, for simplicity.

Part 1. We assume, in addition, that V is finite-dimensional; and let
u = % (X), and ¢ = 0. Then, using the notations introduced in the statement
of Proposition 3.2, we have p = .55’(}’)( &£ (X)), and

Y= P- hmY = P-lim Z [o (A1 %}m(d’x})ﬂ(fif,-"’).

no j=1 AY
Hence, since M: B'IM ¥ is jointly continuous, by Proposition 3.4 we have
(3.5) N(Y) = P-hmM(Y) = P-lim Y af? . A(AD).. A(AD),
n dely, .
where

......

a? a=[o(AD) ..o (AMT M( | xo(dx),..., | xo(dx)).
Afp AR

The first step in this proof is to show that
(3.6) M(Y) = P-lim Y a® o AGAD). . AAD).

n iebi,
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Recalling that L, =J, \D, , (3.6) is equivalent to showing that
Plim ¥ af? . A(A®)... A(AP) = 0;

11; wig
m dskly,
which, since V is finite-dimensional, is in turn eqmvalfant to showing that
3.7 Plim Y y(af? ;)A(4%)...4 (A" =
n el

for every fixed ye V¥, the topological dual of V. We now fix a ye V¥; and prove
(3.7). We first note the identity

M({,xo’(dx),...,w [ xe@dx)= | (. (j‘ M (%, ooes %, )0 (d,). .. )0 (dx,);
"“l“ A{E) As?)
this can be proved using standard pmpbrtles of Bochner’s integrals. This
identity along with (DC) yield

afl). ;o= [ (A)...a (4] 7" x

x j'( ] M(x,y, .. x)

Enl AE"!

M (X ey Xips ooy X oees X)) 0 (d)... )0 (dx,)
for every ie L, with i, = i, r < 5. The last equation, along with the facts that
diameter (A{™) < n~*, A{’ < supp(o) = a5 (see (3.1)) and (3.4), immediately
yield ﬂaﬁ"{,_,,;dﬁy Const. (M)n‘"1 for every ie L, and n; hence, for every n and
iel, ,

(3.8) y(af)...i)l < Const. (M)n™" [ylly-.

Now let g be a Borel measurable map from [0, 1] — &S such that Leb (g~ (4))
= o (A)/o (0S) for every Borel set A of 08, and let A'(-) = ¢ (9S) Leb(-), and A’
be a symmetric p-stable random measure on [0, 1] with control measure A,
Then, since o(4) = (g™ (4)), it follows that

(39 Z(T v )AAD)... AAD)

iely, .
=2L(Y y@® . )ACE).. . A(C) for every n,
il
where CW =g~ (A, j=1,...,d. Let A® denote the product random

measure of d identical random measures A’ (see Theorem 4.1 of [107). Then, by
defining
F oot { y@® ) if (.., t)eCPx ... xCI, ieL, ,
BLEymoes 0 otherwise,
we can wriie | R
(3.10) %ﬁ y(all ) A(CE)... A (CH)
ieLic,

= j',,.jf,,(tl, ey EYA D (e, ..., dt)  for every neN.

10,119
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Now, since by (3.8), f, (t;, ..., t;) = 0 uniformly on [0, 1]? as n — o0, it follows,
by the argument similar to that for showing the countable additivity of the
product random measure in Theorem 4.1 of [10], that the right-hand side of
(3.10) converges to zero in prob. Consequently, by (3.9), the validity of (3.7) (and
hence of (3.6)) is established.

The second step is to show that

(3.11) E| Y af? A AR A AP -0  as n— oo,

ieLy,

. for every qe(0, p), where A,, ..., 4, are independent copies of A. Let r be

a sequence of independent Rademacher random variables, and let ¥V, ..., r@,
and 60, ..., 6 be independent random vectors with % (+") = #(¥) and
PO =20, i=1,...,d Then, for every fixed ye V* and ge(0, p),

E| T y(af..i) A (AD)... A, (D)
5EL;m
= E| 3 (@ i) (ADPO...o (A P op
fely,
= EEo| 3. iy ARV O ..o (ALY 02 2],
S Iy

where E, denﬂtes the expectation relative to Rademacher sequences, and
B e=y(af? ;) ifieL, ,and b, = 0 otherwise. Now, by (3.3) and (3.8),

we see that the last expression

< (CO) (COIISt (M) hyliv*) * Z A (AP).. Ad(dgﬂ))ia

Cy iedy,
4 (Const. (M) [yl \* , '
_ (Eg) ( onst. (M) %!y%v*) ElA, (A,‘"))...Ad(fi{"mg
¢y L
Co\ t. d » b 1) A
< (co) (COHS (:I) “.V HV“) Ed(E ] A(@S}Iﬂ)d, where A" = U A}nlﬁ
0 » i=t

