PROBABILITY AND MATHEMATICAL STATISTICS

Vol. 11, Fasc. 2 (1991), pp. 291-304

MATHEMATICAL EXPECTATION AND MARTINGALES OF RANDOM SUBSETS OF A METRIC SPACE

BY

WOJCIECH HERER (WARSZAWA)

Abstract. Let F be a closed, bounded, non-empty random subset of a metric space (X, ϱ) . For some class of metric spaces we define in terms of the metric ϱ (developing an idea of S. Doss) mathematical expectation and conditional mathematical expectation of F. We then consider martingales of random subsets of a metric space and prove theorems of convergence for such martingales.

0. Introduction and preliminaries. S. Doss has introduced in [3] a concept of mathematical expectation of a random variable with values in a metric space (see also [1] and [4]). This and other concepts of mathematical expectation were studied by M. Fréchet in [5] and [6].

In this paper we develop an idea of S. Doss and investigate notions of mathematical expectation (Section 1), conditional mathematical expectation (Section 2) and martingale (Section 3) of random subsets of a metric space.

Results of this paper were announced in [8] and [9].

Let (X, ϱ) be a metric space. By $(\hat{X}, \hat{\varrho})$ we denote the metric space of closed, bounded and non-empty subsets of X, equipped with the Hausdorff metric $\hat{\varrho}$ defined as

$$\hat{\varrho}(F, F') = \max \{ \sup_{x \in F} \varrho(x, F'), \sup_{x' \in F'} \varrho(x', F) \},\$$

where $\varrho(x, F) = \inf \{ \varrho(x, y) : y \in F \}$ for $x \in X$ and $F \in \hat{X}$. We put

$$F = \operatorname{Lim} F_n$$
 iff $\lim \hat{\varrho}(F_n, F) = 0$.

For $x \in X$ and $F \in \hat{X}$, we set

$$\delta(x, F) = \sup \{ \varrho(x, y) \colon y \in F \}.$$

A metric space (X, ϱ) is called *finitely compact* iff every closed bounded subset of X is compact. Let us note the following known

W. Herer

PROPOSITION 0.1 ([11], Proposition 1.2.5). Let (X, ϱ) be a finitely compact metric space and let $\{F_n\}_{n=1}^{\infty}$ be a sequence of set elements of \hat{X} such that $\bigcup_{n=1}^{\infty} F_n$ is a bounded subset of X. Suppose there exists a dense set $D \subset X$ such that for every $x \in D$ the limit $\lim_{n \to \infty} \varrho(x, F_n)$ exists and is finite. Then the sequence $\{F_n\}_{n=1}^{\infty}$ converges in $(\hat{X}, \hat{\varrho})$.

Let (Ω, \mathcal{A}, P) be a probability space. An event $A \in \mathcal{A}$ is called *negligible* iff P(A) = 0. For a collection \mathcal{B} of subsets of Ω we denote by $\sigma(\mathcal{B})$ the σ -field generated by \mathcal{B} .

A Borel measurable map $F: \Omega \to \hat{X}$ is called an \hat{X} -valued random set (r.s.) and a Borel measurable map $f: \Omega \to X$ is called an X-valued random variable (r.v.). We shall frequently identify a random variable f with a random set $\{f\}$. An r.s. is called scalarly integrable iff

$$\int_{\Omega} \delta(x, F(\omega)) dP(\omega) < \infty \quad \text{for every } x \in X.$$

Throughout this paper (Ω, \mathcal{A}, P) will be a fixed complete, non-atomic probability space and all random sets will be defined on (Ω, \mathcal{A}, P) .

1. Mathematical expectation.

DEFINITION 1.1. Let (X, ϱ) be a metric space and F an \hat{X} -valued random set. The set E[F] defined as

$$E[F] = \left\{ a \in X \colon \varrho(x, a) \leq \int_{\Omega} \delta(x, F(\omega)) dP(\omega) < \infty, \ \forall x \in X \right\}$$

is called a mathematical expectation of F.

