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Abstract. Let (E,  \ \-I])  be a unjformly mnvex Banach s p m  sad 
assume that i ts moddue of nnirom convexity a(.) satislies the 
condition: @(E) 3 conat .en, @ E N .  We prove that for every stable 
ammetric memure p an E tlze density of the digtribution Cumtion 
F;@) = p { 11 + z!] < tJ1 2 E $ iS bonded on every intervat (0, QT% T z St. 
Under som additional assumptions we extend tbe conclosioa ta the 
wbole haK-!ine (5, w). 

1, hkrodrrctio~1. Let (E3 k1.11) be a separable Eanach sgzice, Consider 
B symmetric p - stable measure p 013 E, 0 p d 2. Seved  authors have proved 
that for z E E the distribution Tuntrtion Fz(t) = p Ex: /lx + z [I < c) is absolvrdy 
conhuous provided that z ~ s u p p g  (see [4], Dl, [213). Our aifn is to examine 
whether the density of F,(t) is bounded on (a, m). 

Ear the Gaussian case, ire, far p = 2, under various assumptions on E lhe 
answer to ous question is tiye, FOP example, when E ---- P, q > 1, \avitb 
the standard norm, Daviduu and Lgschitrt [Ci] proved that the density i s  
bounded, Recently their result: has been generaJind by Rhet and TaEagrand 
Cln to unifordy C Q ~ V ~ X  Bmacl~ spaces with moddus sf unifom convexity 
baying order aof pomr type. On the other hand, if 'this ~oraajtion is sligtrtly 
we&e~, i,e., the modulm of uniform convexity has order Mihere Q ( E )  --* ca as 
~ 3 0 ~  then the density may be aunbouaded. The eorsesponciing example has 
beem given on I' with a norm equiv~lcnt to the standard one (see [17]), 

Properties of" stable densities were i~~vestigated in a ne~mber of papers. For 
p - stable symmetric measure on 1" 1 I p -c 2, the boundednesx of the density 
was. established by Pap [I43 a d  Bmtkas and Pap C29, IKI the case of p - stabla 
; ~ ~ m r n e t r i ~  measmm, O ..r p < f ,  on arbitrary separable Banach spaces an 
irrtermting formula for the cjcnsity was proved by Levyandowski and %ak [10], 
This f m u i b  was cxtmded ts the p-stable case on I v f a r  1 g p < 2 
by %ak [24]. As a consequence we have tk20 bsundedness of the density 
folr O < p < l estauished in [19], Oxle miry wonder whether the density is 
always bounded. This is: nor so and apgrag~ate examples cverie constructed 
in [I&], [19]. 



Inn this paper we try to extend the above -n~entiond result of f ie and 
Talagrand ta the case of p - stable measus@, Q < p < 2. Hawever, we have not 
managed to prove the bourrAedr3ess on the whole R" but we have shown it on 
every interval ((0, TI, TER*. Assuming further con&bions on the nann and 
p we are able to extend our concluslan to the whale R', Far a m p l e ,  for P? 
q > 1% the density of the standard nam is bounded oa R4 whenever z =. 0. 

The main tool of our proofs is a represcntatlon aF symmetric stable 
measures as mixture of GELUSGE~ ones. Next, we apply ca:nrrespoaa&a;~.g, 
estimates for Gaussian measures obtained by Rbce and TaZagrand. We also rase 
some stopping time idea from C141, where it was sbown that the density is 
bounded in la. To see that our asump~oas  crZS1nat fse weakened we colastruict 
an appropriate example in lg3 1 11 q < 2, with aorm etfuivalent to the standl-di 
one. 

Another approach to our probhm was presented by Lifschitz and 
Smorodinn Ell.], In stdh8orr to the uniform sonvexiry conditions they assumed 
same s t r o ~ ~ g  digerentiability popcrties of the norm on E. Then, using 
a MaJliawin - ~ype  ~XcirIus they obtained not only the boundednes~ OF the 
density but also the exister~~e of further bounded derivatives of F,(t.), the 
number of tvhich depends on the number of derivatives of the norm. However, 
their result does not cover the case of F, 1 < q < 2. 

