PROBABILITY AND MATHEMATICAL STATISTICS Vol. 11, Fasc. 2 (1990), pp. 193–222

MÉTHODES DE CHANGEMENT DE TEMPS POUR LA CONVERGENCE EN LOI DES MARTINGALES

A. Touati

Abstract: Let $M = (M(t); t \in T)$ be a centred, square integrable martingale, indexed by T = N or $T = R_+$, whose predictible quadratic variation is denoted by $(\langle M \rangle(t); t \in T)$. The main problem we investigate is the study of the joint convergence in law, when $\lambda \to \infty$, of the processes

$$\left(\frac{1}{\sqrt{v(\lambda)}}M\circ\tau(\lambda t),\frac{1}{v(\lambda)}\langle M\rangle\circ\tau(\lambda t);t\geq 0\right),$$

where v and τ are two increasing functions. To solve this problem we use three technical tools (each of them having its one interest):

- a limit theorem for composed processes;
- a limit theorem for random change of time;
- a method of enlarging the probability space on which M is defined.

This approach looks to be efficient as far as the asymptotic behaviour of functionals of recurrent Markov or semi-Markov processes is concerned. Several examples illustrate the developed theory.

2000 AMS Mathematics Subject Classification: Primary: -; Secondary: -; **Key words and phrases:** -

THE FULL TEXT IS AVAILABLE HERE