Clearly, the expression on the right-hand side of the last inequality converges
{0 0 as n— oo; this shows that
E| Y y@f o)A, (4).. . 4,04 -0 asn—o,
iely,
for every fixed ye V*; thus, since V is finite-dimensional, the proof of (3.11) is
immediate.
Let

Y}(") = ;i [(T (A?})] ! (Aignj m{dx)) AJ{AEM): j = 1-1 ey d"

where A;'s are as above. Then, by Proposition 3.2, {¥{"} converges in L} to
a random vector, say Y, for each j=1,...,d
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The third step in this part of the proof is to show that, for every g&(0, p),
(3.12) E|\MP, .., Y™M—M(Y, ..., Iy -0 as n—co.
To see this, we note that

E[M(Y{™, ..., ¥ =M (Yy, ..., V)ly

d
=E|Y (MY, ..., Yoy, ¥, L, Y= M(Y,, ..., ¥, ¥, V)8
i=1

d
< Const.(g,d) ¥ E[M(Y,, ..., Y\, Y- ¥, Y%y, ..., ¥}

i=1
d i-1 d

< Const.(q, d, M) ¥ ([T ENVIHE I —KIH( [T EIEI3)
i=1 j=1 j=itl

(by independence). But since E|Y™|% and E|Yl} j=1,...,d and
n=1,2,..., are all uniformly bounded and E|Y"-Y[!->0 for all
i=1,...,d, as n— oo, the last expression in the above inequalities converges
to zero as n— oo, which proves (3.12).

In this fourth and final step, we complete the proof of the right-hand side of
(DI) for all g&(0, p), when V'is finite-dimensional. From (3.6) and the fact that
Q(X) PL(Y), we have, for any fixed ge(0, p),

E|MX)|} <tminfE| Y ol ., A(AD)... A(AD)]}.

oo by,

J

The right-hand side of this inequality, by Theorem 3.1 of Krakowiak and
Szulga [3] or by de Acosta’s theorem quoted in Section 1 (note that
E ﬂ}}tnk,,aﬁ?f .HA(A@'“’) A(A@"')Ei’i'»' < oo for all g&(0, p))

ia Ay (A, .. Ay M%:J}H?

aaaaa

a5} a:LDk,.,
=C(p, ¢, Dliminf E | M(Y{", ..., ¥")— ¥ afd 1,4, (AD)... A, (AR,
o el .

where Y/"’s and As are as defined above. But since, by (3.11) and (3.12), the
last expression above is equal to C(p,q, )E|M(Y,, ..., Y|} and since
P(X)=2ZL(Y),i=1,..., d, the proof of the right-hand inequahﬁy of (D), for
ge(0, p), in the case where V¥ is finite-dimensional, is complete.

Part I1. For the general V; first we note that, by the Banach-Mazur
theorem, ¥ can be assumed as a subspace of C [0, 1]. Let {b;} be the standard
Schauder basis of C[0, 1], and {#;} be the corresponding coordinate func-
tionals. Then, as is well known

(3.13) « 1P () » Ixll, for every xeC[0, 1],

where P, (x) =)%-, b; B;(x), and |-, dcndtﬂs the supremum norm. Let
P, (V)=V, and M, =P, oM, k= 1,2, ... Then ¥, is finite-dimensional and
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M, satisfies (DC) for every ke N. Thus, from what we have proved above,
E | M, (X)|% < C(p. 4, DE |My(X,, ..., X)|%  for all k.

The proof of the right inequality of (DL ), for every ge(0, p), now follows by
the monotone convergence theorem and (3.13). Finally, note that in view of
Corollary 3.5, we also get, as a consequence of this inequality, that
E{|M(X)|% < oo for all ge(0, p).

Remark 3.6, A careful look at de Acosta’s proof in [1] reveals the
following important fact: Assuming that (A,) holds for all re(0, p), the
right-hand side of (DI)) holds, for all ge(0, p), without the assumption of
symmetry on M. In view of this and in view of the fact that we needed
symmetry of M in our proof of Theorem 3.1 only at one place, namely where
we used de Acosta’s Theorem, it follows that under (DC) the right-hand side
of (DI,) is valid without the symmetry assumption on M! We may also point
out here that the left-hand side of (DI, is false without the symmetry
assumption on M. In fact, take B=R% V=R, d =2, M(x, y) = {4x, y),

where
| 01 _“0’1‘ _6”1‘_
=l 3o x=(0) i)

recall that 6, and 0, are independent symmetric p-stable random variables
and 'Y is an independent copy of X. Then M (X) =0 and thus E|M(X)]? = 0
for any ge(0, p) and yet E|M(x, y)l¢ = E|0,0,—0, 019 > 0.

