# ON LÉVY (SPECTRAL) MEASURES OF INTEGRAL FORM ON BANACH SPACES 

BY<br>ZBIGNIEW J. JUREK (Wroclaw)<br>Dedicated to my Teacher and Master Professor KAZIMIERZ URBANIK on the occasion of his sixtieth birthday


#### Abstract

In order to be a Lévy measure some necessary and sufficient conditions are given for measures of integral form. In particular, a complete proof for elements from classes $L_{\alpha}, \alpha>0$, is presented. Also some other examples are quoted.


It is well-known that a measure $M$ on a Hilbert space $H$ is a Lévy (spectral) measure iff $M$ integrates the function min $\left(1,\|x\|^{2}\right)$ over $H$. On the contrary, on general Banach spaces this condition is neither necessary nor sufficient. Moreover, there is no function $g$ such that the integrability of $g(\|x\|)$ with respect to $M$ would be a necessary and sufficient one for $M$ to be a Lévy measure on an arbitrary Banach space ([1], Chapter III, Theorem 6.3). On the other hand, studying random integrals of the deterministic real-valued function with respect to Lévy processes or stable measures we have to show that some mixtures of (Lévy) measures are Lévy measures as well [5-8]. Some of the previous proofs have appealed to random integral arguments to conclude that a measure is Lévy. Here our justifications go throughout the series of independent Banach space valued random variables and some type of "comparison principle" (cf. Proposition 1). Proposition 2 shows that if the $\lambda$-mixture of $T_{t} G, t>0$, is Lévy, then so is $G$. The opposite implication is considered in Proposition 3. Finally, in Section 4 some examples are discussed.

## 1. NOTATION AND SOME BASIC FACTS

Let $E$ be a real separable Banach space with the norm \|• $\|$, the topological dual $E^{\prime}$ and the bilinear form $\langle\cdot, \cdot\rangle$ between $E^{\prime}$ and $E$. Let $\operatorname{ID}(E)$ denote the set of all infinitely divisible measures on $E$. A $\sigma$-finite Borel measure $M$ on $E$, such that $M(\{0\})=0$ and the function

$$
\varphi_{M}(y)=\exp \int_{E \backslash(0)}\left[e^{i\langle y, x\rangle}-1-i\langle y, x\rangle_{B_{1}}(x)\right] M(d x), \quad y \in E^{\prime},
$$

is a characteristic function (of a probability measure $\tilde{e}(M)$ ), is called Lévy (spectral) measure (cf. [1], p. 117-118, where $\tilde{e}(M)$ is denoted by $c_{1}$ Pois $M$ ). The importance of Lévy measures follows from the fact that $\mu \in I D$ iff $\mu=\delta_{x} * \gamma * \tilde{e}(M)$, where $x \in E, \gamma$ is the symmetric Gaussian measure and $M$ is a Lévy (spectral) measure. The triple $x, \gamma$ and $M$ is uniquely determined by $\mu$ (cf. [1], Theorem 6.2, p. 136).

In the sequel $\mathscr{M}(E)$ denotes the set of all Lévy measures on Banach space $E$, $B_{r}:=\{x \in E:\|x\| \leqslant r\}, r>0$, is a ball and $\mathscr{B}_{0}$ is the family of all Borel subsets of $E_{0}:=E \backslash\{0\}$. If $H$ is a Hilbert space, then

$$
\begin{equation*}
M \in \mathscr{M}(H) \quad \text { iff } \int_{H} \min \left(1,\|x\|^{2}\right) M(d x)<\infty \tag{1.0}
\end{equation*}
$$

But on the general Banach space formula (1.0) is not longer true. However, some sufficient conditions are available. Namely, we have the following (cf. [1], Chapter III, Theorems 4.7 and 6.3):

$$
\begin{align*}
& \text { (1.1) } M(E)<\infty \text { implies } M \in \mathscr{M}(E) \text { and } e(M):=e^{-M(E)} \sum_{k=0}^{\infty} M^{* k} / k!\in \operatorname{ID}(E) \text {; }  \tag{1.1}\\
& \text { (1.2) } \quad \int_{E} \min (1,\|x\|) M(d x)<\infty \text { implies } M \in \mathscr{M}(E) ;  \tag{1.2}\\
& \text { (1.3) } \quad \text { if } 0 \leqslant N \leqslant M \text { and } M \in \mathscr{M}(E) \text {, then } N, M-N \text { are in } \mathscr{M}(E) ; \\
& \text { (1.4) }  \tag{1.4}\\
& \text { if } M, N \in \mathscr{M}(E) \text {, then } M+N \in \mathscr{M}(E) .
\end{align*}
$$

