PROBABILITY
AND
MATHEMATICAL STATISTICS

Vol 11, Fasc, 2 (19913, pp. 271-285

ON DENSITY OF A STABLE UNIFORMLY CONVEX NORM

BY
MICHAL RYZNAR (Wroctaw)

Abstract. Let (E, ||-]}) be a uniformly convex Banach space and
assume that its modulus of uniform convexity w(-) satisfies the
condition: w(g) > const-&", neN. We prove that for every stable
symmetric measure y on E the density of the distribution function
F (t) = p{ll-+2]| < t}, ze E, is bounded on every interval (@, T), T> 0.
Under some additional assumptions we extend the conclusion to the
whole half-line (0, co).

1. Introduction. Let (E, |||) be a separable Banach space. Consider
a symmetric p - stable measure u on E, 0 < p < 2. Several authors have proved
that for ze E the distribution function F,(f) = p{x: |x+z| <t} is absolutely
continuous provided that zesupp u (see [4], [S], [21]). Our aim is to examine
whether the density of F_(t) is bounded on (0, o).

For the Gaussian case, i.e. for p = 2, under various assumptions on E the
answer to our question is affirmative. For example, when E = %, g > 1, with
the standard norm, Davidov and Lifschitz [6] proved that the density is
bounded. Recently their result has been generalized by Rhee and Talagrand
[17] to uniformly convex Banach spaces with modulus of uniform convexity
having order of power type. On the other hand, if this condition is slightly
weaker, i.e., the modulus of uniform convexity has order £¢2®), where g(g) - oo as
£¢—0, then the density may be unbounded. The corresponding example has
been given on > with a norm equivalent to the standard one (see [17]).

Properties of stable densities were investigated in 2 number of papers. For
p-stable symmetric measures on /2, 1 < p < 2, the boundedness of the density
was established by Pap [14] and Bentkus and Pap [2]. In the case of p-stable
symmetric measures, 0 < p <1, on arbitrary separable Banach spaces an
interesting formula for the density was proved by Lewandowski and Zak [10].
‘This formula was extended to the p-stable case on I for 1<p<?2
by Zak [24]. As a consequence we have the boundedness of the density
for 0 < p <1 established in [19]. One may wonder whether the density is
always bounded. This is not so and appropriate examples were constructed
in [18], [19].
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In this paper we try to extend the above-mentioned result of Rhee and
Talagrand to the case of p-stable measures, 0 < p.< 2. However, we have not
managed to prove the boundedness on the whole R* but we have shown it on
every interval (0, T), Te R*. Assuming further conditions on the norm and
p we are able to extend our conclusion to the whole R™. For example, for 4,
g > 1, the density of the standard norm is bounded on R* whenever z = 0.

The main tool of our proofs is a representation of symmetric stable
measures as mixtures of Gaussian ones. Next, we apply corresponding
estimates for Gaussian measures obtained by Rhee and Talagrand. We also use
some stopping time idea from [14], where it was shown that the density is
bounded in [%. To see that our assumptions cannot be weakened we construct
an appropriate example in /4, 1 < g < 2, with norm equivalent to the standard
one.

Another approach to our problem was presented by Lifschitz and
Smorodina [11]. In addition to the uniform convexity conditions they assumed
some strong differentiability properties of the norm on E. Then, using
a Malliavin - type calculus they obtained not only the boundedness of the
density but also the existence of further bounded derivatives of F,(r), the
number of which depends on the number of derivatives of the norm. However,
their result does not cover the case of I, 1 <g<2.

Pap investigated in [15] the dependence of the density of F,(z) on z. Under
the assumptions of Lifschitz and Smorodina he obtained the following estimate
of Fit): ‘

sup F(t) < c()(1+z™), zekE,

>0
where m depends on the power of order of modulus of uniform convexity. For
example, for 1> the corresponding m equals 1 (see [2]).

We extend this result (with m = 1) to the class of spaces for which the
power of order of modulus of uniform convexity equals 2.