We now show that, in certain specific cases, verification of (DC) is much -
easier comparing to the verification of (A ). This is done in Example 3.8, where
we use a condition equivalent to (DC). This new condition is given not in terms
of the support of the spectral measure of the p-stable random vector X, but
rather in terms of the support of any ¢-finite measure v on the Banach space
appearing in the representation of the characterjstic function of % (X). Often it
is easier to have an explicit description of the support of v (comparing to the
description of the support of o); this observation makes this new condition
somewhat more useful. We begin with a proposition which provides the
equivalence of the two conditions:

Proposition 3.7. Let X, B, V and d be as in Theorem 3.1 and let M: B* -V
be a (not necessarily symmetric) separately measurable multilinear function. Let
v be a o-finite measure on B with v({0}) =0 and such that

LX) () =exp{~[ly()Pv(dx)} for all yeB*.
B
Then (DC)-condition is equivalent to the following:

(DC') For every x,, ..., x,, belonging to supp(v), M(x,, ..., x,) = 0, when-
ever x;= X; for some i# j.
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Proof. We can write
P (X)(y) = exp { — [ ly(x/IIxIP || x]1? v (dx)} = exp{— f (P o (dx)},
B

where
ao(Ad) = ] [x[17v(dx) < o0

fx# Ox/] x| 24}

for every Borel set 4 < 85. Thus, o4(4) = 406,(A4)+30,(—4) and

(3.14) supp(oy) = {x: x or —xesupp(s,)}.

Now assume that (DC) does not hold. We shall show that (DC') does not
hold either. We have, by our assumption, M(x,,..., x,) #0 for some
Xg, -5 Xg€8uUpp(oy) With x; =Xx; for some i# j. So, by (3.14), there exist
By, ..., &g = * 1, with &; = g;, such that z; = g, x, esupp(c,), | <k < d. Hence,
Mz, ...,2) =8;...6g M(xy, ..., x;) #0, and by the continuity of M (see
Proposition 3.4) there exists an & > 0 such that
{3.15) Mu,,...,u)#0 for every (u,,...,u)elU;x ... x Ud,

where U, = {ueS: u—zj <ég}. Set G, = {x#0: x/|x|eU,], k<d
Since z, esupp (o),
0<o,(U)= | lIxlPv(dx), 1<k<d,
Gr
and since G, are open, G,nsupp(v)#9; and hence we can choose
v, € G, nsupp(v) such that v; = v; (note that G; = G;). Then, by (3.15),
My, ..., v = [vsll.. vl M (v /llvg s ... villlogl)) # O,

which contradicts {DC").

- Suppose now that (DC') fails, so that M (x, ..., x,;) # 0 for some x,, ..., x,
esupp (v) with x; = x; for some 7 # j. Note that g, = min {|x, |, ..., lxl} > 0.
By the continuity of M, there exists a positive & < g,/2 such that
(3.16) M,,...,v0)#0 for every (vy,....v)e H, x ... xH,,

where H, = {v: |lv—x,|| <&}. Put

(3.17) : W, = {v/lv]: veH,}, 1<k<d
(note O0¢ H,). Since x,esupp(v), x, # 0, we have
oo (W) = f IxiPvidxy = [ llx?v( dx):»()
{x#0:xf|| x| eW} Hy

Hence W, nsupplo,) # @, and so we can choose u, e W, nsupp(o,) with
u; = u; (note W, = W). In view of (3. 17) u, = v, fl|v, || for some v, € H, and, by
(3 16),

Mg, .oy ) = (103 o [24) ™ M (04, ., 2) # 0.
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Since supp(o,) < supp(oy), this contradicts (DC), and the proof is com-
pIetad

Example 3.8. Let M: (L'E{Q T - R be given by

T, .
M(fy, 0 f)=1.. jK (s oens t)S(E)) .. ft) AL, ... dty,
O
fus - [,€ 120, TT, where KeL?([0, TT%. Let X (1), ¢ =0, be a symmetric
p-stable Lévy process such that Eexp {iuX ()} = exp{—t|u]’}, ueR, t > 0. Let
X be the random vector induced by {X(1): 0 <t < T} in L*[0, T]. Since

