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Abstract. The rate of convergence of monotone approximation
procedures for stochastic processes is studied. Several applications are
discussed: discretizing time series, constructing solutions of linear
stochastic differential equations and simulating distributions of con-
tinuous functionals,

1. Introduction. Approximation of stochastic processes has been studied
under. various aspects, e.g. convergence of empirical processes with cadlag
sample paths (Billingsley [4], Génssler and Stute [12], Pollard [16]), simulat-

ing functionals of continuous Gaussian processes (Eplett [9]) and approxima- -

tion of weakly stationary random processes by convolution processes (Splett-
stosser [20]). According to different objectives, the results are based on quite
different assumptions about the underlying processes and approximation
procedures.

It is the aim of this paper to derive quantitative results on monotone
approximation of stochastic processes, i.e. approximation by operators preser-
ving some order relations. The class of monotone methods includes linear
interpolation, approximation by step functions, interpolation with normalized
B-splines and approximation by linear integral operators with nonnegative
kernels. Approximation by a sequence T,, T, ... of monotone operators is
advantageous because the asymptotic behaviour of the approximation error is
lucid.

For the moment let f(f) be a continuous function defined on a closed
interval [a, b] < R. Then the following properties are well-known:

(1) If, for n — oo, im (T, f}(#) = f(t) (in the sup-norm) has been proved for
the “easy” functions fo(t) = 1, fi () = t, f5(t) = %, then lim (T, f)(t) = f(¢) is

already ‘true for each f (t)eC[a, b]. mE
(2) The rate of convergence for arbitrary f(f)e C[a, b] can be specified
provided the rate of convergence is known for f,(z), f; (f) and f, (1)
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Hence it suffices to check three “test functions” only. (There is an extensive
literature on monotone approximation of nonrandom functions, and there are
many extensions to more general function spaces than C[a, b]. Important
results are given by Anastassiou [1], Berens and Lorentz [3], Censor [6],
DeVore [7], Donner [8], Hahn [13], Mond and Vasudevan [15], Roth [17],
Scheffold [18], Schempp [19], Wolff [22]. Clearly, this enumeration is by no
means complete.) Under mild additional assumptions property (1) has been
established for stochastic processes by the author [21] while generalizations of
property (2) are treated in this paper. Several applications are discussed:
discretizing stationary time series with trend, constructing solutions of linear
stochastic differential equations and simulating distributions of certain func-
tionals of non-Gaussian processes. The last problem originates from Eplett [9].

2. Basic definitions. Throughout the text X (¢, @) stands for a stochastic
process on a probability space (Q, o/, P) with the ‘closed interval
[a, b] € R, a < b, as parameter set and state space (R, ), where & denotes
the o-field of Borel subsets of R.

Sums, products etc. of stochastic processes are defined pointwise and the
natural ordering X < Y iff X (¢, w) < Y(t, w) for each te[a, b] is used. (It will
not be distinguished between equivalent processes which differ only with
probability zero for each te[a, b].)

The vector lattice of all processes with bounded second moments
IX (¢, o), = (E|X (t, ®)])*/* is defined to be

Bgla, b] = {X: sup [|X{t, w)l, < oo}
tefa, b}
and becomes a normed vector lattice by means of the norm
X1 = sup | X(z, ).
tefa,b]

The space of L*-continuous processes, C, [, b] = C([a, b], L*(Q, <, P)),
where [a, b] is endowed with the natural metric, is a linear sublattice of B, [a, b].
The spaces B[a, b] and C[a, b] of nonrandom bounded and nonrandom
continuous real-valued functions may be embedded by identifying a nonstochas-
tic function f(f) with the degenerate process X ,(f, w) = f(t), te[a, b], wel.
Note that for every XeB,[a, b] (XeC,[a, b]) the mean value function
(EX)(t) = E(X (t, w)) and the “norm function” X () = || X (¢, w)| , necessarily
lie in B [a, b] (C[a, b], resp.). Finally, smoothness of a process X € B, [a, b] is
expressed in terms of its stochastic modulus of continuity:

n(X; 9= sup |X(t;, )Xt o), 620,

t1.82efa.b]
i1 —tz] €8

3. Monotone operators from C,[a, b] into B,[a, b]. We begin with

Definition 3.1. A bounded linear mapping T: C,[a, b] - B,[a, b] is
called monotone if X = 0 implies TX > 0 for each XeC,[a, b].
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On the contrary to the nonrandom case two additional conditions are
required in order to obtain stochastic analogues of properties (1) and (2) which
have been considered in the introduction. However, these restrictions are
satisfied by every monotone operator of practical importance.