For every \hat{X} - valued r.s. F the set E[F] is evidently closed. If F is scalarly integrable, then the set E[F] is also bounded.

We shall state now the condition imposed on a metric space (X, ϱ) in order that for every X-valued r.s. F the set E[F] is non-empty.

DEFINITION 1.2. A metric space (X, ϱ) is called *convex in the sense of Doss* (or *D*-convex) iff for any two elements $x_1, x_2 \in X$ there exists an element $a \in X$ such that

$$\varrho(x, a) \leq \frac{1}{2} [\varrho(x, x_1) + \varrho(x, x_2)], \quad \forall x \in X.$$

Remark 1.1. It is easily checked that every D-convex metric space is metrically convex in the sense of Menger (see [2], Definition 14.1) but not conversely (e.g., a circle in the Euclidean plane with an arc metric).

Remark 1.2. In ([7], Section 8) the authors have proved that the hyperbolic plane (of Lobochevski) equipped with the geodesic metric is a D-convex metric space (it can be proved that any simply connected Riemannian manifold of non-positive curvature equipped with geodesic metric is a D-convex metric space).

Remark 1.3. Suppose $(Y, \|\cdot\|)$ is a Banach space and $\varrho(x, y) = \|x - y\|$ for $x, y \in Y$. Then for every Y-valued Bochner-integrable random variable the Bochner integral $\int f(\omega) dP(\omega) \in E[f]$.

Doss has proved in ([3], Théorème 1) that

$$E[f] = \left\{ \int_{\Omega} f dP \right\} \quad \text{if dim } Y = 1.$$

In ([7], Theorem 1) the authors have proved (answering the question of Fréchet [6]) that $E[f] = \{ \int_{Q} f dP \}$ for any two-valued random variable f.

Remark 1.4. Suppose X is a closed, bounded, convex subset of a Banach space Y. Then the metric space (X, ϱ) is D-convex and the Bochner integral $\int f dP \in E[f]$ for any Bochner-integrable X-valued random variable f.

The following example shows that the Bochner integral is not necessarily the only element of E[f].

EXAMPLE 1.1. Let

$$X = \{ [\alpha_1, \alpha_2] : \alpha_1 \ge 0, \alpha_2 \ge 0, \alpha_1 + \alpha_2 \le 1 \}$$

and

$$\varrho([\alpha_1, \alpha_2], [\beta_1, \beta_2]) = |\alpha_1 - \beta_1| + |\alpha_2 - \beta_2|.$$

Let f be an X-valued r.v. satisfying

$$P(f = [1, 0]) = P(f = [0, 1]) = \frac{1}{2}.$$

One checks easily that $E[f] = \{ [\alpha_1, \alpha_2] \in X : \alpha_1 = \alpha_2 \}.$

THEOREM 1.1. Let (X, ϱ) be a finitely compact metric space. Then for every \hat{X} -valued random set F the set E[F] is non-empty iff (X, ϱ) is a D-convex metric space.

Proof. The necessity of D-convexity of a metric space (X, ϱ) is evident, since "D-convexity" means precisely that for every X-valued r.v. f satisfying $P(f = x_1) = P(f = x_2) = \frac{1}{2}$, one has $E[f] \neq \emptyset$.

We shall prove now that if a metric space (X, ϱ) is D-convex, then for every \hat{X} -valued r.s. F the set E[F] is non-empty.

If a random set F is not scalarly integrable, then $E[F] = X \neq \emptyset$.

If F is a scalarly integrable r.s., then any measurable selection f of F (which always exists by [10]) is a scalarly integrable r.v. and $E[f] \subset E[F]$.

It is thus sufficient to prove that if a metric space (X, ϱ) is D-convex, then for every scalarly integrable X-valued r.v. f the set E[f] is non-empty.

This will be proved in several steps.

(1°) If f is an X-valued r.v. with card $f(\Omega) \leq 2$, then $E[f] \neq \emptyset$.

