
PKOmBliLITY 
AND 

MATNaFufiATICAL mAml;ra@ 

Abstract. The rate oi convergence of monotone approximation 
gromdures for stockistic promsses i s  studiwl, Several applications are 
discussed: dismeti7;ing time sefics, constructing solutions of linear 
stadastic daerentisial equations and sirndating aistrlbutioas of con- 
tinuom Ji~nctiantals. 

8. XrmtrdrrcGsn Approximation ef stochastic prowses has 'been studied 
under. various aspects, e.g. converpnce of empi~cal processes with cadlag 
sample paths Pillhgsfey [4], Gsnssier and Stute [12], Pollard [l6]), simnlat- 
ing fiaxlcarands af contjlruous Gatussizltl processes (EpTetti [93) and approxima- 
tion of weakly stationav random processes by convolution processes (Splett- 
ijtBsser [20]>. According to $iffereat objectives, the risults are based on quite 
different assump~ons about the underlying procmses and apprcsximdioa 
procedures, 

It is: the aim of this pager to debva qumtitative results on monotone 
approxhatian of stochaslic processes, i.e. approximation by operators gaeser- 
ving some order ioxlaiions, The dass of monatunc methods in~ludas h e a r  
interpolation, qprofoxirnation by step Fundilons, interpaEdtian with momalized 
B-splints and approximatian by linear integral operators with nonnegative 
k~rnels. Approximatioo by a sequence TI, I", , . . of monotone operators: is 
stcirmtageoirs bacc~use the asymptotic behaviour af the approxima~an error is  
Iu&Q. 

For the moment kt f ( t )  be a csntinuoua Fancrtim defiled on a closed 
interval [a, b] c R. Then the following properties are welt-known: 

(1) If* for n 4 cap lirnfa", f')l(r) = J ( s )  (in the sup-norm) has been proved for 
the ""grasy" fufunsiians .f,(t] = 1, (r') = t, f2  (j) - t2, then ?nlirn (T, J ) ( r )  = f ( t )  i s  

rn + m  

dready tme for each SO) E C [a, b3. 
(21 Tbe rate of convergence far arbitray J(t) E C [a, rjl can be specified 

provided the rate of csnvergensf: is  known for -fa (0, fi (tj and f, [f). 



Hence it suf5ces to check three ""test fufutlctioas'banly. (These is an extensii~e 
literature on monotone approxima~an of nonrandam functions, and there nee 
many extensions $0 more general fmction space$ than C[a, Erl. Important 
results are given by Anastassiou [I], Bereas and Lorentz [3], Censor [613 
B V o r e  [7], Donner 181, klah [13], Mond and Vasudevan Cts], Woth [17j2 
scheafold [I 81, Sclzempp [19], WoIE f229. Clearly, this enr~meratilon is by no 
means complete.) Under mild additional assumptions property $1) has been 
establiskd for stackastic processes by the author [213 while pneralizationra of 
property (23 are treated in this paper. Several applications are discussed: 
discretin'ag stationary time sea-ies with trend, constructing solutions of linear 
stochastic differentid equations and simulating dist~butions of certain fasnc- 
tionals of nan-Gaussian processes. The last problem origilzates from Eplett [3). 

2. Basic defimitism. Throughout the text X t t ,  a) stands for a stochastic 
process on a probability space (a, d, P) with the dosed interval 
[a, b] c R, a < b, as pmmieter set and state space (R ,  B')3 where $3 denotes 
the (r-field of Bore1 subsets of R, 

Sums, pr~dttcta etc. of stoctdastic processes are defined pointwise and the 
natural odering X sg Y iffX(t, 4 g Y( t ,  w )  for each t ~ [ a ,  $1 is used, (It will 
not be distinguish4 bemeen equivalent prclcasses which differ ody with 
grcrbabif ilty mro for each I E [a, b]J 