The method of representing stable measures as mixtures of Gaussian ones
enables us to conclude two additional regularity properties of F,(t) which are
valid for Gaussian measures in general. That is, using the results of Linde [12]
and Talagrand [22], respectively, we show that under our convexity assump-
tions the function z - F,(t) is Gateaux differentiable at any zesupp z and the
function t - F,(t) is continuous on R™,

2. Preliminaries. Throughout the whole paper, (E, |- ||) denotes a separable
Banach space. Let p be a symmetric p - stable measure on E, 0 < p < 2. A nice
feature of the measure u is that it can be represented as a mixture of Gaussian
ones {(see [97, [13]):

ProrosITION 1. Let (g) be a sequence of iid. standard normal random
variables and let (x;) be a sequence of i.i.d. random variables with the exponential
distribution with expectation one. Let I', = o, +...+a,. Assume that (g;) and ()




Density of a convex norm 273

are independent. Then there exist a sequence (V) of iid. random vectors
concentrated on the unit sphere of E independent of (:1;} and (g;) and a positive
constant c(y) such that the series

1) Z=cy) ), I'T'"gV,
i=1

is convergent a.s. and has a law of .

For convenience we assume that the sequences (g,) and (I';, ¥}) are defined
on probability spaces (2,, P,) and- (@2,, P,), respectively, and E, denotes the
expectation with respect to P,, i = 1, 2. It is clear that for almost all we @, the
series Z is convergent P, -a.s. and the limit has a Gaussian law. We denote it
by 7.

Let H be a measurable subset of E. Then the following 0-1 law due to
Sztencel [21] holds:

2) P,{w: y,(H) >0} =1 whenever u(H)> 0.
In the sequel we will use the following properties of Gaussian measures:

ProrosiTioN 2. Let y be a Gaussian measure on E and let zesupp p.

(i) The mapping x— G (t) = y{l|x+| <t} is Gateaux differentiable at z
(Linde [12]).

(ii) The density G(t) of G,(t)} is continuous for t >0 (Talagrand [22]).

Let 0 <e<2 and let
+y

ale) = lmsup{ Exz

el iyl < 15 Jx—yl > a}.

We say that (E, |- ) is uniformly convex if a(e) > O for & > 0, and a(g) is called
a modulus of uniform convexity of E.

Since now we always assume, if it is not stated otherwnse, that (E, |-]) is
uniformly convex with modulus of uniform convexity satlsfymg the followmg
condition:

There exist a positive constant D and neN such that

(3) afe) > De".

For example, I* with standard norm satisfies (3) with n =2 for 1 < g <2 and
n=geN or n=[g]+1 if g¢N for g= 2.

3. The Gaussian case. In this section we follow the method of Rhee and
Talagrand [17] to give an estimate of the distribution function of a Gaussian
norm. This estimate is basic in the sequel, where properties of the distribution
of a stable norm are considered.

First we introduce some notation. Let x,, ..., x,€E be a collection of
linearly independent vectors with ||x;|| = 1, 1 <i< n Let E, = span{x,, ..., x,}.
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By |-, we denote the Euclidean norm on E; such that x,,...,x, is an
orthonormal system. Since E, is n-dimensional, there exists a positive ff such
that

) Blxll, < llxll, xekE,.
For 0 <s<t and yekE let
Ays, 1) = {xeEy: s < [[x+y < t}
and
N(y) = inf{x+y|, xeE,}.

Next, by 4 we denote the Lebesgue measure on E,. Let (g) be a sequence of
iid. standard normal random variables and let 0 <4, < /24— <... < Ay

Our main purpose is to estimate the following probability:

Pis< | X+yl <t} =P{XeAs 1},

where
X = Zﬁ: A X

i=1

To begin with we recall two lemmas from [17]. For the proof of the
second lemma see also [4].

Lemma 3. Let N(y) <t and let x,€E; with |x,+y|l = N(y). Then for
xe Ay(s, t) we have

(5) Ix—x,|| < Ce(t—t"*N)'™,
where C =D~ Y" and D appears in (3).