10 - PAMS 11.2

We have to prove that for every $x_1, x_2 \in X$ and any $p \in [0, 1]$ there is an element $a \in X$ such that

$$\varrho(x, a) \leq p\varrho(x, x_1) + (1-p)\varrho(x, x_2), \quad \forall x \in X.$$

We shall prove this first for dyadic rationals $p = k/2^n$ ($k = 1, ..., 2^n$; n = 1, 2, ...). We shall proceed by induction; for n = 1 our statement is true by the definition of D - convexity of a metric space (X, ϱ). If for some $n \ge 1$ and $1 \le k, l \le 2^n$ one has

$$\varrho(x, a) \leq \frac{k}{2^n} \varrho(x, x_1) + \left(1 - \frac{k}{2^n}\right) \varrho(x, x_2), \quad \forall x \in X,$$

and

$$\varrho(x, b) \leq \frac{l}{2^n} \varrho(x, x_1) + \left(1 - \frac{l}{2^n}\right) \varrho(x, x_2), \quad \forall x \in X,$$

then there exists $c \in X$ such that

$$\varrho(x, c) \leq \frac{1}{2} [\varrho(x, a) + \varrho(x, b)] = \frac{k+l}{2^{n+1}} \varrho(x, x_1) + \left(1 - \frac{k+l}{2^{n+1}}\right) \varrho(x, x_2),$$

which completes the induction.

Let $p \in [0, 1]$ be arbitrary and let $\{p_n\}_{n=1}^{\infty}$ be a sequence of dyadic rationals converging to p. For every n = 1, 2, ... there are elements $a_n \in X$ such that

$$\varrho(x, a_n) \leq p_n \varrho(x, x_1) + (1 - p_n) \varrho(x, x_2), \quad \forall x \in X.$$

Since the sequence $\{a_n\}_{n=1}^{\infty}$ is bounded and (X, ϱ) is finitely compact, we can extract from $\{a_n\}_{n=1}^{\infty}$ a subsequence $\{a_{k_n}\}_{n=1}^{\infty}$ converging to some $a \in X$. One evidently has

$$\varrho(x, a) \leq p\varrho(x, x_1) + (1-p)\varrho(x, x_2), \quad \forall x \in X.$$

(2°) If f is an X-valued r.v. with $f(\Omega)$ finite, then $E[f] \neq \emptyset$.

We shall proceed by induction. By (1°), our statement is true if $\operatorname{card} f(\Omega) \leq 2$.

Let $f(\Omega) = \{x_1, x_2, ..., x_n, x_{n+1}\}$ and $P(f = x_i) = p_i$ for i = 1, 2, ..., n+1. Let us consider the r.v. distributed as follows:

$$P(g = x_i) = p_i / \sum_{j=1}^n p_j$$
 for $i = 1, 2, ..., n$.

Supposing that (2°) is true for an *n*-valued r.v. g we have $E[g] \neq \emptyset$. Let $a \in E[g]$ and let us consider the r.v. h distributed as follows:

$$P(h = a) = \sum_{j=1}^{n} p_j, \quad P(h = x_{n+1}) = p_{n+1}.$$

Then by (1°) we infer that $E[h] \neq \emptyset$. It is easily checked that $E[h] \subset E[f]$, and thus $E[f] \neq \emptyset$.

(3°) If f is an X-valued scalarly integrable r.v. with $f(\Omega)$ countable, then $E[f] \neq \emptyset$.

Let $f(\Omega) = \{x_1, x_2, ...\}$ and $P(f = x_i) = p_i$ for i = 1, 2, ... By (2°), for every n = 1, 2, ... there are elements $a_n \in X$ such that

$$\varrho(x, a_n) \leq \sum_{i=1}^n \varrho(x, x_i) q_i^n, \quad \forall x \in X,$$

where

$$q_i^n = p_i / \sum_{j=1}^n p_j, \quad i = 1, 2, ..., n.$$

For every $x \in X$ we have

$$\lim_{n}\sum_{i=1}^{n}\varrho(x, x_{i})q_{i}^{n}=\sum_{i=1}^{\infty}\varrho(x, x_{i})p_{i}<\infty.$$