T
X(t) = II[M} (s)dX (s),
f o .
by Lemma 7.1 in [9] we get, for every fe L2[0, T],

T T T
Eexp{i{f, x>} =Eexp{i [f(t) X ({)dt} = Eexp {i g [gf(t) I () dr] dX (s)}

T
=exp{— [Kf I rplPdsy =exp{— | I<f, odIPv(dg)},
‘ 0 12[0,T]
where v(A) = Leb({se[0, T]: I}, r;e A}) for every Borel set 4 of L?[0, T].
Since it is easy to see that supp(v) = {I;; 1y}seio.ry» it follows, by the above
proposition, that (DC) is equivalent to the following: for every

S1s---,54€[0, T]
T T
(3.18) Mgy oo Jgar) = [ ovr § K2y, oons tg)dty...dt; =0,

whenever s; = s; for some i# J.

Clearly, every antisymmetric function K satisfies (3.18), but one can also
find many “non-antisymmetric” functions which satisfy (3.18) as well. Thus the
verification of (DC’) and hence also of (DC) is easy; on the other hand, it is not
clear directly as to why (3.18) implies E |M (X)? < o0. Of course, we know, via
Theorem 3.1, that all the moments E[M (X)? are in fact finite (Remark 3.6 is
pertinent here).

Remark 3.9. (a) We noted in the Introduction that our condition (DC) is
not only sufficient but also necessary for (DI,) to hold, for all g&(0, p), provided
M and o satisfy additional hypotheses. In fact, one can say more: Let B and
V be separable Banach spaces and M be a separately measurable symmetric
bilinear function: B*+— V. Let X be a symmetric B-valued p-stable random
vector with o, supported on a finite set. Then the following statements are
equivalent:

(@) (DI, holds for all g&(0, p);
(I1) (A,) is satisfied for all ge(0, p);
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(I11) (A,,) is satisfied for some q,€(p/2, p);

(IV) (BC) is satisfied.

The proofs of these equivalences follow from Theorem 3.1 and the following
observation which shows (III)=>(IV). Namely, let supp(e,) = {x,, ..., x,}.
Then %(X)=%(} _, mi’"0,x), where 0 <m;=o0y{x;}. Thus M(X)=

" o
=1 m;P 0,0, M (x;, x;). Now, since

E||Y. mMrmj?0,0,M(x;, x )|} <o for every qe(0, p),
i+

(II) is equivalent to E|[Y._  m??67 M(x;, x)|# < oo for some fixed
do€(p/2, p). But, by independence, this implies that E |67|% | M (x,, x)J|¥® < oo
for all 1 <i<n Thus, since g, >p/2, M(x, x)=0forall I<i<n

The answer to the question whether (1) implies (IV), in general, is unknown
to us, but, as we noted in the Introduction, we suspect it to be affirmative.

(b) The proof of Theorem 3.1 can be considerably shortened and simplified
if the Banach space B is assumed to be of stable type p. Indeed, in this case, one
can choose x{, ..., x{"esupp(oy) such that the random vectors
Y, = Z’;'; X" A{A) converge in L} and . (lim, ¥,) = & (X) [5] (see the proof
of Theorem 3.1 for the explanation of the notation used here). Then (DC)
implies that

M(Y)= 3 M, ..., xi)AA).. A4,
teDyy,

which yields (3.6) immediately; further, (DC) also implies that
MY, LYY = Y M (%, e X ) Ay (AR A (AR,

iel,
where
kn
YW =5 xPAAP), r=1,..,d

i=1
With these observations at hand, one completes the proof of Theorem 3.1 for
general V quickly by making use of steps three and four given in Part I of the
proof. The above observations make it possible to bypass the lengthy steps one
and two of Part I of the proof. In the case of a general Banach space B (i.e., the
one which is not of stable type p), these two steps are necessary, because, in this
case, the elements corresponding to x{” are

W= [ xold, =Lk
A
which ate known to belong to the closed convex hull of supp(sy) and not
necessarily to supp(oy). Consequently, it does not follow, as in the case above,
that M, ..., y{) = Ofor ie L, , and this forces one to use steps one and two
which makes the proof considerably long.
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4. Appendix. As mentioned before, we present the proof of Propositions 3.2,
3.3, and 3.4 in this appendix.
" Proof of Proposition 3.2. Let
Z,= Y+ {04017} I xo (dx)) A (AL 1)
A ,,+:
Then, from Theorem 6.6 of [8], {Z,} converges in prob. and in L"" toa random
vector Y with #(Y) = u for every ge(0, p). Thus, since

Lo (424 )17 ( j xa (dx)) A (A2 1)| 5 < 1A (AL ),

and IA (A, )] = 0 in prob. (bccause (AP, ) < n~'—0) as n— oo, we have
Y = P-lim Y,.