LemMa 4. Let N(y)<s and let zeE, with ||z]|, = 1. Let B, = {ueR*:
x,+uze A/, )} and let u, =infB,, u, =supB,. Then
t—s
© =ty <1y s

s—N(y)

Originally, Rhee and Talagrand assumed that |z[| = 1, but for us it is
more convenient to consider polar coordinates with respect to the Euclidean
unit sphere in E,, ie. §={]z],=1}.

LemMA 5. Let N(y)<t. Then
N A{A(s, 0} S 2CB1Y's, " HE—s),
-where s, is equal to the measure of the surface of the Euclidean unit ball in R".
Proof. First assume that 25—t < N(y) < t. By (4) and (5) we have
Ayls, 1) = {xeEy: x—x,| < Ct(l—t" N()*"}
c{xeE: [x—x,, < CB ' t(t—t ' N(y)'"}.
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Therefore
A{A(s, 0} S mCB~ 1" He—NO)) < 2m (CE )" i —s),

where m, = A{xeE,: |x|, <1} <s,..

To consider the case N(y) < 2s—t we use the polar coordinates with
centre x,. Let S = {z€E,: |z||, = 1} and let § be the surface measure on §.
Clearly, 5(8) = s,. By inequalities (4)-(6) we obtain the following estimates:

uz{z)
A 0y =1 [ w'dus(dz)

Suyfz)

< £(u2(z))"“ Yuy(2)—u,(2)) §(d2)

< [ (@) (¢ —5)(s—N ()~ 5(d2)

8
S(CB ) (t—-NO)(s—NG) *(t—9)s,
< 2CPR s, Lt —3),

which completes the proof.
Now we are able to estimate P{XeA/(s, 1)}. Let

R,(B) = 2(C(B/2m)1)s,.
CorOLLARY 6. If ||yl < 3s, then ,
(8) P{XeA s )} <Ay ..o A) " Texp{—s*Bn)" 1A 2} R, (B)(t—5).
If y=%s, then '
) P{XeA,(s, )} <Ay ...-4) 1" IR, (B (t—5).
Proof. Denote by B the linear operator B: E, - E,, Bx, = A; 'x;. Then
(100 P{Xedls )} = ... 4,2n"3) " [ exp{—}IBx|3} A(dx).

Ayls,2)
Assume that [ly] < 3s. Since x| < n'?||x|l,, x€E,, we get for xe A,(s, 1)
1Bxll, =[xl (n'24)"1 = (Ix+yl =yl ("4~ = (24,13 Ls.

This, the estimate (7) and formula (10) imply (8). Inequality (9) follows directly
from (7) and (10).

CoROLLARY 7. Let Y be an E - valued random vector independent of X. Then
(1) Pis<|[|[X+Yl<t}
SOy A)TIRBTT {exp{—528n) AT +P{I Y 2 A5} (—).
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Proof Let u, denote the law of Y. By Fubini's theorem we have

Pls<|X+Y|<t}= § P{XeAs, 1)} py(dy)
vl <(1j2)s

+ [ P{XeA/s 0} pldy).
vl =12

Applying the estimates (8) and (9) to the first and second integrals, respectively,
we obtain (11).

The next proposition is a generalization of the results of Paulauskas [16]
and Davidov, Lifschitz [6] concerning the behaviour of the density of the
distribution of the norm for a shifted Gaussian random vector in I, I7 (p > 1).