The vector lattice of &all processes with bomded second mm~nr is  
[]X Itp w)ll a = ( E  IX (t, is defined to be 

and becomes a narmed vector lattice by means of the aerm 

lixll - sup Il%lh aSllz. 
setn,bl 

Fhe space of Lz-contjauzrus procesms, Ca la, bl = C([a,  b] ,  L2 (a, sf, P))l 
whew la, 6;a is endowed with the aaturd metric, i s  a linear subiattice ofla, [a, b]. 
The sflaws B &a, b] and G[a ,  b]  of sserandurn bounded a d  nenradom 
eontinunrrs rcal-valued functions may be ~mbedded by identifying a nonstrschas- 
t j ~  function f ( t )  with the degenerate prsfocws Xf(t, W )  = f (21, t E [a, b] ,  m~ i2;a. 
Note that for every X E Bra [a,  trl ( X  E C, [a, b] )  the anean value fwcehon 
(EXj ( t )  = E (A7 (t, w)) and the "'noj-rn function" XI, ( 1 )  - ItX ( 1 ,  C I I ) / ~ ,  namssarily 
lie in B [a, b] (C [a, b] ,  resp.). Finally, smac3thiless of a process X e 8, [a, b] i s  
expmssed in terms of its stochastic modulus of continuity: 

3. Moaotom ~ ~ f a t 8 m  from %[a, h] into B,[a, b]. We ibegh with 
D c f i n i l i o n 3.1. A baunded linem mapping T: C, [a, b] -+ B, [a, b] is 

called monotone if  X 2 0 implies T X  >, 0 for each X E CD [a, bf, 



On the c ~ n t r a q  to the nonrandom case two additional conditions are 
squired in order to obtain stochastic analogues of propmrfies ( 3 )  and (2) which 
have been considered in the intraduction. Hotvever, these restrictions arc 
satisfied by every monotone operator of praeticd importazzce. 

The first corvdilicrn sirnply states that taking expectation is interchangeable 
with application of T. 

Definition 3.2. A mapping T: C,[a, b] -+&[a, 63 is called E-corn- 
mtattatige if E ( T X )  - ?"(&X) is true for each X E C, [a, bj. 

The secand condition may be interpreted as folljows: the image of 
a "simple" pmrocess X,, may be v i e w d  as a deformation of XIA,  For each event 
A E& the "simple'>p~oeess XI, E C,  [a, b] is defined to be 

Definition 3.3. A mapping T: C,[a,  b] +B,[a,  b] is named s t ~ c h s -  
tically sinzgke If there exists a zeal-valued function a,: [a, b] -+ R such that 
(TXiA)  (t' W )  = aT (t). 1 A (UF), for each t E [aCa, b], is valid for every A E ,d. 

The operators mex~tianed in the introduction are automatically E-corn- 
mutative and stochastically simple; see ~ B O  Weba [ZI], p, 75. 

LEMMA 3-4. [i) I f  T is E - G O I ~ Z P ~ Z ~ C ~ ~ ~ ~ U ~ ~  then T maps the subspace C KG, b] infa 
BCa, bj. 

(ii) t er  T be monotofie, E-commutative .laud stochascicaliy simpk. Then, far 
cmk " f ~  C [a, b] and ~ a c h  rairldsm variable Z (w)  with 11 Z (a> 11 a < r;o, the image of 
the process f' (r , 60) = f ( t )  - Z (a) satisfies (7jf') ( t  , wj - (TJ) (2) - Z f w), 

Proof. fir l"f= T(EJr)- E [ T f )  lies in BCa, b] for every f ~ C : [ i a ~  b]. 
(i.i)l Starting with an indicautor variable 2 (w) .= 1, (w), A ~ d ,  the imquality 

-lf186~A14 6f(9- In(U))  d IlfII  in@^) implies 
- [ I f  il +.,.@I" l;J(uT) G (Tfi,l(c. 4 4 III'll 'a , ( t ) .  I.C@h 