Further, since

E|Y,—Y|§ <2U{E|AAR JF+E|Z,— Y|§}
and E|Z,— Y|} -0, E|A(4P,,)*—0, as n— oo, we also infer that {Y,}
converges to Y in L} for every qe(0, p).

Proof of Proposition 3.3. For simplicity of the notation, we shall
abbreviate (3.2) by

(4‘1) E“ Z iy, .. sldrtl)‘ (dji (z Hau ,.m 3!1.42;

iety,q €0 detya
We shall prove the result by induction on d. If d = 1, then (4.1) reduces to

E| Y a5 S( T ladd)

ielp,1 Cp fefy

which is the well known Khintchine’s inequality. Note that ¢, and C, depend
only on g and not on n, H or a;s. Assume that (4.1) holds for a d = 1. Let
a; eH, ielJ, 41 ’I‘hen

T F R

42 E| Y a0

sdd4

Ch

32

TN

elndq1

"

g Z (z aih ldldmr{:”' I"(d})?”gjkl}ﬁg
tgs1=1 idelyg )

n

C . .
EGE( Z Ei Z a’iz ----- id,idurg},“'rﬁ}”i’)q}z

Co fge1=1 iafna
by induction with d = 1. Now let # be the Hilbert space with elements
x = (x;,..., X,), x;€6H, and the inner product {x, y), = 1=y {X;, Vidu-
Then, the last expression above can be written as

E| ¥ biy it s

iedy,a
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where by, ;. = (@, s415 -+ Gy, 0005 @0d, by the induction hypotheses, we
have
c? ,
(4'3) E [iijz bi; ..... id (1) r(d)"q ;; (i.;z %lbh ..... ‘,d”;g(,)qfi
ks, d ) I8Sn,4 .
Then (4.2) and (4.3) yield
”ie.}'z ah J«Hirl:)"‘ dfltaﬁ 5',';1 (EJZ wigal H)wz'
o+ 1 o 18y d+ 1

This proves (3.2); the proof of (3.3) now easily follows by using (3.2) and
observing that

E“ Z aib““‘-d‘j}l iiiii idrg'n‘ r‘tﬂ” N( Z Elah ..... ia u ..... ldlE.li‘)
ietn,a 0 felng
and .
Hf“mm( Z %l‘ai, ..... in«ﬁ%!)qlz %( Z Iéan,..,,idﬂh ..... idﬂf?)
iefn,a ity g
< N 1 2 Ny, s 1)
iEJnd

Proof of Proposition 3.4. By a theorem of Banach (Theorem 3, [2, p.
157) it follows immediately that M is separately continuous. Using this and an
induction argument, we will show that M is jointly continuous.

If d = 2, the result is well known (see, e.g., [12, p. 142]). Assume that the
result is true for a d > 2. We will show that it is true for d41. Let B, ®_ B,
denote the tensor product of B, and B,, , endowed with the n-topology [12, p.
434] and let B,®_B,., be the completion of B,®,B,,, in this topology.

For any fixed (x,,..., x,.)€B; %X ... X B;_;, the map

M(xy, ..o X41,%) Byx By =V
is a separately, and hence jointly, continuous bilinear map. Hence, by the
definitions of the tensor product, the n-topology and Proposition 43.4 of [12, p.
4381, there exists a unique continuous linear map

bryrar Ba®xBas >V
such that
(44)  M(xy, ..oy Xg_10 Xgs Xg41)
=Dyyrwar (Xa @ Xg4y)  for every (xg, Xg41)€Byx By .
Now define the map M: By x ... xB,_;xB;®B,.,—V by
M(XU ey Xgoqs y) = b’;;,...,xdm,(y)-

Then using (4.4), the fact that B, ®, B,., is the n-closure of the span of
{x; ® %44, (%45 Xz4.4)€ By % By}, it follows that M is multilinear; and, since
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M is separately continuous, by the Banach Steinhaus theorem we have that
M is a separately continuous multilinear function:

ByX...xBy. XxBy®;Byy V.

Thus, by the induction hypothesis, M is jointly continuous. But, since
(X X441)F>X; ® X4, is continuous from B,x B,,,—~B,;®,B,., [12, p.
434], it follows that M is jointly continuous. This completes the proof of the
first part; the proof of (3.4) now follows by the joint continuity of M at the zero
element of B, x ... xB,. & "
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