Pap hvestigated in [I51 the dependence of the density of P,(t) on z. Under 
the assurrrptions of Lifscbita and Smorodina he obtained the followi~g estimate 
of Fz(t): 

where m depmrls on the power of order of modulus of uniform mnvexity. For 
exampk, for EZ the ~ ~ z j ~ e s p ~ a d i ~ g  nt quais 1 (see C2j). 

We extend this result (with rn = la) ta thr: dass of spaees for which the 
power of order of modulus of unifum convexity equals 2. 

The m e ~ o d  of representkg stable xzleasures a3 mixtures of G m s i m  anas 
enables us; to eonclcrdc two additional regulmity properties of P,(Q which are 
valid far Gaussim WC'WSU~CS in general, That is, using the results of k d e  [I21 
and Tdrrgrzsd &22], rmpctively, we shew that under our convexity assmp- 
tions the function z -+ FJt)  is Gateau dzerentiable at m y  z E supp p and the 
frmsti~n t -+ l;",(r) is continuous on 42". 

2, P~e%'miratllplies;~ '1C"hroughaut the whoie paper, (E ,  If 11) denotes a separable 
Banach s;p;rce* Ect p be a symmetric p -stable meersure on E, 0 < p < 2. h nim 
featu~e of the mcaare J E ~  is thr2t it C B ~  bf: tqresanted as a mixture of Gaussian 
ones (see [97, C1.31): 

~ ~ P O ~ R C B N  1, Let (y,) be a se.yecence 01' Lid .  standard rra~nzal random 
aarniabkes ltsrsd kt (a,) be a sequence of i.i$. ratdom wriables with the exponet~tial 
diatribtktion with expectation one, Let rn = E, -I-- . . . +or,. dsmm that (gJ and [a,) 
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are irtdepersdent, The@ there exist a seqlilraeFece (&) of i.i.d. r n d a m  vectors 
ccmce~trated QQ the unit sphere of E inhpeladent of (r,) and (gi) and n positive 
eonsta:lant c(jtLE) S U G ~  that the series 

is cnnwrgenr a.s. cb~d has as law of p, 

For conve~encr: we assume that the sequenms (g,) and (ril 8) are defined 
on probability spaces (&I,, P,) and (IR,, P,), respectively, and Ei denotes the 
expedation with respect Ita P i ,  i = 1, 2. ]It i s  dear that for atmost a11 m E O, the 
series Z is eonvergeat P, -as. and the limit has ;a Gaussian law. We denote it 

Y w -  
Let H be a measurable subset of E. Then the  foillowing 0 -  1 Iaw due to 

Satenml. [21] holds: 

(2) P,  {a: ?,(HI 0) - 1 whenever p(.N) r 0, 

Hn the sequel we ::will use she folfawirrg graperties of Gaussian meawres: 

PROPOSITION 2. Let obe it Gaussian nzeasure on E and let z ~ s a r p p  p, 
(i) The mcapping x 4 G,(t) = 7 ( [ j ~ c  + * 11 < f) is Gsbteaux d~rere~zticsbk at z 

(Linde 0 2 3  
(ii) TIZE devlsity G:(E) o j  G,(c) is C O P ~ ~ ~ V U O . E ~ S  f ir  t > 0 (Talagaod [223). 

Let O d E < 2 and let 

We say that (15, IJ - 11). is unifirwly eRfsoex i f  a[sj O far E 3 0, and ettc) is called 
a M O ~ U I P S  01 u n f i r ~ n  cclnt1exity of E. 