On the other hand, the following properties are necessary:
(1.5) $\quad M \in \mathscr{M}(E)$ implies $M\left(B_{r}^{C}\right)<\infty$ for each $r>0$, i.e. $M$ is finite outside every neighbourhood of zero;
(1.6) $\quad M \in \mathscr{M}(E)$ implies $\int_{E} \min \left(1,\langle y, x\rangle^{2}\right) M(d x)<\infty$ for each $y \in E^{\prime}$, because $\Pi_{y} M \in \mathscr{M}(R)$, where $\Pi_{y}: E \rightarrow R$ is given by $\Pi_{y} x:=\langle y, x\rangle$.
For further references let explicitly state that (cf. (1.3) and (1.4))
(1.7) $\quad M \in \mathscr{M}(E)$ iff $M^{0}:=M+M^{-} \in \mathscr{M}(E)$, where $M^{-}(A):=M(-A)$ for $A \in \mathscr{B}_{0}$.

Thus we can consider symmetric measures $M$ only. The measure $M^{0}$ in (1.7) is called the symmetrization of a measure $M$. We complete this introductory section with a lemma which will be repeatedly applied later on.

Lemma 1. If $M$ is a symmetric Lévy measure supported by the unit ball $B_{1}, \xi_{n}$ 's are E-valued independent rv's with distributions

$$
e\left(\left.M\right|_{\left(x:(n+1)^{-1}<\|x\| \leqslant n^{-1}\right)}\right) \quad \text { for } n=1,2, \ldots,
$$

and $\xi$ has the distribution $\tilde{e}(M)$, then $\sum_{n} \xi_{n}$ converges to $\xi$ in $L_{p}$-norm for each $p>0$.

Proof. By Lemma 4.4 and Theorem 2.10, Chapter III, in [1], we infer that $\sum_{n} \xi_{n}$ converges a.s. to $\xi$. From [1], Corollary 3.3, we infer that $\xi$ has all exponential moments, in particular all $p$-moments. From the Lévy inequality and Theorem 2.11 in [1] we conclude the proof of Lemma 1.

## 2. FUNDAMENTAL INEQUALITIES

Let $\lambda$ be a measure on $R^{+}=(0, \infty)$ and $m$ a Borel measure on $E$. Then the measure $m^{(\lambda)}$, defined on Borel sets $A$ by

$$
\begin{equation*}
m^{(\lambda)}(A)=\iint_{E R^{+}} 1_{A}(t x) \lambda(d t) m(d x)=\int_{R^{+}} m\left(t^{-1} A\right) \lambda(d t) \tag{2.1}
\end{equation*}
$$

is the $\lambda$-mixture of measures $\left(T_{t} m\right)(\cdot):=m\left(t^{-1} \cdot\right), t \in R^{+}$. Measures of the form (2.1) appeared in the study of stable measures (cf. [6], p. 272-273, or [1], p. 165), random integrals (cf. [7], p. 250, or [4], Theorems 1.3 and 3.2) and in fractional calculus in probability theory (cf. [8]). In all of these circumstances one has to determine whether $m^{(\lambda)}$ is a Lévy measure for a particular given measure $\lambda$. Here (in Section 3) we will discuss this question as well as the opposite one in general.

Proposition 1. For $1 \leqslant j \leqslant k$ let $\lambda_{j}$ be finite measures on $R^{+}$with mean values $v_{j}$ and let $m_{j}$ be finite Borel measures on $E$ with zero mean values. Then

$$
\begin{aligned}
\int_{E}\|x\| T_{a_{1}} m_{1} * \ldots * T_{a_{k}} m_{k}(d x) & \leqslant \int_{E}\|x\| m_{1}^{\left(\lambda_{1}\right)} * \ldots * m_{k}^{\left(\lambda_{k}\right)}(d x) \\
& \leqslant c_{k} \int_{E}\|x\| m_{1} * \ldots * m_{k}(d x)
\end{aligned}
$$

where $a_{i}=v_{i} \prod_{j \neq i} \lambda_{j}\left(R^{+}\right)$for $1 \leqslant i \leqslant k$ and

$$
c_{k}=2 \int_{R^{+}} \ldots \int_{R^{+}} \max \left(t_{1}, \ldots, t_{k}\right) \lambda_{1}\left(d t_{1}\right) \ldots \lambda_{k}\left(d t_{k}\right) .
$$