This implies that the sequence $\{a_n\}_{n=1}^{\infty}$ is bounded, and since the metric space (X, ϱ) is finitely compact, we can extract from $\{a_n\}_{n=1}^{\infty}$ a subsequence $\{a_{k_n}\}_{n=1}^{\infty}$ convergent to some $a \in X$. Then for every $x \in X$ we have

$$\varrho(x, a) = \lim_{n} \varrho(x, a_{k_n}) \leq \lim_{n} \sum_{i=1}^{k_n} \varrho(x, x_i) q^{k_n} = \sum_{i=1}^{\infty} \varrho(x, x_i) p_i,$$

which means that $a \in E[f]$.

(4°) If f is an arbitrary scalarly integrable X - valued r.v., then $E[f] \neq \emptyset$. Since the metric space (X, ϱ) is separable, for every n = 1, 2, ... there exists an X-valued r.v. f_n such that $f_n(\Omega)$ is countable and

$$\varrho(f_n(\omega), f(\omega)) \leq 1/n, \quad \forall \omega \in \Omega,$$

which implies that

$$\varrho(x, f_n(\omega)) \leq \varrho(x, f(\omega)) + 1/n, \quad \forall \omega \in \Omega, \ \forall x \in X, \ \forall n \ge 1.$$

By (3°) there exists a sequence $\{a_n\}_{n=1}^{\infty}$ of elements of X such that

$$\varrho(x, a_n) \leq \int_{\Omega} \varrho(x, f_n) dP \leq \int_{\Omega} \varrho(x, f) dP + 1/n, \quad \forall x \in X, \ \forall n \geq 1.$$

Thus the sequence $\{a_n\}_{n=1}^{\infty}$ is bounded and we can extract from it a subsequence $\{a_{k_n}\}_{n=1}^{\infty}$ convergent to some $a \in X$. Since

$$\varrho(x, f_n(\omega)) \leq \varrho(x, f(\omega)) + 1/n \quad \text{for } x \in X, \ \omega \in \Omega, \ n = 1, 2, ...,$$

by Lebesgue's bounded convergence theorem we have

$$\varrho(x, a) = \lim_{n} \varrho(x, a_{k_n}) \leq \lim_{n} \int_{\Omega} \varrho(x, f_n) dP = \int_{\Omega} \varrho(x, f) dP, \quad \forall x \in X,$$

which means that $a \in E[f]$.

2. Conditional mathematical expectation. Throughout this section we shall assume that (X, ϱ) is a finitely compact, D-convex metric space and F is an \hat{X} -valued scalarly integrable random set.

Suppose \mathscr{F} is a finite subfield of \mathscr{A} with non-negligible atoms (throughout this paper we shall always assume that finite subfields of \mathscr{A} have non-negligible atoms). Let us define the following random set:

$$E^{\mathscr{F}}[F](\omega) = E[F|A]$$
 for $\omega \in A$, an atom of \mathscr{F} ,

where

$$E[F | A] = \left\{ a \in X \colon \varrho(x, a) \leq \frac{1}{P(A)} \int_{\Omega} \delta(x, F) dP, \ \forall x \in X \right\}.$$

LEMMA 2.1. Let $\{\mathscr{F}_n\}_{n=1}^{\infty}$ be an increasing sequence of finite subfields of \mathscr{A} . Then:

(1°) $\bigcup_{i=1}^{\infty} E^{\mathscr{F}_n} [F](\omega)$ is a bounded subset of X for almost every $\omega \in \Omega$.

(2°) For every $x \in X$ the sequence of reals $\{\varrho(x, E^{\mathscr{F}_n}[F](\omega))\}_{n=1}^{\infty}$ converges to a finite limit for almost every $\omega \in \Omega$.

Proof. (1°) Let x be some element of X. For every $\omega \in \Omega$ and every $a \in E^{\mathcal{F}_n}[F](\omega)$ we have

$$\varrho(x, a) \leq \frac{1}{P(A_n)} \int_{A_n} \delta(x, F) dP$$
, where $\omega \in A_n$, an atom of \mathscr{F}_n .