The first condition simply states that taking expectation is interchangeable
with application of T.

Definition 32. A mapping T: C,[a, b] — B,[a, b] is called E-com-
mutative if E(TX)= T(EX) is true for each XeC,[a, b].

The second condition may be interpreted as follows: the image of
a “simple” process X ; , may be viewed as a deformation of X, ,. For each event
Aeof the “simple” process X, eCq[a, b] is defined to be

: 1, wed,
de(t,ﬂ))— lﬂ(w)m{ﬂs (IJ$A
Definition 3.3. A mapping T: Cyla, b] — B,[a, b] is named stochas-
tically simple if there exists a real-valued function a;: [a, b] — R such that
(TX, )¢, @) = arp(t)-1,(w), for each te[a, b], is valid for every Aes/.
The operators mentioned in the introduction are automatically E-com-
mutative and stochastically simple; see also Weba [21], p. 75.
Lemma 3.4. (1) If T is E-commutative, then T maps the subspace C [a, b] into
BJa, b]. g
(i) Let T be monotone, E-commutative and stochastically simple. Then, for
each fe C[a, b] and each random variable Z (w) with | Z (w)|, < oo, the image of
the process f,(t, w) = f(t): Z(w) satisfies (Tf;)(t, w) = (T (£)* Z(w).
Proof. (i) Tf = T(Ef) = E(Tf) lies in B[a, b] for every feC[a, b].
(ii) Starting with an indicator variable Z (w) = 1, (w), A € &, the inequality
~1f 1 14@) SO 1,(@) < [£]-1,(e) implies
=S ap (@1 ,(0) < (T )&, @) < || S]] ar(0) 1 ,4(w).
Hence (Tf; )(t, w) = 0 if w¢ A. Repeating the same argument with Q-4
instead of 4 we obtain (Tf )(t, ) = (Tf)(t}- 1 ,(w) because of

(TNH(e) = (TN, ) &, @) +(Tf,,_ )2, ).
If Z{w) is an arbitrary variable, we may choose a sequence Z,(w) of
primitive variables with lim |Z(w)—Z,(»)||, = 0. Thus
. R~*o0
lim ”fz“‘fz,,” =0
is true and the continuity of T yields (Tf,) (¢, ®) = (Tf) (t)- Z ().

The next lemma is dealing with a stochastic version of the inequality
|Tf1 < T|f] which holds true for every fe C[a, b]. For monotone homomor-
phisms on vector lattices this inequality may be verified immediately, However,
the stochastic analogue is not evident since the L,-norm [ X (¢, w)|, is different
from the absolute value | X (z, w)l.
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Lemma 3.5. Let T: Cyla, b] — By[a, b] be monotone, E-commutative and
stochastically simple. Then (TX), < T(X) for each X eCgq[a, b].
Proof. Hold te[a, b] fixed.
(i) Define a mapping @,: Cla, b]—>R by ¢,(f) = (T)().
-, is a bounded linear functional on C[a, b]; therefore, the Riesz
representation theorem guarantees the existence of a function g,: [a, b] — R of
bounded variation such that ¢, can be expressed as a Stieltjes integral

@ (f) = I f(5)dg,(s).

By monotonicity, g, can be assumed to be nondecreasing.
(i) The mappings @,, ¥, Cyla, b] — L, (8, o, P), being deﬁned by

?,(X) = IX (s, w)dg,(s)

and ¥, (X) = (TX)(t, w), are b@unded linear operators extending ¢,. Since g, is
nondecreasing, we get

b
10,01, < [I1X (5, w)ll; dg,(s).