PROPOSITION 8. If Z is an E-valued symmetric Gaussian vector which is not
concentrated on a finite - dimensional subspace, then for evey z€ E the density of
the distribution function G.(t) of |Z+z|| admits the following estimate:

(12) sup Gy(1) € C, +C, 2|1,

=0
where the constants C,, C, depend only on the covariance of Z.
Proof It is well known that we may assume
@
Z= Z1 A: %8s

where (4,) is a decreasing positive sequence of reals and x; are linearly
independent and of norm one (see, e.g., [3]). Then writing

X = ~i1 Ax,g, and Y= iz X0+ 2,
by Corollary 7 and Chebyshev’s inequality we get
Gut) € (Ay e d) 'R(BY " Hexp{—12@n) FAT 2+ PLIY | = 4t}}
S C3ldys ons Ay W)+ 27 HAy A TIRBEN YT
= C3+(4, '.’.:A,,}‘"‘Z"”"‘Rn(ﬁ)li‘ﬂZ Axgy+al

S G+ L)TIRBETHENZIT + 2",

where C, is some positive constant depending on A, ..., 4,, f# and n. By
Fernique’s theorem, E[|Z||" ! < oo and this completes the proof.

Remark 9. Paulauskas [16] has shown that in I" (n = 2, 3, ...) the power
n—1 in (12) is the best possible.
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4, Regularity properties of the distribution of the norm for a stable veetor. In
this section we apply the estimates from the previous section to deduce some
properties of the distribution of the norm for a stable vector. As a main tool we
use the series representation described in Proposition 1. For the notation used
in this section we refer to Section 2.

Let Z be a symmetric p-stable random vector. With the notation of
Proposition 1 we can write

o
Z=c ¥ 170,
i=1
For the sake of simplicity we take ¢ = 1.
Lemma 10. Assume that the linear span of supp Z(Vy) is at least
n-dimensional. Then there exist positive &, f such that
(13) P, {inf{llr, Vi+...47,¥,|, FeR", |[Fl, =1} 2 f} =e > 0.

Proof. Since ¥, ..., V, are independent, we assume that V| is defined on
a probability space (@25, P;) and V,, ..., V, are defined on a probability space
(2,, P,). Let

A" = {V1, sasy V

, are linearly dependent}
and
Ayyq =V{V2? ...y V, are linearly dependent}.
It is clear that (13) is equivalent to P,(4,) < 1. By Fubini’s theorem we get
Py(A)= [ Py4)dP.+ [ Py(4)dP,

Ay An~1

€ Py(A4,-)+ | Py{V,espan{V,, ..., V,}}dP,.
An-1

Now, by assumption the last integrand is less than one, and therefore
Pz(An) < -P4(An«1)+P4(A:~ 1) =1,
which completes the proof.

Remark 11. If ¥}, ..., ¥, satisfy the condition under probability in (13),
then on the linear space spanned by V), ..., ¥, we have f|-||, < |-|, where
-1, is defined at the beginning of Section 3 for x, = V.

Now, we are ready to formulate and prove the main result. Let ze E and
let F_(t) denote the distribution function of |Z+z|.

THEOREM 12. Under the assumption of Lemma 10 the density Fi(t) of F,(t)
is bounded on every interval (0, T), T> 0. In the following cases it is bounded
on R*:

g -~ PAMS 112
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(a) E is of stable type p(*) and z = 0.

(b) » =2 and 1 < p < 2. Moreover, in this case there exist constants C, and
C; depending on Z such that

sup F(1) < Co+Cs 2.
>0 ,

Remark 13. It was shown in [18] that under the assumption (a) the
density Fy(t) is bounded on every interval (T, w), T> 0, without requiring
uniform convexity properties of E. Moreover, for 0 < p < 1 it is known that
Fo(t) is always bounded on R (see [19]). For example, if E = [%, g = 2, then
E satisfies (a), but unfortunately we cannot drop the condition z = 0. In the
case (b) we need 1 < p < 2 since then the value of 1—F,(¢) is small enough at
infinity. It is worthwhile to notice that we do not assume any differentiability
properties of the norm |- ||. So (b) covers the case of [#-spaces, 1 < g < 2, which
does not follow from the papers of Lifschitz and Smorodina [11] and Pap [15].