Proof. Let $A_{k}$ be the middle term in the above inequality. By Lemma 2.12, p.. 108, from [1], we get

$$
\begin{aligned}
A_{k} & =\int_{R^{+}} \ldots \int_{R^{+}} \int_{E} \ldots \int_{E}\left\|t_{1} x_{1}+\ldots+t_{k} x_{k}\right\| m_{1}\left(d x_{1}\right) \ldots m_{k}\left(d x_{k}\right) \lambda_{1}\left(d t_{1}\right) \ldots \lambda_{k}\left(d t_{k}\right) \\
& \leqslant c_{k} \int_{E}\|x\| m_{1} * \ldots * m_{k}(d x),
\end{aligned}
$$

which gives the right-hand side inequality. Since the norm of an integral is not greater than the integral of the norm of a function, we have

$$
\begin{aligned}
A_{k} & \geqslant \int_{E} \ldots \int_{E}\left\|\int_{R^{+}} \ldots \int_{R^{+}}\left(t_{1} x_{1}+\ldots+t_{k} x_{k}\right) \lambda_{1}\left(d t_{1}\right) \ldots \lambda_{k}\left(d t_{k}\right)\right\| m_{1}\left(d x_{1}\right) \ldots m_{k}\left(d x_{k}\right) \\
& =\int_{E} \ldots \int_{E}\left\|a_{1} x_{1}+\ldots+a_{k} x_{k}\right\| m_{1}\left(d x_{1}\right) \ldots m_{k}\left(d x_{k}\right)
\end{aligned}
$$

which is the left-hand side inequality in Proposition 1.

We conclude this subsection with some simple properties of $\lambda$-mixtures $m^{(\lambda)}$, which will be needed later on. Namely we have:

$$
\begin{equation*}
\text { if } m_{1} \leqslant m_{2} \text { or } \lambda_{1} \leqslant \lambda_{2}, \text { then } m_{1}^{\left(\lambda_{1}\right)} \leqslant m_{2}^{\left(\lambda_{2}\right)} \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
\left(\sum_{j} m_{j}\right)^{(\lambda)}=\sum_{j} m_{j}^{(\lambda)} \quad \text { and } \quad m^{\left(\sum_{j} \lambda_{j}\right)}=\sum_{j} m^{\left(\lambda_{j}\right)} ; \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
\left(m^{(\lambda}\right)^{0}=\left(m^{0}\right)^{(\lambda)} \text {, where } m^{0} \text { is the symmetrization of } m ; \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
a m^{(\lambda)}=(a m)^{(\lambda)}=m^{(a \lambda)} \quad \text { for } a \in R^{+} \tag{2.5}
\end{equation*}
$$

In formulas (2.2)-(2.6), $m$ and $m_{j}$ 's are measures on $E$, and $\lambda$ and $\lambda_{j}$ 's are measures on $R^{+}$.

## 3. MIXTURES OF MEASURES

As before, $E$ denotes a $\cdot$ Banach space, $\mathscr{B}_{0}$ is a $\sigma$-algebra of Borel subset of $E_{0}:=E \backslash\{0\}$ and $\mathscr{M}(E)$ is the family of all Lévy measures on $E$.

Proposition 2. Let $g$ be a measure on $R^{+}$and $G$ be a measure on $\mathscr{B}_{0}$, both non-zero, such that $G^{(g)} \in \mathscr{M}(E)$, i.e., $G^{(g)}$ is a Lévy measure. Then

$$
\begin{equation*}
\int_{R^{+}} G\left(B_{t^{-1}}^{c}\right) g(d t)=\int_{E^{0}} g\left(t: t>\|x\|^{-1}\right) G(d x)<\infty \tag{a}
\end{equation*}
$$