Since no* we always assume, if it is not slated utbemise, Ellat (E3 II.Ij) is 
ua3ormIy canvex with noduIus of uniform convexity satisfykg the following 
condition: 

There exist a positive earntarat D and n e N  such that 

Far ex~mple, F with standard norm saki&es (3) with pz =. 2 FOP 1 < q g 2 and 
? I = ~ E N  61. n = = [ q ] + l  iEq4N for g 5 2 +  

3. The Garrssjmm c s ~ .  11.1 this section we bXlow t h e  methad of Rhee and 
Talapand [1;71 to give an estimate of the distribution fundim of s Gaussian 
norm. This estimate is basic in the sequel where propt:rtks of the distribution 
of a stable nem are considered, 

First we intrndu~z: some notation, k t  x i ,  , , ,, X~' ,E  E be a coltection of 
b e a d y  iatdqen&ienr vectom with 11 x i  [J = 1, t g i g 8, k r  E , = spm (x, , , . . , x,). 



By I l - t l ,  we denote the Euclidean norm on E ,  such that x,, .,., x, i g  an 
orthonormal system, Since E ,  is 11- dimensional, there exists a positive J such 
that 

I 4  Pltxllz. G Elxll* xfE1. 

For O < s < t  and P E E  let 

A,@, 9 == { X E E ~ :  s < ~Ex+YII G t )  

and 

PII@) =. inf{ljx+ylt, X E E ~ ) .  

Next, by .A we denate the Lebesg-ue newuse on E , ,  Let (gi) be a sequence of 
i,i.d, smdard normal random variables and let 0 < i, 6 A,-, Q . . 4 A,. 

Qur main purpose is to estimabk the EolIowing probabiEjty: 

P i s  < iixl-vll G t) - P ( x ~ A , i s ,  r)), 
where 

To be* BGith we rmd1 two lemmas f ~ o m  [173. For the proof of the 
second lemma a150 [4], 

LEMMA 3. kt N ( y ]  < t and let x,EE, with /lxy+yIl = Nb), Then @r 
x E AJs, t )  we !mar? 

(5)  13x -x,ll 4 C"t(1- t7'N(y))")", 

whme C = D- "l" and D appears ita (3). 

LEMMA 4, Let N ( y )  < s md k;"t Z E E ~  with [1zllz =f I. k t  B, = (u fR":  
x, -j- ua E A,($# 5 ) )  U R ~  let u, = inf B,, ea, = sup B,, Theva 

Bridnally, Rhee md Tdagand assumed that /lzjl - I, but for us rm is 
mlle cenvehljent to consider palar coordhtcs with respect to the Euelidmn 
unit sphere in Ei, i-c. S = {i[zB1, -- 1) .  

L 5. Let N(y) r; t .  Then 

(71 A(A,(s, t)] $ 2(6g-")"s,t"-t(t-s), 

, tvkaeve s, is ogunl to the nmsuw qf 4 - i ~  sugface of the Eut:lideur? unit halt 213 R"'. 
Proof. First assume that 2s-t  d N(y)  4 t. By (4) and (5)  we have 

A,(s, 1) c {XEE~: ( (x-%I /  4 ct(l - ~ - I N ( Y ) ) I C )  

G ( x E E , :  [jx-xylj2 G Gp- Ix (L- t  lNb))ljfl)v 



Therefore 

where rn,=X{n~E,:  llxlIz G 1) Gsn- 
To ~oasider the case N ( y )  < 2s- t we use the polar coordinates with 

mnt% xy, Let S = { z E E , :  1 1 ~ 1 1 ~  = 13 and bt 5 be the surface measure on S. 
Clearly, 5/51 = s,, By imqualities (4) - (6) we obtain the fouowiag estimates : 

.r (Cg-l)ll~-lj(t - N ~ ; . ) ) ( s - N @ ) ) - ~  ( t -s)$,  

9 z(Gp-"n"s,tR- l(t--s)* 

which completes the proof. 
NOW we sllse abk to estimate P (X E A y [ ~ ?  f)). Let 

R.(B = z (c (~JS; t ) - 'Ps ,*  

C~DRQLLAIP'I 6, Jf 11 y j/ < $st thera 

(8) P(X~A,fs,t)]g(A,p ..: d,)-1tR-texp(-s2(8n)-1A;;")%.j~)p)~-s). 

f j  y 3 $5, r h n  

(9) P ( X E A ~ ( S ,  t ) )  G ( ~ ~ . ~ * - ~ ~ r r ) - ~ t ~ - ~ ~ , @ ( i - ~ ) .  