Hence (T'& ( t  "u) - 0 if OI # A. Repeating the same argumnt with 9 -A 
instead of A we crbtain {TI ,)(t, m) = (g) ( t ) .  S A [w) bsause of 

If Z ( a )  is an arbitrary v~riable, wc may r;fionsr: a sequence Z,,(LU) of 
prhitive vstd.iab3es with lim I1Z ( r ~ )  WZ,~ (a) = 0. Tlms 

m e a l  

~~~ I1 12 -f2,r 11 = 0 
lI"ff2 

is true and the crsnril~uity of T yields (TfL)[t, w) =I (g)(o.Z(ur). 
The next lemma is dealing with a sloehastie vewiiun of the irrequaltity 

fg[ d TjfE whifnjich holds true for every f~ C [a, h],  For monotone hornamor- 
phisms an vwtor lattices this inequdity m;ky be verified immediately, Hawever, 
the stochastic analogue i s  not wi&nt since the A,-norm I).X(x, m)[{ ,  is rlikrent 
from the absolute vdue IX(2, @f, 



LEMMA 3 5  ;Let T:  C, [a, bJ + B, [a, b3 be monotone, E-cowmutative and 
st~chc~stieadly simple, Then (TX),!  d T(XII) .fix+ each X E CLa [a,  bJ, 

P r  oaf. Hold OE La, b] fixed. 
(i) Define a mapping p,: C[u,  b3 -+ R by r;o,Cf*) = (g)(t). 

-;y, is a bounded Zillear func~o~zat. an C[a,  bl ;  therefore, the &esz 
representation theorem guarantees the existence of ii function q,: [a, bj -+ R of 
bounded variation such that rp, can be expressed as a Stieltjes integral 

By manotonicity, cl, can be assumed to be asndecrmixlg. 
(ii) The nzapgngs @$, !Pt: C,[a, b] -+1;,(52, d,  P), being defjned by 

aad fY,(X) = (TX) ( t ,  a), are bounded line= operators extending rp,. Since 4, is 
aondecreasitpg, we gee 

Furthermore, if Z(mJ is a random vakblle with \/Z(co)ti, < m and 
f~ 12' pa, b], then the processfZ (s, cu) -- f ($1 - Zfro) sa~sfies @, (fd .= fjbf f) '2 [to) 
and ?u, (fi) = "ul. (f) - 2 (a) (see lemma 3 -4 ($1. Consequei~tly, Br, and "P, coincide: 
on the subset Da [a, b]* where 

But D, [a, b] is derrse in C, [a ,  bl (see, e.g, BaurfsaE &S]). Thus 
@g ( X )  - Yi (X) for eaeh X E Gi2 [a,  b]. 

(iii) Finally, we obtain 

C ~ R ~ L L A R Y  3.6, The aDvnr I /  TI1 of a maaotorze, E-comutatiw arid stacks-  
tielzliy simple operator J" .~ati~$es 11 Tll = l w s [ l .  

Proof. For eaeh X E C,, &, 63, Xll (t) = IjXiZ, tll)[lz % IIXII. 
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Since T maps the eonstant function [I XI/ on ][XI3 a ,  (t) ,  lemma 3.5 gives 

4. 'f"hs rate of convergeace. Bounds for the rate of convergence wiil stern 
from theorem 4.1 which generalizes m~ults for monotone approximation of 
detcrmbiskic functions to the stochastic context. In the sequel the functions 
fO3fl fz E C [ai b] are defind ta be f0 l t)  .= 1, f, ( E )  = t, f2 (t) = tZ and for each 
fixed C, E [a, b] the symbol h, stands for the function 

THEOREM 4-1. ASSMME thag T: CQ [a, b] -+ BQ [a, b] 13 a M Q ~ O ~ Q E ~ ?  

E-comnrsutative and stochastica fly simple opera ticvr, Then, far eaeh X E C, [a, b] 
and each 6 > 0, o w  can conclude that 

Proof. Hold t , ~ [ a ,  b] fixed, If t ~ [ a ,  b] i s  given with It--tQ/ r 5, we have 

Therefore, the procas Y;, ( t ,  a) = X ( t ,  IU) - X (tQ, m),fO (z) satisfies I:,),, si 