The real martingale

$$\left\{\frac{1}{P(A_n)}\int\limits_{A_n}\delta(x, F)\,dP,\,\mathscr{F}_n\right\}_{n=1}^{\infty}$$

converges almost surely to a finite limit ([12], Proposition II-2-11). Thus for almost every $\omega \in \Omega$

$$\sup_{n} \sup_{a \in F_n} \varrho(x, a) < \infty, \quad \text{where } F_n = E^{\mathscr{F}_n}[F](\omega),$$

which proves that the set $\bigcup_{n=1}^{\infty} E^{\mathscr{F}_n}[F](\omega)$ is bounded for almost every $\omega \in \Omega$.

(2°) Let x be some element of X. Denote by $\{\xi_n\}_{n=1}^{\infty}$ the sequence of real random variables defined as

$$\xi_n(\omega) = \varrho(x, E^{\mathscr{F}_n}[F](\omega)) \quad \text{for } \omega \in \Omega \ (n = 1, 2, \ldots).$$

It is sufficient to prove that $\{\xi_n, \mathscr{F}_n\}_{n=1}^{\infty}$ is a submartingale satisfying Doob's condition ([12], Theorem IV.1.2):

$$\sup_{n}\int_{\Omega}\xi_{n}dP<\infty.$$

For every A, an atom of \mathcal{F}_n , we have

$$\int_{A} \xi_n dP = \int_{A} \varrho(x, E^{\mathcal{F}_n}[F]) dP = P(A) \varrho(x, E[F | A]) \leq \int_{A} \delta(x, F) dP.$$

Hence

$$\int_{\Omega} \xi_n dP \leq \int_{\Omega} \delta(x, F) dP < \infty$$

and Doob's condition is satisfied.

For every $n = 1, 2, ..., \xi_n$ is evidently \mathscr{F}_n -measurable. Thus we have to check that for every n = 1, 2, ... and every atom A of \mathscr{F}_n the inequality

$$\int_A \xi_n dP \leqslant \int_A \xi_{n+1} dP$$

holds, that is

(2.1)
$$P(A) \varrho(x, E[F|A]) \leq \int_{A} \varrho(x, E^{\mathscr{F}_{n+1}}[F]) dP \quad (n = 1, 2, ...).$$

Let A_1, \ldots, A_k be (disjoint) atoms of \mathscr{F}_{n+1} such that

$$A=\bigcup_{i=1}^{\kappa}A_i.$$

Since every set $E[F|A_i]$ is non-empty and compact, we can find the elements $a_i \in E[F|A_i]$ such that

$$\varrho(x, a_i) = \varrho(x, E[F | A_i]) \text{ for } i = 1, ..., k.$$

Let g be an X-valued r.v. distributed as follows:

$$P(g = a_i) = \frac{P(A_i)}{P(A)}$$
 for $i = 1, ..., k$.

It is easily checked that $E[g] \subset E[F|A]$. Hence for every $a \in E[g]$ we have

 $\varrho(x, E[F|A]) \leq \varrho(x, a).$

Thus, taking an arbitrary element $a \in E[g]$, we obtain

$$P(A)\varrho(x, E[F|A]) \leq P(A)\varrho(x, a) \leq P(A)\sum_{i=1}^{k} \frac{P(A_i)}{P(A)}\varrho(x, a_i)$$
$$= \sum_{i=1}^{k} P(A_i)\varrho(x, E[F|A_i]) = \int_{A} \varrho(x, E^{\mathscr{F}_{n+1}}[F]) dP$$

which proves (2.1) and completes the proof of the lemma.

THEOREM 2.1. Let $\{\mathscr{F}_n\}_{n=1}^{\infty}$ be an increasing sequence of finite subfields of \mathscr{A} . Then the sequence $\{E^{\mathscr{F}_n}[F]\}_{n=1}^{\infty}$ of \hat{X} -valued random sets converges almost surely.