Furthermore, if Z(w) is a random variable with [Z(w)||, < oo and
feCla, b], then the process f5(s, w) = f(s) Z (w) satisfies &,(f) = &,{f) Z(w)
and P,(f,) = P,(f)* Z (w) (see lemma 3.4 (ii)). Consequently, @, and ¥, coincide
on the subset D,[a, b], where ‘

Dyla, b] = {XeCyfa, b]: X(t, )

&

= Z fi(t)'z‘k(m}*ﬁéﬂﬁa! b}v “Z!c(mﬂz << 00, ﬂEN}

But Dg[a, b] is dense in Cgyla, b] (see, e.g, Bourbaki [5]) Thus
&,(X) = VP,(X) for each XeCy[a, b].
(ii)) Finally, we obtain

b -
WTX)(, o), = 18,0, = |[ X (s, ©)dg, ()]
< JIX (s, o)l;dg,(s) =@ (X|g) (TX ) ).
CoroLLary 3.6, The narin IT| of a monotone, E-commutative and stochas-

tically simple operator T satisfies |T|| = {lazl.
Proof. For each XeCy[a, b], X (1) = | X (¢, 0)l, < | X].
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Since T maps the constant function | X| on | X a(z), lemma 3.5 gives

ITX] = sup (TX), (1) < sup (T(X)(®) < sup |X] az(®) = lagl-[X].

tsfa,b] vefa,b] tela.b]
Conversely, | Tfoll = llazll - | foll for fo(t) = L.

4. The rate of convergence. Bounds for the rate of convergence will stem
from theorem 4.1 which generalizes results for monotone approximation of
deterministic functions to the stochastic context. In the sequel the functions
Jo. J1, f2€Cla, b] are defined to be f,(t) = 1, f;(t) = ¢, f,(t) = t* and for each
fixed ty€[a, b] the symbol h, stands for the function

b, (@) = (f (O —to fo @) = (t“f“ to)%.

THeorem 4.1. Assume that T: Cgla, b]— Byla, b] is a monotone,
E-commutative and stochastically simple operator. Then, for each X e Cy[a, b]
and each 6 >0, one can conclude that

1X—TX| < 1X] - 1 fo— Dol +1(X; 8)- (1ol +872- sup [(Th)@)).

tefa,b]
Proof. Hold ty€[a, b] fixed. If te[a, b] is given with |t—¢,| > &, we have

1X (2, @)= X (to, )l < (X5 8) (1+67 1|t —1ol) < (X5 8)-(1+672- by, (1))

Therefore, the process Y, (£, @) = X (t, w)— X (¢,, w)-f, (¢) satisfies (¥}, <
n(X; 8)-(fo+97% h). Since T is monotone, we obtain T((Y,),) < 7(X; 6) x
x{(Tfy 4072 Th,).

By lemma 3.5, (T'Y, ), < n(X; 8)-(Tfy+6~2- Th,). The special case t = t,
and the relation (TY,)(t, w) = (TX)(t, w)— X (t5, @) (Tf,)(t) (lemma 3.4) yield

TX) (o, @)= X (20 @) (Tho) (o)l < 1(X; &) (Tfo)(eo)+6™2+(Thy ) (5o)-
Since t, was arbitrary, the sup-norm may be taken on both sides. Thus
ITX —X - Thll <5(X; 8)- sup (Tfo)(®)+ 62 (Th)(t)

tela,b]

<n(X; 3 (ITfoll +672 sup NTh)()]).
tefa,b]
-~ Tfy—foeBla, b] implies | X - Tf,— X|| < | X| - | Tf, —foll, and the assertion
is a conmsequence of |[TX—-X| < | X Tf—X|+|TX-X " Tf,l.

CoroLLARY 4.2. Consider a sequence T, of monotone, E-commutative and
stochastically simple operators. If §, is a sequence of positive real numbers
satisfying sup [(T, h)(0)] < y62 for some constant y = 0, then

tefa, b}

IX=T, X1 < IXI [ fo= T Lol +U T Sl +9)-n (X5 8,)
is true for each X eCg,la, b].