q (X; 6)  * (jb -i- h,). Since IF is monetaxle, we obtain T((Y;,),,) & q ( X ;  8) x 
x CV0 +6-'- Th,,). 
Ey lemma 3-5, (T&o)Il 6 q(X; G).(go+IG-Z.Thtp). The specid case t .= e, 

and the relation [TY;,)(t, us) -, (TX)(t, o) --X (to, su)*{vo)(4 (lemma 3.4) yield 

S h a  to was; arbitrary, the ~up-mrm may be taken an both sides. Thus 

IIax-x* % I t  ?!(x; 8) '  SUP ((TO)C~)+~-'~(T~~(E)) 
rrfa.B] 

d 6)-{iilTf,ll +d-2. sup f(rh,)(lc)l). 
rsla,63 

'I& -f, E B [a, b] implies ItX* v, -XI G llX[] - 11 'I& -faj(. and the assertion 
i s  a eonsequence of I] TX -.XI[ g I1X. 7; - X ]  + fi TX - X fl . 

C o ~ e ~ ~ a a v  4.2. Cottsr'der a squencu "I ;:f monotone, E-commacfative and 
sioelzastkally simpi!e opRators. If 6 ,  is a seqagaee 01 positiw seai numbers 
satigying sup h,) (t)! G ylS: fa7 solr-se cnnst~a~rr y 3 0, than 

rHaA 



In pmticular, the convergeme Em IlX - x.X 11 = 0, n -, 00) can be msamed 
for each X E CQ [a, B1 provided lim 11 f- T,f 11 == 0, PZ -+ m, laas been vw(fied jbr 
each j r 4 Y O * f I * f f 2 ) *  

Co~oUary 4.2 may be used as follows. First, it must be decked if 
wsonvergenGe occurs for the three '"test functions" fo , fx, j', . Then the rate of 
convergence dbr XE CC, [a, b] is detemined by the expressions sup I(T, hJ ft.)[, 
t e[a,  b] ,  and the smoothness of X beiug measul-ed in terns of its stschastic 
modulus of continuity. For vadous sequexleEs of monotone operators, bounds 
for sup l[T, h,) (t)[, 8 E [a, b], cm be found, e.g., in DeYore [7]; typical squeaca:~ 
are Jb, = a-' or 8, = n-li2. (The operators considerd in the literature are 
defined an C [a, b] rather than oa 6, [a, b] and usually admit aepresenta tions 

.with fixed points t , ~ L a ,  bj and presc~bed functions a,, K,, K , .  A process 
X E  Csa [a, b] is then approximated by T X  on the tacit understanding that we 
m dealing with the obvious extensjam - 

k ts 

(TX) (f, fol = B, @) - XCt,, 03) or ( T X )  (2, o) -- [ K l  (s, t) X(X2 (s ,  if), m) ds, 
k = l  a 

where the intkgrd is to be inteqreted as stmhas~c Riemanu integal in the 
L2-sense. Note: that both rep~sentations guarantee Ec~mmutativiQ and 
stochastic simplici~.) 

It will always be m~ssumed ia the sequel that 9", is; a sequence of ogeaators 
satisfying the conditions of carallaxy 4.2 with l h 6 ,  -- 0, n 4 m. For 'can- 
venienee, 'F, fO . f ,  is a l s ~  assumed which holds true for many moncntom 
operators. Settiflg f l -  1 i - 7  we get /IX - X ([ B 8.4 [X ;  an) and 
lirn q ( X ;  6,) - 0, rz + w, for each X E C, [a ,  bJ, thee th i  quantiti~s f l  and 8, 
have: been determined, wc must cxlnsider q{X; &r,) w&ch depsads only an the 
autoccrvadmce strtxeture af the process utlae~ con~ideralbion, 

In the lolllowing sectinns three app~cations we dbcassed; other problems 
may lx treated similarly. 

5 Dkredza~on 0% s3a6ionary time series d t h  t m d .  Let X be a time series 
in continuous time. Far comput;ttional purposes, some digeretized version d 