(b) $g$ and $G$ are Lévy measures on $R^{+}$and $E$, respectively.
Proof. From (1.5) and (2.1) we get

$$
G^{(g)}\left(B_{1}^{c}\right)=\int_{R^{+}} G\left(B_{t^{-1}}^{c}\right) g(d t)=\int_{E_{0}} g\left(t: t>\|x\|^{-1}\right) G(d x)<\infty
$$

which gives (a). Moreover, $G$ and $g$ are finite outside some neighbourhoods of zero in $E$ and $R^{+}$. In fact, they are finite outside every neighbourhood of zero. Note that

$$
\int_{a^{-1}}^{\infty} G\left(B_{t-1}^{c}\right) g(d t)<\infty \quad \text { for each } a>0
$$

Thus there is a $t_{0} \in\left(a^{-1}, \infty\right)$ such that $G\left(B_{t_{0}^{-1}}\right)<\infty$, i.e., $G\left(B_{a}^{c}\right)<\infty$ for $a>0$. Similarly, we show this for $g$. Furthermore, $\Pi_{y} G^{(g)} \in \mathscr{M}(R)$ for all $y \in E^{\prime}$ (cf. (1.6)), and (1.0) gives

$$
\int_{R} \min \left(1, s^{2}\right) \Pi_{y} G^{(g)}(d s)=\int_{E R^{+}} \min \left(1, t^{2}\langle y, x\rangle^{2}\right) g(d t) G(d x)<\infty .
$$

Hence there are $x_{0} \in E$ and $y_{0} \in E^{\prime}$ such that $w=\left\langle y_{0}, x_{0}\right\rangle \neq 0$ and $g$ integrates $\min \left(1, t^{2} w^{2}\right)$ over $R^{+}$, i.e., $g \in \mathscr{M}\left(R^{+}\right)$.

To complete the proof of part (b) we can assume that $G$ is symmetric and concentrated on the unit ball $B_{1}$ (cf. (1.7) and (1.1)). Also, without loss of the
generality, we can assume that $g$ is concentrated on a bounded set $A$ in $R^{+}$and that $g(A)=1$, because $G^{(g)} \geqslant G^{\left(\left.g\right|_{A}\right)} \in \mathscr{M}(E)$ and $a G^{\left(\left.g\right|_{A}\right)}=G^{\left(\left.a G\right|_{A}\right)}$ (cf. (2.3), (2.6) and (1.3)). Consequently, $G^{\left(g_{1}\right)}$ is a symmetric Lévy measure concentrated on the ball $B_{r}$, where $r:=\sup A<\infty$ and $g_{1}:=\left.g\right|_{A}$. Taking

$$
I_{n}:=B_{n^{-1}} \backslash B_{(n+1)^{-1}}, \quad G_{n}:=\left.G\right|_{I_{n}}
$$

and independent $E$-valued rv's $\xi_{n}$ with distribution $e\left(G_{n}^{\left(g_{1}\right)}\right)$, we see that $\sum_{n} \xi_{n}$ converges in $L_{1}$-norm (cf. Lemma 1). Applying Proposition 1 for $\lambda_{1}=\ldots=\lambda_{k}=g_{1}$ and $m_{1}=m_{2}=\ldots=m_{k}=\sum_{n=j}^{l} G_{n}$, we obtain

$$
a \int_{E}\|x\|\left(\sum_{n=j}^{l} G_{n}\right)^{* k}(d x) \leqslant \int_{E}\|x\|\left(\sum_{n=j}^{l} G_{n}^{\left(g_{1}\right)}\right)^{* k}(d x) \quad \text { for } k \in N,
$$

where $a$ is the mean-value of $g_{1}$. Since $G_{n}^{\left(g_{1}\right)}(E)=G_{n}(E)$, we conclude that

$$
E\left\|\sum_{n=j}^{l} \eta_{n}\right\| \leqslant a^{-1} E\left\|\sum_{n=j}^{l} \xi_{n}\right\| \quad \text { for all } j, l \in N
$$

where $\eta_{n}$ are $E$-valued independent rv's such that $L\left(\eta_{n}\right)=e\left(G_{n}\right)$. Thus $\sum_{n} \eta_{n}$ converges in $L_{1}$-norm and $G=\sum_{n} G_{n} \in \mathscr{M}(E)$, which completes the proof of Proposition 2.