8 ~ Probability 11.1
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In particular, the convergence lim | X — T, X|| = 0, n — oo, can be assumed
for each XeCqyla, b] provided lim || f— T, f i[ = (), n — o, has been verified for

each fe{fg,fufz}

Corollary 4.2 may be used as follows. First, it must be checked if
convergence occurs for the three “test functions” fy, f;, f;. Then the rate of
convergence for X e C,[a, b] is determined by the expressions sup (T, h)(t)l,
te[a, b], and the smoothness of X being measured in terms of its stochastic
modulus of continuity. For various sequences of monotone operators, bounds
for sup [(T; h){(1)l, te[a, b], can be found, e.g., in DeVore [7]; typical sequences
are &, =n"1! or §, =n"'2 (The operators considered in the literature are
defined on C[a, b] rather than on C,[a, b] and usually admit representations

(Tf)(t)';k‘; D) f(t) or (INW=[K;(s t)f(K,ls, t)ds

with fixed points 1, e[a, b] and prescribed functions D,, K,, K,. A process
XeC, [a, b] is then approximated by TX on the tacit understanding that we
are dealing with the obvious extensions :

b

(TX)(t, w) = E D (1) X (t, w) or (TX)(1, w) = fK (s, 1) X (K,(s, 1), w)ds,
~where the integral is to be mterpreted as stochastic Riemann integral in the
L2-sense. Note that both representations guarantee E-commutativity and
stochastic simplicity.) ,

It will always be assumed in the sequel that T, is a sequence of operators
satisfying the conditions of corollary 4.2 with limd, =0, »— co. For ‘con-
venience, T,f, =f, is also assumed which holds true for many monotone
operators. Setting f=14y we get [X-TX|<pn(X;4,) and
limy(X; d,) =0, n— oo, for each XeCy[a, b]. Once ‘the quantities # and &,
have been determined, we must consider 5 (X; é,) which depends only on the
autocovariance structure of the process under consideration.

In the following sections three applications are discussed; other problems
may be treatéd similarly. ”

5. Discretization of stationary time series with trend. Let X be a time series
in continuous time. For computational purposes, some discretized version of
- X must always be used and the question arises whether it is possible to specify
bounds for the discretization error in order to control the inevitable loss of

information. -

A standard model for X is the following: X allows a decomp051tmn into
a nonstochastic trend component f and a weakly stationary stochastic
component ¢ with mean value function (E&(1)=0, a<t<b, and auto-
covariance function K,(1), —(b—a) <7 < (b—a). Smoothness -of Kéf at the
origin will be expressed in terms of the local modulus of wmmmty
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n*(Ky; 8) = sup |K (1)—K,(0)} = K,(0)— inf K,(z), 0<d<b—a,
Jdl=a , LESES ]
and differentiability of £ is to be understood in the I2-sense. Furthermore, the
uninteresting case , > b—a may be excluded.

THEOREM 3. Consider the time series X (t, w) = f(t)+ E(t, o), te[a, b, where
the nonstochastic trend f is an element of C[a, b] and the weakly statzanary
‘process & lies in Cqpla, b). Then

IX=T,XI <oy n(f; $)+ay /1" (Kg 8  with o= p,a, = /2.
If f and & are differentiable with '€ C[a, b] and & € Cy[a, b] one obtains
I1X —T, X|| < ad,, where « = B(| f'll +/IKE]).

Proof. The first inequality is a consequence of the relations
n(X; ) < n(f; 8)+n(&; 8) and n(&; ) < /29* (K 9).

The differentiability conditions yield #(f; d,) < | f’| - §, and ensure that the
second derivative of K, exists and is continuous on [—(b—a), (b—a)]. The
second inequality follows by Taylor's theorem and K3(0) =0

6. Solving linear stochastic differential equatioms. Consider the formal
stochastic differential equnation

Cp X, @)+ ... 4y X (t, @) ey X (t, ©) = Y' (¢, @)

with initial conditions X (a, @) = X' (@, ©) = ... = X" Y (g, w) = 0, given real
numbers ¢; (m > 1, ¢,, # 0) and a fixed time point a.

The derivative ¥'(t, ) of the process Y(t, ®) may not exist. Therefore,
a process X (f, ) is called a solution of the equation if X (¢, w) satisfies the -
initial conditions as well as the integrated equation (in the L*-sense):

" ¥
C' X0, )+ ... ey X (1, @) +cor [ X (s, w)ds = Y, w)—Y{a, o).