Proof of Theorem 12. Let m, = (k—1)n, k> 1, and let
t=inf {k: inf{| Vs 17y +.. o+ Voo, nlls 17l = 13 = B}

It is clear that 7 has a gmmemc distribution, and if &, § are as in Lemma 10,
then
Pyt =k} = (1—ef .
Let
Mg+ 1
X,= Y IiYgV, Y=Z+z-X,k=z1.

i=mg+ 1

Since for fixed (I;) and (V) the vectors X, and Y, are independent Gaussian, we
can apply Corollary 7. First, let us notice that if v =k, then

W 171+ oot Vo Full = BP0 472, 7y, e 1R

Therefore, by Corollary 7, for 0 <s <t we have

(14)  EyIs<jxervipsnle=n '

' e+ 1
<lgew( I1 TP7R(AE™ {exp{=s"@n)7 k)
i+ 3

+P {I%) > 3s}} -9
Since exp{—s*(8n)"'IrZ2 ,}+P . {|I%l = 1s} <2, in the general case we
obtain, by Fubini’s theorem,

(*) For the definition of “stable type” see [23].
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(E“Srl(Fs(?}“*F;(ﬁ}) = (t—s)"! % E; X E;Iis<x+vi sl=p

k=1

W ks
SR,P LY Ey( [ T)PE1pey

k=1 i=met 1
Since
Myes 1
E,( [] r)"=0(k") as k-,
i=me+1

there exists a positive constant Cg = Cg(n, &, J, p}p such that

(t—8) " {F.()—F (5) < Cq Z kel —gff 1 < oo,

k=1

This proves the boundedness on every interval (0, 7), T> 0. Moreover,
F(5)=0(""") as t—0.
Since the case (a) was completely explained in Remark 13, we proceed to
prcwe (b). Therefore, we assume that n =2 and 1 < p < 2. We do not consider
= 1 because this case is technically a bit more complicated but the idea is the
same By (14) we have

(t—5)" (F(0)—F.(s))

< R, (f) z Ey(Tou-1 Fa) P exp{—s*16"1 37 1}1{t =k}

k=1

+tR2(ﬁ) Z Ez(f’gk..; Flhjupl{tﬁk]Pi{rﬁ}%H = '%‘3} == I'{"II.
k=1
We try to estimate I. Since
texp{—s*16"1I3 ,} :14&(3(2({)”21‘”*’ )7
we get

(15) 1<2R,(B)ts™ Y E, TP, {7 = I}
k=1

Cile B p) 3 KVP(1—e)f s,
k=1

where C, is some positive constant,
Now, we deal with II. By Chebyshev’s inequality and by Anderson’s type
inequality for Gaussian measures [3], we obtain

P {1l > 3s} < 2571E, |l < 257 H(E 1 Z] + 1)
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Next, using Hélder’s inequality with 1 <p’ <pand ¢ = (p'—1)" p’, we can
estimate

(16) I < 2R,(B)t Z E; T3P 1= P {|I Y]l > %5}

k=1

_ﬁ.zﬂz(ﬂ)m 1 }_j E, xE T3P =121+ 11211)

< (2R, (B ts™1 Z E F””Pz{r = k}) |z

4]

+2Rz[ﬁ} sTHENZIFY? Y (Bp(ui DH WY

k=1

< (57 Cole B ) 3, P —F ) el

+(ts™) Colp, 1, B, 9 ‘z (1= D IPIP(E | Z)7) ",

where Cg and C, are positive and finite and E | Z||” < co by de Acosta’s result
[1]. Also, all the series appearing in (15) and (16) are convergent so, when s— 1,
inequalities (15) and (16) give the desired result.

; The rest of this section is devoted to studying other regularity properties of
. F,(t). Namely, we prove that F_(1), as a function of z, is Gateaux differentiable
at all zesupp u, and moreover the density F.(¢) is continuous as a function of
t > 0. Let us recall that u is the law of Z. As before, we use the series
representation of Z and appropriate results for Gaussian measures.