Now we will determine when $G^{(g)}$ is a Lévy measure if so is $G$. However, we should be aware that in full generality the answer may depend on the geometry (the norm) of the Banach space E. Let us consider the following example: take $g(d t)=t^{-(p+1)} d t$ on $R^{+}$and finite measures $m$ on the unit sphere $S$ in $E$, i.e., for $A \in \mathscr{B}_{0}$,

$$
m^{(g)}(A)=\int_{S}^{\infty} \int_{0}^{\infty} 1_{A}(t u) t^{-(p+1)} d t m(d u)
$$

It is known that $m^{(g)}$ is a Lévy measure (an exponent of $p$-stable distribution) for all finite $m$ 's on $S$ if and only if $E$ is of stable type $p$ (cf. [1], Theorem 7.9, p. 165, or, for a partial answer, [6], Theorem 2). In view of this example, sufficient conditions for $G^{(g)}$ to belong to $\mathscr{M}(E)$ will be given for some measures $g$ only.

Proposition 3. (1) If g is finite and concentrated on $(0, T]$, then $G^{(g)}$ is a Lévy measure if so is $G$.
(2) Let $g$ be concentrated on $(0, T]$ such that, for some sequence $a_{n} \downarrow 0$ in $R^{+}$, we have

$$
a_{1}=T, \quad c:=\sum_{n} a_{n}<\infty \quad \text { and } \quad b:=\sup _{n} g\left(a_{n+1}, a_{n}\right]<\infty
$$

Then, for $G \in \mathscr{M}(E)$ concentrated on $B_{1}$, we have $G^{(g)} \in \mathscr{M}(E)$.
(3) Let $G$ be a finite measure concentrated on $B_{1}^{c}$ and $g$ be a measure on $R^{+}$. If

$$
\begin{equation*}
\int_{B_{1}^{C}} g\left(s: s>\|x\|^{-1}\right) G(d x)<\infty \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{B_{1}^{c}}\|x\| \int_{0}^{\|x\|^{-1}} \operatorname{tg}(d t) G(d x)<\infty \tag{ii}
\end{equation*}
$$

then $G^{(g)}$ is a Lévy measure on $E$.
Proof. In view of (2.2) and (1.7) we assume that all $G$ 's are symmetric measures. We will prove each of these cases separately.

Case (1). By (2.6) we may assume additionally that $g$ is a probability measure. Since $\left.G\right|_{B_{1}^{c}}$ is finite (see (1.5)), and, for finite $G$, the measure $G^{(g)}$ is also finite, we restrict our consideration to $G \in \mathscr{M}(E)$ and concentrated on $B_{1}$.

Let $I_{n}:=B_{1 / n} \backslash B_{1 /(n+1)}, G_{n}:=\left.G\right|_{I_{n}}$ and let $\eta_{n}$ be independent $E$-valued rv's with distributions $e\left(G_{n}\right)$ for $n=1,2, \ldots$ From Lemma $1, \sum_{n} \eta_{n}$ converges in $L_{1}$-norm. Let $\xi_{n}, n \in N$, be independent, $E$-valued rv's with distributions $e\left(G_{n}^{(g)}\right)$. Applying Proposition 1 to $\lambda_{1}=\ldots=\lambda_{k}=g$ and $m_{1}=m_{2}=\ldots=m_{k}$ $=\sum_{n=j}^{l} G_{n}$, we obtain

$$
\int_{E}\|x\|\left(\sum_{n=j}^{l} G_{n}^{(g)}\right)^{* k}(d x) \leqslant 2 T \int_{E}\|x\|\left(\sum_{n=j}^{l} G_{n}\right)^{* k}(d x) .
$$

Since $G_{n}^{(\rho)}(E)=G_{n}(E)$, hence summing over $k$ we get

$$
\left\|\sum_{n=j}^{l} \xi_{n}\right\| \leqslant 2 T\left\|\sum_{n=j}^{l} \eta_{n}\right\| \quad \text { for all } j, l \in N
$$

i.e., $\sum \xi_{n}$ converges in $L_{1}$-norm to an infinitely divisible rv with Lévy measure $\sum_{n} G_{n}^{(g)}=G^{(g)}$, which completes the proof of case (1).