Many phenomena in probabﬂiéﬁc physics and engineering sciences can be
described by this equation and the problem occurs to compute the solution
provided some information about the forcing function Y is available.. Typically,
an approximation T, Y of Y must be used where T, Y is based on observations
from Y at certain time points. A related problem is the following: it is possible
to vary the coefficients ¢, ..., ¢, and for each set of coefficients the sample
path behaviour of the solution has to be studied. In that case sampled versions
of ¥ would be generated by simulation. If the forcing function Y(¢, w) has
orthogonal increments, a solution of the differential equation can be construc-
ted on each interval [a, b].

The symbol c;,, will stand for

_fert, ifm=1,
ﬂ”""—‘{)3 if m=2.
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THEOREM 6. Assume Y(t, w) is an L?-continuous process with mean value zero
and orthogonal increments and suppose (T, Y)(t, w)e Cy[a, b] for each n. Let
X (t, w), te[a, o), be the unique solution to the above initial value problem and
let g be Green's function of the associated nonrandom homogeneous initial value

problem.
{i) Set

(S, X)(t, ) = ¢y, (T, Y)(t, @)—g(t—a) (T, Y)(a, w)+
+ ¢ t=9(T,V)(s, @)ds,  te[a, b].
Then |X—8,X| <o-y(Y;d,) with

b—a
a=f(cial+ sup lg@l+ [ lg'©)ds).

O€ssh~a o
(i) If m =2 and Y(a, w) is known, set
(SEX)(t, ®) = ~—§(z~a:3- Y(a, w)+ ;'g’{t—s)-(’f; Y)(s, w)ds, tela,b].
Then | ﬂ
IX —SEX| < o*-q(Y;5,) with o* = ﬁ~b§|g’(s)| ds.
Proof The solution X (i, w), te[a, o), is given by
X(t, 0= E?g(t—«s)dY(s, @)
(see, e.g., Ash and Gardner [2]). Integration by parts yields
X(t, w)=g(0)- Y{t, w)—g(t—a) Y(a, w)+ }g'(tws)-}"(s, w)ds.
The assertion follows from g(0) = ¢,, and

i g t—9)-(¥(s, 0)—(T, Y) (s, w))ds],

~

< flg'(t—=s)ds- sup |Y(s, @)—(T, Y)(s, o).
a axgst
A similar result may be derived for arbitrary initial conditions.”
Provided (T, Y)(s, w) depends on a finite number of observations from
Y(s, @) — the only case of practical relevance — (T, Y)(s, ») admits a represen-
tation
Kim}

{T;a ”’(Sa ﬂﬂ) = L Dk,ﬁ(s)’ Y(tkin! CU)

k
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with ¢, ,&[a, b] and nonnegative functions D, ,(s). Thus (S, X} (¢, ) becomes
a linear combination of the observations,
Kiny

(Snx)(ts w) = }: d&,n(t)' Y’(tk,m ﬂ)),\
k=1

with coefficients
dfc,,n {t) =Cym” Dk.u(i) —4g (t——ﬂ) ' Dk,n (ﬂ)"ﬂ' j g" (Z “S‘} . 'Dk,n (3) ds.

If m > 2 and the left endpoint a is an observation point, say a = t, ,, we

obtain
Kin)

SFX)(, o) = Z di, (1) Y{ty n» )
k=1
where

dia@) = —gt—a)+ [g'(t—35) Dy ,(s)ds

i
and  dg,() = [¢ (t—3) Dy, (ds, k>

In many instances Green’s function g can be calculated easily; the
Uhlenbeck—Ornstein process as a solution of a secnnd—order differential
equation might serve as an example.

The most important special case arises if the forcing function Y is
a Brownian motion with variance ¢%. Then the modulus of continuity fulfils

7(Y; 8,) = 6./,

The appmxmmhon S, X in theorem 6 stems from an integral represemmtmn
of the solution X in terms of the forcing function. Since the integral is
a continuous transformation of the integrand, any integral relation between
solution and forcing function yields an approximation §,X with
lim[|X—§,X| =0, n— co. For instance consider a linear stochastic differen-
tial equation where the coefficients ¢; = ¢;(t) are allowed to depend on time ¢, If
the roots of the characteristic equation are bounded away from the imaginary
axis, an integral representation may be obtained by application of the partial
~ fraction expansion method (Koopmans [14], chap. 4).