X must always be used arid the quas~on arises whether it is possible to specify 
bounds for the discl-etization error in order to controI the inevitable bsw of 
infarmation. 

A standard madd for W is the faUowiagt X allows rr dacampositian into 
sr nonrato~hatic trend component f and a weakly statisnary stochastic 
cornpolrent with mean value function (Et)(t) = O, a e t G B, and auto- 
~ovariance: ~ X I C ~ O I P  Kt (z), - (b - a) % s < (b - a). Smoothness of K,: at the 
origin tviU be expressed in kerns of the Local modulus of conGnuity 
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q*(K,;S)=sup1K5(~)-Kc(rr3;F=K,(0)-  id aEKgi(.e), O d 6 f  6-a,  
I t l C b  O I t i d  

and diflerentiability of t i s  to be rrndmitood h the L2-sense. Furthem~re, the 
uninteresting case 6, > b-a may be exduded, 

THEOREM 5.  C Q I Z S ~ ~ ~ S T  the time series X (E, o) =. f ( t )  + t jr; m), t E [a, b], where 
the nonstachasliic trend $ is an ebmmt of G [a, b2 and the weakly statitnsry 
process Q lies in C,ra, b] ,  Then 

/IX-%XI1 6 a,-q( f ;  6,)1a2.J13..= with a, = pB'a2 = P-.J!% 
k;ff a d  are diferentiabb wieh f" E C [a, b] nnd E C ,  [a, b] ople obtains 

IlX-TX'll < ~ e x S , ,  w h r e  ril= p(!l f l \ l +  
Proof. The first inequality is a eoassaueloce of the relations 

sW; 6)6 r l ( f ;  6 ) + q ( C ; S )  q(t; 6 ) ~  
The diRrerentiab3iQ conditiom $eld q(9*; 83 g 11 f ' l i  8, a d  ensure that the 

second derivative of Kt exists and is cantinuhus on [ -(b -a), (b - a)]. The . 

semnd inequality follows by Taylor's theorem and K; = 0. 

6. SoJ~iag linear stacbslstl: Mers~~sll quaklaaas* Comider the formal 
stochastic differential quation 

e;Xh~(lt, a)+ ... +~~ 'X l ( t ,  m)- t -e ,=X[ t ,  w ) =  Y'@,  .w) 

with initial eonditiom X (a,*m) = %' (a, a) = . . . = XIM- lk (a, w) = 4 given seal 
numbers c, (nz & 1,c, tlC: et) and a fixed rime point a. 

The deri.vative T' (t., w) of the prowss Y(r, @ may not exist. Therefore, 
a pracess X (t ,  ar3) is caged zr. solu~ora of the equation if X (t,  w) satisfies the 
initial conditions as well as the integrated equation (in the LZ-seme): 

1 

c m .  .X@"'l~(f, @+ ... =+c,.X(i., LO)'~"C*.JX(S, S L ) ) ~ S = =  Yft, 1~)--3T(i2, CO;). 
rt 

Many phenomena in pbysilps and enpeering sciences can be 
desefibed by this equation and the problem occur5 to compute the solution 
PI-ovided some,id'amatjc)n about. the for~irag function B i s  avagabls, TypicaHy, 
an approximation 4", Y af E" must be used where 9", I.' is based on observations 
from Y nt sertain time points. h dated problem i s  the fcrllot;ving: it is possible 
to vary the wefieient s c, , . , . , c, and far each set of c~e&~ients the sample 
path belzaviour i~>f the solution has to be studied. tn that case sampled versions 
of Y wodd he gnerated by simtlhtim. If the forcing function Yfr, a) has 
oxrhogamal inerments, a solution of tke dserential equation can be comtrac- 
ted on each interval [a, b].  

The symbol cL, will stmd .FOE 