Remark 1. An alternative proof for the case (1) is also possible by a random integral approach. Note that the random integral $\int_{(0, T]} t d Y(\tilde{g}(t))$ exists for $D_{E}[0, T]$-valued rv $Y$ with stationary independent increments, $Y(0)=0$ a.s. and $\tilde{g}(t):=g(s: s \leqslant t)$. Its Lévy measure equals $G^{(g)}($ see $[4,5])$.

Case (2). Let $L_{n}:=\left(a_{n+1}, a_{n}\right]$ and $g_{n}:=\left.g\right|_{L_{n}}, n \in N$. Assuming additionally that $G$ is a finite measure we get

$$
\int_{E}\|x\| e\left(G^{\left(g_{n}\right)}\right)(d x)<e^{-G(E) g\left(L_{n}\right)} \sum_{k=1}^{\infty} \frac{c_{k}}{k!} \int_{E}\|x\| G^{* k}(d x)
$$

from Proposition 1 and formula (1.1). Since

$$
c_{k}=2 g^{k}\left(L_{n}\right) \int_{0}^{a_{n}}\left[1-\left(g(s: s \leqslant t) / g\left(L_{n}\right)\right)^{k}\right] d t \leqslant 2 a_{n} g^{k}\left(L_{n}\right)
$$

we obtain (cf. [1], Lemma 2.7, p. 103)

$$
\int_{E}\|x\| e\left(G^{\left(g_{n}\right)}\right)(d x) \leqslant 2 a_{n} \int_{E}\|x\| e\left(g\left(L_{n}\right) G\right)(d x) \leqslant 2 a_{n} \int_{E}\|x\| e(b G)(d x) .
$$

Taking $\eta_{n}$ to be $E$-valued independent rv's with distribution $e\left(G^{\left(g_{n}\right)}\right)$, we obtain

$$
E\left\|\sum_{n=j}^{l} \eta_{n}\right\| \leqslant 2 \sum_{n=j}^{l} a_{n} \int_{E}\|x\| e(b G)(d x) .
$$

Hence $\sum_{n} \eta_{n}$ converges in $L_{1}$-norm, $\sum_{n} G^{\left(g_{n}\right)}=G^{(g)} \in \mathscr{M}(E)$, and

$$
\int_{E}\|x\| e\left(G^{(g)}\right)(d x) \leqslant 2 c \int_{E}\|x\| e(b G)(d x)
$$

for $G$ finite and concentrated on $B_{1}$.
If $G \in \mathscr{M}(E)$ and is concentrated on $B_{1}$, then, taking $G_{n}:=\left.G\right|_{I_{n}}\left(I_{n}:=\right.$ $B_{n^{-1}} \backslash B_{(n+1)^{-1}}$ ), we have $G_{n}^{(g)} \in \mathscr{M}(E)$ and the above inequality holds for $G_{n}^{(g)}$. Hence and from Lemma 1 we conclude that $\sum_{n} G_{n}^{(g)}=G^{(g)} \in \mathscr{M}(E)$ and

$$
\int_{E}\|x\| \tilde{e}\left(G^{(g)}\right)(d x) \leqslant 2 c \int_{E}\|x\| \tilde{e}(b G)(d x)
$$

which completes the proof of case (2).
Case (3). Note that, for $A \in \mathscr{B}_{0}$,

$$
G^{(g)}(A)=\int_{B_{1}^{c}\left(\|x\|^{-1}, \infty\right)} 1_{A}(t x) g(d t) G(d x)+\int_{B_{1}^{c}} \int_{\left(0,\|x\|^{-1}\right]} 1_{A}(t x) g(d t) G(d x)
$$

is a sum of two measures, $v_{1}$ and $v_{2}$, say. Because of assumption (i), the measure $v_{1}$ is finite and $v_{1} \in \mathscr{M}(E)$. The measure $v_{2}$ is concentrated on $B_{1}$ and, by (ii),

$$
\int_{E}\|x\| v_{2}(d x)=\int_{B_{1}^{C}}\|x\| \int_{0}^{\|x\|^{-1}} \operatorname{tg}(d t) G(d x)<\infty
$$

Consequently, by (1.2) and (1.4), $G^{(g)} \in \mathscr{M}(E)$, which completes the proof of case (3) and Proposition 3.