W. Herer

Proof. Let *D* be a countable dense set in (X, ϱ) . By Lemma 2.1 there exists a negligible event *N* such that for every $\omega \in \Omega \setminus N$ the set $\bigcup_{n=1}^{\infty} E^{\mathscr{F}_n}[F](\omega)$ is bounded in *X* and $\lim_{n \to \infty} \varrho(x, E^{\mathscr{F}_n}[F](\omega))$ exists and is finite for every $x \in D$. Thus by Lemma 0.1 it follows that the sequence $\{E^{\mathscr{F}_n}[F](\omega)\}_{n=1}^{\infty}$ is convergent in $(\hat{X}, \hat{\varrho})$ for every $\omega \in \Omega \setminus N$.

We shall now define conditional mathematical expectation of F relative to an arbitrary sub- σ -field \mathscr{B} of \mathscr{A} .

Let L_0 be a space of (equivalence classes of) \hat{X} -valued random sets equipped with topology of convergence in probability with respect to the Hausdorff metric $\hat{\varrho}$ in \hat{X} . This topology is metrizable by the metric:

$$\hat{\varrho}_0(F, F') = \inf\{\varepsilon > 0: P(\hat{\varrho}(F, F') > \varepsilon) < \varepsilon\}$$

and the metric space $(L_0, \hat{\varrho}_0)$ is complete.

Let us remark that, as in the real case, almost sure convergence of F_n to F implies that $\hat{\varrho}_0(F_n, F) \to 0$ as $n \to \infty$.

Let \mathscr{B} be an arbitrary (not necessarily finite) sub- σ -field of \mathscr{A} and let $\mathscr{F}(\mathscr{B})$ be the collection of all finite subfields of \mathscr{B} downward directed by inclusion. Theorem 2.1 states that, for any increasing sequence $\{\mathscr{F}_n\}_{n=1}^{\infty}$ of elements in the directed set $\mathscr{F}(\mathscr{B})$, the sequence $\{E^{\mathscr{F}_n}[F]\}_{n=1}^{\infty}$ converges in a complete metric space $(L_0, \hat{\varrho}_0)$. This implies ([12], Lemma V-1-1) that the net $\{E^{\mathscr{F}}[F]\}_{\mathscr{F}\in\mathscr{F}(\mathscr{B})}$ is convergent in $(L_0, \hat{\varrho}_0)$.

DEFINITION 2.1. Any random set from the equivalence class $\lim_{\mathcal{F} \in \mathcal{F}(\mathcal{B})} E^{\mathcal{F}}[F]$ is called a (version of the) conditional mathematical expectation of F relative to \mathcal{B} .

We shall prove now the following metric analogous of a theorem of P. Lévy.

THEOREM 2.2. Let $\{\mathscr{B}_n\}_{n=1}^{\infty}$ be an increasing sequence of countably generated sub- σ -fields of \mathscr{A} . Then the sequence $\{E^{\mathscr{B}_n}[F]\}_{n=1}^{\infty}$ of \hat{X} -valued random sets converges almost surely and

$$\lim_{n} E^{\mathscr{B}_{n}}[F] \subset E^{\mathscr{B}_{\infty}}[F] \text{ a.s., where } \mathscr{B}_{\infty} = \sigma(\bigcup_{n=1}^{\infty} \mathscr{B}_{n}).$$

Before proving Theorem 2.2 let us state two lemmas.

LEMMA 2.2. Let $\{A_n\}_{n=0}^{\infty}$ be a sequence of non-negligible events in \mathscr{A} such that $P(A_n \Delta A_0) \to 0$ as $n \to \infty$ (Δ stands for symmetric difference of sets). If a sequence $a_n \in E[F | A_n]$ (n = 1, 2, ...) is convergent, then $\lim a_n \in E[F | A_0]$.