THE~REM 6. A~sszim Y(t, 0.1) is an %;k-eontirluoee yocess with meail U ( I ~ U &  zero 
and lrrrthogo~ml increments a ~ d  suppose (TI Y) (t* cow) E C, [ta, I t ]  for each rz. Lst 
X (r, o), t E [a, m), be the unique salbttiorl to the above initial m l ~ e  puobFer~ and 
EEC 0 be Gree~r's function of the nssfsociated ma~zj.arzdanz homo~eraeoxrs initial whe 
probimt, 

Q) Set 

(s,x)ft, mE = ~ n m ' I x  y)(t l  m ) - g ( f - n f - ( m  F)(rr, a)+ 
f 

-t- J@'(s-s)'(T;,Y)(s, wlds, I:€[& E7.J. 
a 

Tlem [IXI-S,XII 6 cl-q(P; 6,) with 
b - a  

a=PqOc,,,t+ sup lu(s1l-t ,f fg'(4ldgS- 
BSsCb-a  0 

(ii) I '  m 3 2 ~ V r d  Y(w, w) is Icrz~wn, set 

( ~ : x ) ( t , ~ ) = - g ( r - a ) - ~ ( n , o ) + i g ' ( f - s ) - ( ~ ~ ) ( s , ~ ) d s ,  ttCo,bl.  
a 

Then 
b-a 

P r  a o f. The solution X {t, u), t E [a, a), is given Isy 
r 

x(k, a): = fg ( t - s )dV[s ,  m) 
U 

(see, e.g., Ash and G a m e r  C23). Sntegatian by parts yields 
1 

X(e ,  Lb)) = g(O).Y{t, ru)-g[t- iaj .  Y(n, ro)+ Ig ' ( r - -~)-  Y{s, O ) ~ S -  
W 

The assation fallows from g (0) = c,, and 

A s ~ l a r  ranlt  may be derived for arbitmry initial conditions, ' 
Provided ( IT ,  Y);ttS(s, w) depends on a finite number of observations from 

Y(s, co] - the only case rzf practical relevance - (q f , ( s ,  cci) admits a represen- 
tation 

Kfn) 



with tk$,, E [a, 51 and nonnegative functions @). Thus (5,: x) ( t ,  lo) becomes 
a Tinear cambhatioa sf the observations, 

with coefficients 
I 

dk,fiC1) z= e l m ' B A , r t ( t ) - ~  I t - a 3 . D k . o ( l i l ) +  j s F ( d i . - s ) ' D k , n C s ) d s =  
Q 

If rn m 3 and the left endpoint a is an observation poiat, say a - t,*,, , we 
obtain 

CE x3 (4 4 = z dk",n lo. YCtk,yl r 4 
k- 1 

where 
I 

df,lt[t) = -~I t -a l -b  f ~ ' ( t - ~ 1 ' D 1 , , , 1 ~ ) d ~  
0 

2 

and d2, (t] = 1 g' [t - 5 ) .  (5)  ds7 kc 3 2. 
il 

In many instznces Green% function g can be wlculated easily; the 
UhIenbeck-Omstein, process as a salution af a second-asder digerential 
equation mi@t serve as an example, 

T:be most important special case arises if the for~iag function Y is 
a Brownian motion with variance rr2. Then the moddus of contjnuity fvUils 
rl(Y;83= ox. 

The appraxhation S, X in theorem 6 sterns from an irllegral representation 
of the solution X in terns of the forcing function. Since the integral is 
a ~ontinuous trm~formation of llrc integrand, any integral relation between 
solutian and forcing function yidds an approximation S, X with 
lim HX--S,XII = 0, n -+ m. For instance consider a linear stochastic differen- 
tial equation where the coeffieieats ci = ci(t) are allowed to d ~ p n d  on time t .  If 
the roots of tile characteristic equation are bound& away from the imaginary 
axis, an integral sepresevleation may be obtained by application of the partial 
fmction e-xpansiotr method (Kaopmans [I 43, chap. 4). 

7. %murating EEistrjbntion~ af fu11cFiomaIS. In order to salve ereain problems 
dealing with ampit-icd pmcesses: or tes~npr of hypotheses one has Pa know the 