## 4. EXAMPLES

A. For $\alpha>0$, let $v_{\alpha}(d t)=\left(\log t^{-1}\right)^{\alpha-1} t^{-1} d t$ be a measure on $(0,1]$. Taking $a_{n}:=\exp \left(-n^{1 / \alpha}\right), n=0,1,2, \ldots$, we get

$$
\sum_{n} a_{n}<\infty \quad \text { and } \quad v_{\alpha}\left(a_{n+1}, a_{n}\right]=\alpha^{-1}<\infty
$$

Condition (i) in case (3) of Proposition 3 or (a) in Proposition 2 for $v_{\alpha}$ means the following:

$$
\int_{B_{1}^{\top}} \int_{\|x\|^{-1}}^{1}\left(\log t^{-1}\right)^{\alpha-1} t^{-1} d t G(d x)=\alpha^{-1} \int_{B_{1}^{\mathfrak{c}}} \log ^{\alpha}\|x\| G(d x)<\infty .
$$

With the above restriction on $G$, condition (ii) in case (3) of Proposition 3 is fulfilled because

$$
\lim _{\|x\| \rightarrow \infty}\|x\| / \log ^{\alpha}\|x\| \int_{0}^{\|x\|^{-1}}\left(\log t^{-1}\right)^{\alpha-1} d t=\lim _{u \rightarrow \infty} u^{-\alpha} e^{u} \int_{u}^{\infty} e^{-t} t^{\alpha-1} d t=0 .
$$

This and Propositions 2 and 3 give
Corollary 1. Let $\alpha>0$ and

$$
\begin{aligned}
G_{\alpha}(A) & =\int_{E}^{1} \int_{0}^{1} 1_{A}(t x)\left(\log t^{-1}\right)^{\alpha-1} t^{-1} d t G(d x) \\
& =\int_{E}^{\infty} \int_{0}^{\infty} 1_{A}\left(e^{-t} x\right) t^{\alpha-1} d t G(d x) \quad \text { for } A \in \mathscr{B}_{0} .
\end{aligned}
$$

Then $G_{\alpha}$ is a Lévy measure on $E$ iff so is $G$ and

$$
\int_{B_{1}^{C}} \log ^{\alpha}\|x\| G(d x)<\infty .
$$

Remark 2. Thu ([8], Theorem 4.3) claims the result as above. The proof is a combination of random integral arguments from [7] and property (1.3) of $\mathscr{M}(E)$. However, inequality (4.12) in [8] needs a correction and applying Corollary 4.2 (in Cases 1 and 2) one requires that $G \in G_{[\alpha]+1}(X)$, not only $G \in G_{\alpha}(X)$.

Remark 3. Taking $a(t)=\exp \left(-t^{1 / \alpha}\right)$ in Theorem 4 of Hong [3], one gets Corollary 1 for Hilbert spaces. Since a part of Hong's proof depends on the Three-Series-Theorem, it is not obvious that his arguments can be extended to arbitrary Banach spaces.
B. For $\beta>0$ let us put $g_{\beta}(d t)=t^{-(\dot{\beta}+1)} d t$ on $(0,1]$. For $0<\beta<1$ and $a_{n}=n^{-1 / \beta}$ we get $\sum_{n} a_{n}<\infty, g_{\beta}\left(a_{n+1}, a_{n}\right]=\beta^{-1}$. If $G$ is a Lévy measure concentrated on $B_{1}$, then $G^{(g)} \in \mathscr{M}(E)$ by case (2) of Proposition 2. If $G$ is supported by $B_{1}^{c}$ and finite, then from assumptions (i) and (ii) of case (3) and (a) in Proposition 2 if follows that

$$
\int_{B_{1}^{c}}\|x\|^{\beta} G(d x)<\infty .
$$

From this and Propositions 2 and 3 we obtain
Corollary 2. Let $0<\beta<1$ and

$$
G_{\beta}(A)=\iint_{E}^{1} 1_{A}(t x) t^{-(\beta+1)} d t G(d x) \quad \text { for } \dot{A \in \mathscr{B}_{0}}
$$

