PROBABILITY AND MATHEMATICAL STATISTICS Vol. 11, Fasc. 2 (1990), pp. 271–285

ON DENSITY OF A STABLE UNIFORMLY CONVEX NORM

Michał Ryznar

Abstract: Let $(E, \|\cdot\|)$ be a uniformly convex Banach space and assume that its modulus of uniform convexity $\alpha(\cdot)$ satisfies the condition: $\alpha(\varepsilon) \ge const \cdot \varepsilon^n$, $n \in N$. We prove that for every stable symmetric measure μ on E the density of the distribution function $F_z(t) = \mu\{\|\cdot+z\| < t\}, z \in E$ is bounded on every interval (0, T), T > 0. Under some additional assumptions we extend the conclusion to the whole half-line $(0, \infty)$.

2000 AMS Mathematics Subject Classification: Primary: -; Secondary: -; **Key words and phrases:** -

THE FULL TEXT IS AVAILABLE HERE