7. Simulating distributions of functionals. In order to solve certain problems
dealing with empirical processes or testing of hypotheses one has to know the
distribution of ¢ o X, where ¢ is a functional defined on a set of stochastic
processes (see also Génssler and Stute [12], Pollard [16]).

If the distribution of ¢ c X cannot be determined directly, one has to fall
back upon simulations. For obtaining the asymptotic distributions of rank test
statistics, Eplett [10, 11] used approximations X, of X to simulate the
distribution of ¢ 0 X by simulating g o X,. In [9] Eplett gives a general treatise
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of this method. Quantitative results for poX, -upoX (convergence in
distribution) are derived under the foﬂowmg assumptions: X is a Gaussian
process on [0, 1] with mean value zero and P{X(t, w)eC[0, 1]} =1,
@: C[0,1]—-R is a continuous functional, and X’.,, is the minimum
L2-approximation with respect to a prescribed subspace of L*[0, 1]. The
Gaussian property and continuity of the sample paths are restrictive, and -
Eplett poses the problem to characterize convergence for non-Gaussian
processes ([9], p. 181). If T, X is substﬂuted for X > 8N answer can be given for
. certain functionals.

Usage of T,X has advantages: X is allowed to belong to the large class
Cyla, b], no ana.iytmal properties of the sample paths are required and no
assumptions have to be made about the distributions of X. This may be
helpful; for instance, if poX is interpreted as test statistic, the Gaussian
~ property of X is often satisfied merely asymptotically. Another ei:agnp]e is the

following: X is a process with cadlag sample - paths which have jump
- discontinuities. Unfortunately, there is also a drawback. Due to the norm
X1 = sup [X (¢, 0)],
tefu,b)
functionals such as po X = sup|X (t, w)|, te[a, b], cannot be treated. How-
ever, it is possible to describe the rate of convergence for important subclasses
of functionals, e.g. functionals related to LP-norms. As an illustration, the case.

. b
o0 X = [X*(t, w)dh ()

is discussed where h has a finite total variation V(h) on [a, b]. Recall that X is
L*-continuous, hence X? is L'-continuous on [a, b] and ¢,0X is a well-
defined random variable with finite expectation being the L'-limit of Stieltjes
sums. Let L (¢, X) denote the Lévy dlstance hetween the dasmbutmn
functions of @,0X and ¢,0T X.

TueoreMm 7. Suppose T,X eCgpla, b] for each n. Then

lim @0 T, X =g,0X

is valid in the L-sense and the Lévy distance satisfies L (@,, X) < a-n(X; d,),
where o= 28-V(h): | X|. :

Proof Fm‘ each XeCqla, b] one ohtmns

Elgyo X —0,0T, X| = E|[ X*(t, &) (T, X (t, w)dh (o)}
< V() sup EIX2(t, o)—(T,XP (¢, )

tefnb] :
<V IX+TX| |1 X-T,X]|.
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Since f, = T,f, has been assumed, corollary 3.6 gives [T || = [las | = L.
Therefore, E|p,0X —@,0 T, X| <o y(X; J,). Hold deR fixed. Then

Plp,oT,X <a—&—Plp,0X—p,0T, X| Z¢)
<P@,0X <A< P(p,0T,X <a+8)+P(9,0X~0,0 X > )

is true for arbitrary &> 0.
By Markov’s inequality,

Plo,oX—goT . X|ze) <& LV an(X;d).

o (X;8,) =0 implies L, (¢, X)=0, and if a-n(X;4,) is positive, the
assertion follows by setting & = \/o'n(X; 8,). This completes the proof.
‘Again, consider the special case
Kin}

(LX), o) = kzl Dy, (1) X (8, @)

with nonnegative functions D, ,(t) and observation points t, ,€[a, b]. Then

- K{n) Kin)

‘iph OT;X = E Z dk.l,n .X“k.m (ZG‘)” X(il.ul Cu)

k=1i=1

is bilinear in the observations with coefficients

b
i g = [ Dyu () Dy, () dh (2).
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