distribu~on of qo OX, where y.l is a fuirnctiand rigdined on a s~?t  of stoclnastia: 
grolcesstirs (see also Gfrrrssler and Stute [12f, Pollard [lti]). 

PE the &st~bution of rp e X Galanot be determined directly, one bas to fall 
back upan simul;ictions. Fss obtaining the: ayanptotic distributions of rank test 
statistics, Eplett [10, 113 used apgrexirnations x* of X to simulate the 
distribution of rp s X by simulating qr, o 2, , En Eplett gives a general treafis~ 



of this methad. Quan.titative results $or q~ o x ,  -+ tp io X (convergence isn 
distribution). are dierived uncle; the following assumptions: X is a Carasslan 
process on LO, 13 with mean value ~ r o  and P {X (r , o) tz C [0, 19) 4= 1, 
p: CLOT Itl-*R is  a esnhuorns fun~tional, md $, i s  Ibe mbimoem 
L2-approximation with respect to a prescribed subspace of Lm[0, I]. The 
Gaussian property and continuity of the sample paths me swt6ctive, and 
EpEett pses  the proMem to charaderize convergence for non-Gaussim 
processes p. 181). If T,X is substituted for an answer* can be given for 
c e r t ~ n  func~onalsIs, 

Usage of G X  has advpntages: X is allomd to begong to the large class 
C,[a> b], no smalytied proprties sf the s;nmpte.paths are rqqtuired and no 
assunrptions have to be made about the distsibutiem of X .  This may be. 
helpful; for instsaw, if cp o X is interpretd as test statistic, the Gawsian 
proprty of X is often satisfied merely asymptotidly, Another eiample is the 
PolloGng: X is a process with caaag sample paths which have jump 
discontinuities. Udortunately, there is also a drawback. Due to the norm 

functknds such its q~ o X = sup [ X  ( t ,  41, t E [a, b], cannot be treated. How- 
ever, it is possible to describe the rate of convergence far impo~ant, subclsisses 
d fu'unctionals, e,g, furrctionals related to Lp-noms. As an jfiustra~on, the case' 

is discusgd where k has a h i t e  totd variation V@) on [a,  313. Wewlt that X i s  
&'-~nthucrus, hence X2 is Lx-continuous on [a,  bf and @,OX is a anre& 
dehed wndom wluiable with finite expectatlotn being the L t - l ~ t  sf Stieltjes; 
sums, kt. (q,, denote the L&vy distanw batween the $istPibution 
functions of ys, o X and 9, s X. 

Zk~c~azau 7. Suppose X E CQ [a, b] f i r  each n, 9"llea 
. + 

liln pp,o T , X  = phaX 
n-tm 

is ucalid in the L1-sense &d the Lduy distance sari@es L: (p,, %) 4 i< a. ?J (X; 8,J9 
whre  ct = 2p. Y(l8). SlXil. 

~ r b o f .   or each XEC,C~, b] one obt.ins 



Sinw jo = qfD has beell assumd, carallary 3.6 gives ]IT,/] - I[aT,,tl - I. 
Therefore, E jcp, o X - q ,  o "jr, XI G a q ( X ;  6,). Hold 8 E R fixed, Then 

is [rue for arbitrary E r 0. 
By Markov's inequality, 

a r~ (X; $3 = 0 implies Ln (p,, X )  = Q and if a q (X; 6,) is positive, the 
assertion folows by setting E = . This completes the proof. 

Again, consider the special case 

with nrlnnegati~e fuctisns D,,,(t) and obs~mation points c,,,E [a, b]. Then 
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