Proof. Denote by EE the linear operator B: E ,  +El, Exi = &;'xi ,  Then 

(10) H ~ ( X E ~ ~ ~ ( S ~  t ) ]  - (21-....Amt2nc)"fz)-" e x p { - ~ ( I B x ( I ~ ) R f d x ) .  
Ay(x,0 

Assume that Ilylt < 3s. Skce /lx]/ < pz1plEix/29 X E E ~ ,  we g ~ t  for XEA~(S,  f] 

This, the m~rnate (3 and farrndil. (10) imply (8). IneqoaGty (9) follows &fe~%FBy 
fram (7) and f 10). 



Proof, Get p, denote the law of X By Fubini's theorem we have 

Applying the estimates (8) and 49) to the first m d  second integrals, respeetive1y, 
we obtain (1  1). 

The next proposition is a gemrallzation of the ~lesults of Pautauskas [I61 
and Davidov, 1,ifschitz f6 j  concerning the bchaviour of the density sf t h ~  
distribution, af the norm for a shifted Gaussian randam vector in Zp, Lp ((p 1). 

PROPOSITION 8, If Z is E-lialued sj~mmerric G~erssia~t oeclor ~vfiicfr is not 
cancmcrated OR a $nit& - djmemio)zcrl subspuc~ rhea f i r  e ~ r ~ j i  a E E the density oJ 
clg distrilsus-ion fat~ctt'ori7 C,ft) of [1Z+zit admits the following estinzate: 

where t32e coastants C,, C, depeyid only osrn tile cavari~l~ee of Z. 

Pr oofb It is well known that we may assume 

wbese (Ai )  is s deereasing positive sequenw of reals a d  xi are linearly 
Independent and of uorm one (see, e.g., 1333. Then writing 

J f z z d i x i g j  and V . = ~ l i x i g i + z ,  

by Corollary hand Chebyshevk inequality we get 

c;;(~) G Cn, ... . . ~ ~ ) - ~ ~ ( p ) t " - q ( e ~ ~ ~ , - t ~  f&nl-3 1r2j + q j j   PI^ 3 itjq 

a C,(A,, ..., A,, p, n)t2"-b(L, .  ...*A,)-%J,(P!EjlYHa-l 

where C, i s  some positive constant depending an A,, .... A,, an$ B.  By 
Fertziquek theorem, B jlZj1" -' < co and this ~ornpjletes the proof. 

Remark  9. Pauiauskas 1363 hbas shown that in I" (n = 2, 3, + .  ,) the pomcr 
a- 1 in ('12) is the best passibte. 



4. Wegsalsrity praprGe% of the cili&Ph$icm af the norm f ~ r  a stabEe: vaear. En 
this section we apply the estimates from the previous section lo deduce same 
psepeAies of the distribution uf the nom for a stalrfe vector. Iqs a main tool we 
use the series representailjion ETescdbed in Praposi~ion 1, Far the natation used 
in this seekion we refer to Section 2. 

etric p - stabb random vwtar. With the notatiou uf 
Pmpositicm 1 we can write 

For the sake of slmpIicity we take c = 1, 

10. Assuw that she linear span 0f supp S?a"(F;) is at lemr. 
n-dimensional. Then fhme exdt positive e, fl such that 

Pro of, Since Ifl V,, , , ., FP, are independent, we assume that V, is defind on 
a lprobability space (a,, P,) and Yzk',, . . ,, k/, are defined on a probability space 
CG4, B,). Let 

A, = ( I f l ,  . , .7 tr, are linearly dqendent) 

A,-,  = . . ,, are Iirlearly dependent) 

It: is clear that (13) is equivalent to P,(A,) < I. By Fubini's theorem we get 

%ITsw, by assumption the last inte?graad is less than oztc, and therefare 

w G ~ h  comp1etes the proof. 