Let G, ) =7y,{x: |x+z| <t}, weQ, zeE, where y, are Gaussian
measures defined in Section 2. From the first part of the proof of Theorem 12
{see (14)), one can observe that the density G.(w, ) can be estimated in the
following way:
an Glw, 1) < Liw)t*™Y, wef,,
and L(w) is an integrable random variable.

ProrosiTion 14. Let zesupppu. Then:

(i) The mapping Esx— F () is Gateaux differentiable at z.

(ii) The density F.(t) is continuous on R™.

Proof Observe that by property (2) for almost all wef, we have
supp p = suppy,,. Denote by DG, (o, ) the Gateaux derivative of G_(w, f) at z,
which exists for almost all weQ, by Proposition 2 (i).

Let heR, ye E and put

I(h, y) = [t— iy, t+ [ Ayll].
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Then
(18) b~ (P )= Fo0)] < [h™ (F.(+ By l)— Pt~ [y ]))]
<2 sup F&)Il. |
gel{h,y

Analogously, for almost all @ we have
|G, sy, =G o, )] <2 sup Gilw, &)yl

Lel(h,y)
< 2L(w}(t+ Ayl

where the last step follows from (17). Since L{w) is integrable, by the Lebesgue
theorem we obtain

L(y) = lim h ™ (F,.1.i(t) — F (1))

[ di]

= [Hm (G, 110, 1)~ G (0, ) dP,(0) = [ DG (®, 1), y) dP,(w).
b0 :

It is obvious that I_(y) is a linear functional, and inequality (18) yields its
continuity. The proof of (i) is complete.

To prove (i) let us notice that Fi(t) = | Gi(w, t)dP,(w). Next, Gi(w, 1) is
continuous for almost all @ by Proposition 2 (ii). Using again (17) and the
Lebesgue theorem we conclude (ii).

5. Example. It is a natural question whether weaker conditions imposed
on the modulus of uniform convexity «(-) would imply the conclusion of
Theorem 12. To show that this is not possible we provide appropriate examples
on P-spaces, 1 < p < 2. We follow the ideas of Rhee and Talagrand [17],
where a similar example was given for a Gaussian measure on the Hilbert
space [ ‘

ProposiTiON 15. Let 1 < p < 2. There exists e(p) > 0 such that for any -
decreasing sequence a,— 0, a, < &(p), one can construct a norm q(*) on I? which is
equivalent to the standard norm and the modulus of uniform convexity o (-) of
(7, q()) satisfies o, (€) = &" for n > 18 and a, < € < &(p). Moreover, there exists
a p-stable measure p on IP such that the density F'(t) of F(t)= p{g <t} is
unbounded in any neighbourhood of the origin.

One of the crucial points of the example in [17] is to find an auxiliary
norm on [? satisfying certain conditions. We need to construct such a norm on
P l<p=<2

Let (B, ||-|l) be a uniformly convex Banach space and let

B(B) = {(x), x;eB: i %9 < 0}, ¢>1.

i=1
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Let us consider the norm

6ol = (3 B9 on BB,

Then, by the result of Day [7] the Banach space {t‘-‘(B), [iI-]Il) is uniformly
convex. Moreover, from his proof it is possible to find out how the modulus of
uniform convexity behaves. For example, if B = I”, 1 < p < 2, then there exists
M = M(p) = 1 such that
(19) s ﬂm.m*(&) 2 (EMFL)M‘FZP.‘

Now, we are ready to carry out our construction.

LemMma 16. Let 0 <y < 1, 1 < p < 2. There exists e(p) > 0 such that for
any sequence a, 0, a, < &(p), we can find a norm g on ¥ and a sequence b, > 0
with the following properties:

(@) For xelP, |ix|l, < d(x) < (1+n)|xll,, where |||, denotes the standard
norm on [P,

(b) If () is the modulus of uniform convexity of (I, §), then

w;(e) = &"  for a,<e<e(p), n=18.