Then $G_{p}$ is a Lévy measure iff so is $G$ and

$$
\int_{B_{1}^{C}}\|x\|^{\beta} G(d x)<\infty
$$

Remark 4. Taking in Corollary 2 a finite measure $m$ on the unit sphere $S$ of $E$ we obtain measures

$$
m_{\beta}(A)=\int_{S}^{\infty} \int_{0}^{\infty} 1_{A}(t x) \bar{t}^{(\beta+1)} d t m(d x) \quad \text { for } A \in \mathscr{B}_{0}
$$

which are always Lévy measures (corresponding to stable distributions with the exponent $\beta \in(0,1)$.
C. For $\gamma>0$ let us put $v_{\gamma}(d t)=\left(\log t^{-1}\right)^{\gamma-1} d t$ on $(0,1]$. Since $v_{\gamma}$ are finite measures $\left(v_{\gamma}(0,1]=\Gamma(\gamma)\right)$, (a) of Proposition 2 is fulfilled. Thus Proposition 3, case (1), and Proposition 2 give the following

Corollary 3. Let $\gamma>0$ and

$$
\begin{aligned}
G_{\gamma}(A) & =\int_{E}^{1} \int_{0}^{1} 1_{A}(t x)\left(\log t^{-1}\right)^{\gamma-1} d t G(d x) \\
& =\int_{E}^{1} \int_{0}^{1} 1_{A}\left(e^{-t} x\right) e^{-t} t^{\gamma-1} d t G(d x) \quad \text { for } A \in \mathscr{B}_{0}
\end{aligned}
$$

Then $G_{\gamma}$ is a Lévy measure iff so is $G$.
Remark 5. Lévy measures $G_{\alpha}$ from Corollary 1 correspond to infinitely divisible measures from the class $L_{\alpha}$ distributions (cf. [8]). These are subclasses of the class $L=L_{1}$ of selfdecomposable distributions. Similarly, measures $G_{\gamma}$ from Corollary 3 are Lévy measures of distributions from classes $\mathscr{U}_{\gamma}$. The class $\mathscr{U}_{1}=\mathscr{U}$ coincides with limit distributions of non-linearly deformed rv's ( $s$-selfdecomposable distributions; cf. [4], Section 2).

## 5. FINAL COMMENTS

(1) All results (Propositions 1-3) are also valid if in the definition of $m^{(\lambda)}$ (see (2.1)) we replace $1_{A}(t x)$ by $1_{A}(f(t) x)$, where $f$ is a real-valued measurable function on $R^{+}$. Simply, the measure $\lambda$ should be replaced by the measure $f \lambda \equiv \lambda f^{-1}$ in (2.1). There is a need to have analogous characterizations for operator-valued functions (cf. [5] for measures from $\mathscr{U}_{\beta}(Q)$ with $\beta<0$ ). However, some of the present methods of proofs do not cover such a generality.
(2) The integrability of $\log ^{\alpha}(1+\|x\|)$ (or $\|x\|^{\beta}$ ) over $B \Phi^{\phi}$ with respect to $G \in \mathscr{M}(E)$ is equivalent to

$$
\int_{E} \log ^{\alpha}(1+\|x\|) \tilde{e}(G)(d x)<\infty \quad\left(\text { or } \int_{E}\|x\|^{\beta} \tilde{e}(M)(d x)<\infty\right)
$$

(cf., for instance, [2], Corollary 3.4).

## REFERENCES

[1] A. Araujo and E. Giné, The central limit theorem for real and Banach space valued random variables, John Wiley, New York 1980.
[2] A. de Acosta, Exponential moments of vector valued random series and triangular arrays, Ann. Probability 8 (1980), p. 381-389.
[3] N. N. Hong, On convergence of some random series and integrals, Probab. Math. Statistics 8 (1987), p. 151-154.
[4] Z. J. Jurek, Relations between the s-selfdecomposable and selfdecomposable measures, Ann. Probability 13 (1985), p. 592-608.
[5] - Random integral representations for classes of limit distributions similar to Lévy class $L_{0}$, Probab. Th. Rel. Fields 78 (1988), p. 473-490.
[6] Z. J. Jurek and K. Urbanik, Remarks on stable measures on Banach spaces, Coll. Math. 38 (1978), p. 269-276.
[7] Z. J. Jurek and W. Vervaat, An integral representation for selfdecomposable Banach space valued random variables, Z. Wahrsch. verw. Gebiete 62 (1983), p. 247-262.
[8] N. van Thu, An alternative approach to multiply selfdecomposable probability measures on Banach spaces, Probab. Th. Rel. Fields 72 (1986), p. 35-54.

Institute of Mathematics
Wrochaw University

Received on 22. 8. 1989