Remark I I, If I$, . . ., &", satisfy. the condition under probabGty in j13), 
thea on the Lbear spraGe s p m d  by t;, . . ., yl wwc have f i  11 < 11 - 11, where 
11 - lAz is dcBned iPg t h ~  beginning of Section 3 far x, = 1",. 

Now, we are ready to famulate and prove the main result. Let z E E and 
let .F,[t) d e ~ ~ o k  the distribution function of 1IZ+ ale. 

TSEOREM 12. Under the ass~m-gti@?t of Le~nr~a: EU tka dmsity FZf$) of Fz(t)  
& bo~~tded  on eermy interzsral (0, 7"$, T;. 0. P f 2  'Eke fi?I10&1.~@ emas it is bounded 
on R": 



(a) E $3 of stable type p (I) sad z = 0- 
(b) pl - 2 avrd 1 s$ p < 2. Moreover, ia this case there exist: consrmts C, and 

C ,  Rependifig on Z mch that 

Remark  15. It was shorn in [I81 that under t;he aswnption fa} the 
density Fb(t) is bounded on. every intervd (2: w), Tr 4 without req~ring 
ufiferm convexity prapftles aaf E. Mareover, for 0 .< p < I i t  is known. that 
X"b(t) is always bounded oa R' (see [19]), For exmple, if E = EQ, $i 2 2, &en 
E satisfies (a), but tnxlfcsrrunat~ly we cannot drop the con&tion z = 0. Ira the 
case (b) we need 1 < y x 2 since then the value. of 1 - F,(t)  is small enozs* at 
i~fimity, P t  is worthwrfiile to n o ~ m  that we do not assume any d8erentiabllity 
properties of the norm X l . [ l .  So Co) covms the case of P - spaces, 1 < q .< 2, which 
does not follow from the papers of Lifscbitz and Smrrrodlista 1111 m d  Pap C15J. 

Proof of Theorem 12. Let m, = (k- l )n,  k 2 1, a d  let 

It is clear that z has a geornetdc distribution, and if i", /? are as in Lemma 114 
then 

%im for &xed (P'J and (6) the vwtors XK and are independent Gaussiaq we 
 an apply Coroilary 7. First, let us natiice that if z = k, then 

nerrsf~re, by Clsrollaty 7, for 0 8 < t we have 

(') For WE definition af "stable type" see f23.1. 



there exists a positive constant 6, -- C6(?& E~ fir p) sach that 

This provm the bomdedness on every interval (10, 93, T >  0. Moreover, 
Fz4t-) =. O(fN-') as $-+0. 

Since the case (a) was crampl~tely explained in Remark. 13, we prated to 
prowe (b). Thmfolre, we assume that rt = 2 and I < p 4 2. We do not consider 
p = E because this case is techically a. bit more camplieattt-d but the idei is the 
same. By (14) we have 

We try to estimate 36. Skm 

where EZ7 is  goma positive mnstant, 
Now, we deal with El. By Chebyslrevb inequality and by Anderson's type 

inequ5"lity for Gaussian measures [a], wc obtain 



Next, using HSilderk iineguafjty with 1 < p k  p and q' - (pr  - 1)-  ' p', we an 
estimate 

G (2R,(fi)ts-" CE,Tgp19,(r - k ) )  {is11 
L-l 

where C, and 6, are positive and finite and E I]ZIIp8 < ca by de Acorsta" result 
[I]. Mso, all the series appming in (153 and (36) are convergent so, when s--, f y  
hequalities (15) and (161 give the desired result. ' 

The rest of this section is devoted to studying other regularity propefli~s of 
+ F,(i). Namely, we grove that F,(t), as a function of a, is Gateaux differentiable 
at a31 .z E supp pC1, and moreover the density Fk(t) 3s ~orrtinuous as a funcban of 
t 0, Let us recall that p is the law of Z ,  As before, we use the series 
representation of Z and appmpdate resulb far Gaussian measures. 