(€) For x=(xy, ..., %,,0,...) and y=1(0, ..., ¥os1,0,..) with g(y)=1
and §(x) < b, we have

1< glx+y) < 1+ x|

Proof. We need the following estimate of the modulus of uniform
convexity of (%, ||| ,):

(20) ae) > C(p)e?, O0<e<?2.

Let &(p) = max{C(p)/8, (4M) '}, where M = M(p) appeared in (19). Suppose
that a, < &(p). Define n, as the largest positive integer so that (n,+2)* < 4k,
k= 18. Now, if e <¢(p) < 1, then

a&:--(n{a;+2}2(4M}lnk‘+2)2 i.'{.._ (48M)£1{2)k % 1.
Therefore, for & < g(p) and 1 6@ n<mn, we have
(21) 1—(e/(4M)n+ 2 < 1 -k,
Next, let () be a sequence of positive numbers, r, < 1, such that
22) CEE/2Y > 1—r(l—¢), g, <e<a-; <sp), k=18

Obviously, r, can be chosen increasing to one and (1+#) " 'ry ! < 1. Next, let
B,=w" for ny<n<myy and let

0,0 = (BT Ixd#)+ B, e ),

i#n
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and
3() = sup{Ixl,. 4,(x), n > 2}.

Now, let us observe that

(23} $ixl, < g,() < B lixll, < T+mlixil, < 2lxl,
and ‘ |
(24 ixl, < a(x) < 1+ lixll, < 2|x],.

Assume that q, <s < a,—y, k= 18. Let x, yel? with §(x) < 1, q(y) 1 and
g(x—y) >e. Then, by (24), x|, < 1L, [yl, <1, and [x—p[, = ¢/2.
First suppose that there exists n > 2 such that
Ix+yll, > 28, 1"(1~&").
Therefore, by (20),
Cle/2f <alfx—yl) < 1-[27 x4+ p)ll, < 1~ ﬁn ““(1 &).

Because of (22) and the definition of f, we have n < nk ‘
Next, let us notice that (7, g,) is isometric to a subspace of (“(F’}, -1
‘Hence by (19) the modulus of uniform convexity «, () of (I%, g,) satisfies

@3) 24,(6) > (&/M)"* .
Now, by (23) we have gq,(x) <1, ¢,() <1 and g,(x—y) > /4. Therefore (21)
and (25) yield |
ga((x+)/2) < 1—(6/AM)"*2* < 1~ g,
If n is such that |x+y|, <2, "(1—&, then once again bj' (23) we get

au((x+3)/2) < Bl (e + )20, < 1—8"
Finally,
IGe+y)/20, < 1—C(p)(/2)* < 1—¢-.

The proof of (a) and (b) is completed. The statement (¢) can be proved in the
same way as the Proposition in [17].

Another very important step in the example of [17] consists in finding
Gaussian measures on finite - dimensional subspaces of I* which are very
concentrated around the unit sphere, with degree of concentratmn as small as
required.

It turns out that a similar procedure can be carried out for p-stable
measures on [?, 1 < p < 2. That is, by the weak law of large numbers (see, e.g.,
[8], p. 236) we have the following fact: »
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Lemma 17. Let 1 <p<2 and let (0) be a sequence of iid. standard
p - stable random variables, i.e. with the characteristic function exp—[t|¥. For any
e>0 and B> 0 there exist neN and A > 0 such thai

P{1-B< A Y Y O, <1+8} 21—,
i=1

where (e,) is the standard basis in P,

The above lemma was frequently used to construct examples exhibiting
pathological properties of p-stable measures for 1 <p <2 (see, e.g, [19],
[207).

Proof of Proposition 15 With the help of Lemmas 16 and 17 we are
able to employ the reasoning of Rhee and Talagrand with minor changes, so
we do not repeat it here.

Added in proof. After completing this paper it turned out that the proof of
Proposition 2 (ii) in [22] (Théoréme 4) had an error. A correct proof is due to
T. Byczkowski: On the density of log concave seminorms on vector spaces, to
appear in Studia Math. 99.2 (1991).
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