Let G,(w, 1 )  - r,{x: Hx+ztl < t ] ,  c l 1 ; ~ Q ~  Z E E ,  where y, are Gaussian 
mwsures defilled in Section 2. From the first part of the prosf of "Pheswm 12 
(see (If 411, one can observe that the density Ga(a, t)  an be estimated in rtze 
f01Fovrring wby : 

and E(o) is an iategrable random variam. 

Plror~sina~ 14. k t  z~supp i t ,  T k n :  
(i) T h e  ma~s~sing E 3 r +Fx(i)  is  Gateaux difirentiahte ut a. 
(ti) The deldsity Z(t) is muistineco~s on 8'. 

ProoF Bbwrve that by property (2) for almost all CIJ E $1, we haw 
supp = supp y, , Denote by DC,(csr, t )  the Gateaux derivaslive of C,(w, $1 at ,o, 
which exists for dsnast all atiQ2 by Pmposition 2 (i). 

Let hsR,  ~ E E  and put 



Analogaudy, fur almrllst all ilu we have 

where the last step follows from (17). Since L(o) is integrable> by the k b e s p e  
t h m ~ r n  we obtain 

It is obvious that I,(Js) is a linear functional, and keq~uaUty (18) yjelds its 
continuity. The proof of (ij is complete, 

'To prove (ii) let us notice that Fs(t) = 5 Gi(m, t )  dlPZ(m)* Nexti G2(m9 ti) is 
continuous far dmast a11 w by Proposition 2 (ii). &kg again (17) and the 
?tiebesme theorem we conclude (ii). 

5. Kxaenple. It Is a natural question whethm weaker conditions imposed 
on the modulus of unifarm convexity a(# )  would irnpfy the coadusion of 
Theorem 12. To show that this is not possible we provide appropriate examples 
an l p - ~ ~ o e s ,  1 < p ..= 2. We fuXEolw the ideas of Rhee and 'fdagrand [17], 
where a sidlar example was given for B Gatlli~ian measrare on the Hilberr 
space I " .  

$ ~ ~ P O S I T I Q N  15. Lct I c p < 2. There exi,~ts &) > 0 suck that f i r  way 
decreasiag ~equeme a, -& 0, a, < E @ ) ,  one can. construct a  FIR q ( - )  OR If l  which is 
~ q u i ~ ~ e l ~ n $  to the sttr~dard narm ~a,~id  he mod~fas  qf ubft7rat convexi@ cl,(.) of 
(I" gqC.)) sati$es a q [ ~ )  2 8' fw PI 3 18 ant2 a, < F < G@). M ~ r e o v e s ,  there exists 
a p - strab!~ maswre p or1 l* ~tdch rluat the delisity F(t) of F ( t )  = p(q < t )  Is 
uszbaund~d: i ~ z  ~ r q ~  naig;lhbeutrhood of ths origin. 

One of the cmdnE points of the errample in el71 i s  to Pmd ean auxiaiary 
rmom on I" satisfying mrtaia standitions. We wed to cansaust sueh a norm rJa 
P, 1 5= g < 2. 

Let (B$ EI,[-]I) be a uniformly convex Banash space and let 



Then, by the result of Day e7] the Banach space (F(B) ,  111 .II{) is ~mifarmlg 
caxavtx. Moseorber, from his proof it is pssiible to find out b w  the modalus nf 
uniform convexity behaves. For exmfle ,  if B = ig 1 < p < 2, then there exists 
N = M(p3 3 1 s u ~ h  that 

Now, we are ready to carry out our construction. 

LEMMA 16. Let 0 < q g 1, 1 < p < 2. Thepa exists ~ ( p )  2- 0 mnnch tk@t for 
any sqsttr~lce an h Og a& 2, EM, we can _find a nomz ij on P and n sequentre ;b;, > 0 
with rhe folkowing properties: 

(a) Fur x E P, P{x~I, 4 q(x) (1 4-q)  IIxtlp, where 11 - denot;es the stapdard 
norm ort 1"E, 
0 Jj" ct&-) is the mdzrlus of unqorwa convexity of (a, then 

(GI For x - (x,, . ., x,, 0, . . $1 and y = (0, . . ., ylr+ 4 . . .) with PIY) = 1 
and q(x) 6 B, we haue 

Proof. We need the following estirnate of the modululus of u d o m  
~oravexi ty of ( I P ,  11 11 : 

Let ECP) =: max (CCplJE6, (4IM) I) ,  where M = Mdp) appeard in (19). Snppo~e 
that q E@). Dehe 5 as fSlC Inrgest. positive integer so h a t  (4 + 2j2 kk, 
C 3 18, Now, if 8 $ B(B) 6 1, then 

'Thkrefare, for E $ ~lyjl and 1 g pl d n, we have 

Next, let Irk) be a squenc-c: sf positive numbers, r,  < 1, such that 

Obvioudy, r, can be chosen rxlsreagng to one a d  (1 4- q)  'I;; " 1, Next let 
8, - 6" ~FOT % *E: ~ 4 .  ss E ~ + ~  and let 



snd 

4I.) -: su~(l lxf I~, q,Ixl%), 3- 2) .  

Mow, Iet us observe that 

623) $ilxllp G &(XI 6 ~ ~ l t x l l ,  6 o + q )  ~lx[l, G 2 ll~ll, 
and 

h8spame that a, < E G k 3 18. Let x, with G ( x )  g 1, 1Lv) 6 1 aud 
8% -Y) 2 8- Then, by C24> Ilxll, si 1% Ilyil, 1, a d  Ilx-yll, 2 eJ2. 

First suppose that there exexists n 3 2 such that 

Because of (22) and the definition of /?, we have m ,< n,. 
Next, let us notice that (la, ql() is  isornetpic: lo a subspa= of (Pfl"), Ill=\][). 

Henee by (19) the modulus of uniform convexity .yen(-) of (EP, qJ sdi~fies 

Now, by (23) we have qJx) 6 1, g,(y) G 1 and q,(x-y) 3 e/4. fierefore (21) 
and (25') field 

qn ((x 4- ~) /2)  < 1 - ( ~ / ( 4 q ) ( ~  =b G 1 - @. 

The proof of (a) and (b) is compjeted* The statement (c) a n  be proved in the 
same way as the Proposition in E171. 

hother  very impo~ant step in the exasmaple of [1Tj clrsnsiss in finding 
Gaussian measures on finite - din~ensional subspaces af 1" which nre very 
conmn~ated ;drorand the m i r  sphere$ with degree d canmnttaitlsa as small as 
wqGred, 

It twm out that a simila prmdnre can be carried out for p-stable 
measures on iP, j. g g < 2. That is, by the weak law of large nrambsss Is%@, e.g., 
[83s p. 236) we have the ballowkg fltct: 



L E M ~  27. Let 1 < p < 2 a~ld let: (BJ be a seqgence of i,i,d, stcandad 
p - s t~b l e  raurdom uaridles, i.e, with the ck~racteristir fa~~ctia~a exp - For any 
e > O  a d  f T > O  ~kerle exist R E N  a ~ d  A > O  such that 

where (sJ is the stnnda~d basis in lE", 

The above lemma was kquently used to canstruet exampbs exhibikg 
pathoPogica1 properties of p - stable mcasures for 1, 4 p < 2 (see? e.g., [19], 
Lzo31. 

Proof af Proposit ion 15, With the help of L e m a s  16 and 27 we are 
able ta employ the reasoning af Rhee and Talagrand with  nor changm, so 
we do not repeat ii tern, 

A d d 4  in proaE: After campltting this paper it turn& out tJhd the proof of 
f reposition 2 (ii) la [22] (Tb&arCme 4) had EW error, A ccrmwt proof is due to 
T, Byczkowski: On the densit]? of log coneape seminr7nns on vector spuces, to 
appear in Studia Math. 99.2 (1991), 
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