Proof. For every n = 1, 2, ...

$$\varrho(x, a_n) \leq \frac{1}{P(A_n)} \int_{A_n} \delta(x, F) dP, \quad \forall x \in X.$$

Hence, for every $x \in X$,

$$\varrho(x, \lim_{n} a_{n}) = \lim_{n} \varrho(x, a_{n}) \leq \frac{1}{P(A_{0})} \int_{A_{0}} \delta(x, F) dP,$$

which means that $\lim a_n \in E[F | A_0]$.

LEMMA 2.3. Let $\{\mathscr{F}_n\}_{n=1}^{\infty}$ be an increasing sequence of finite subfields of \mathscr{A} . Then

$$\lim_{n} \mathbb{E}^{\mathscr{F}_{n}}[F] \subset \mathbb{E}^{\mathscr{F}_{\infty}}[F] \text{ a.s., where } \mathscr{F}_{\infty} = \sigma(\bigcup_{n=1}^{\infty} \mathscr{F}_{n}).$$

Proof. Since $E^{\mathscr{F}_{\infty}}[F]$ is a limit in $(L_0, \hat{\varrho}_0)$ of a net $\{E^{\mathscr{F}}[F]\}_{\mathscr{F}\in\mathscr{F}(\mathscr{F}_{\infty})}$, there exists an increasing sequence $\{\mathscr{F}'_n\}_{n=1}^{\infty}$ of finite subfields of \mathscr{F}_{∞} such that

(2.2) $\lim_{n} \hat{\varrho}_0(E^{\mathscr{F}'_n}[F], E^{\mathscr{F}_{\infty}}[F]) = 0 \quad \text{and} \quad \mathscr{F}_n \subset \mathscr{F}'_n \quad \text{for } n = 1, 2, \dots$

By Theorem 2.1, both sequences $\{E^{\mathscr{F}_n}[F]\}_{n=1}^{\infty}$ and $\{E^{\mathscr{F}'_n}[F]\}_{n=1}^{\infty}$ converge almost surely. By Egoroff's theorem (which is just as valid for r.v.'s with values in a metric space as for real r.v.'s) and by the density of $\bigcup_{n=1}^{\infty} \mathscr{F}_n$ in \mathscr{F}_{∞} we infer that for every $\varepsilon > 0$ there is a positive integer $n(\varepsilon)$ and a set $B_{\varepsilon} \in \mathscr{F}_{n(\varepsilon)}$ such that $P(B_{\varepsilon}) > 1 - \varepsilon$ and both sequences $\{E^{\mathscr{F}_n}[F]\}_{n=1}^{\infty}$ and $\{E^{\mathscr{F}'_n}[F]\}_{n=1}^{\infty}$ converge uniformly on B_{ε} . Thus there exists a subsequence $\{p_n\}_{n=1}^{\infty}$ of positive integers with $p_1 \ge n(\varepsilon)$ and such that

(2.3)
$$\hat{\varrho}_0(E^{\mathscr{P}_p}[F](\omega), E^{\mathscr{P}_p}[F](\omega)) \leq 1/n, \quad \forall \omega \in B_{\varepsilon}, \ \forall n \ge 1, \ \forall i, j \ge n.$$

Let us fix arbitrary $\omega_0 \in B_{\varepsilon}$. We shall prove that

(2.4)
$$\lim_{n} E^{\mathscr{F}_{n}}[F](\omega_{0}) \subset \lim_{n} E^{\mathscr{F}'_{n}}[F](\omega_{0}).$$

If $x \in \lim_{n} E^{\mathscr{F}_{n}}[F](\omega_{0})$, then there exists a subsequence $\{p_{r_{n}}\}_{n=1}^{\infty}$ of $\{p_{n}\}_{n=1}^{\infty}$ and a sequence $\{x_{n}\}_{n=1}^{\infty}$ of elements $x_{n} \in E^{\mathscr{F}_{p_{r_{n}}}}[F](\omega_{0})$ (n = 1, 2, ...) such that

$$x = \lim_{n} x_n$$

For every n = 1, 2, ... and every $\omega \in B_{\varepsilon}$ let us denote by $A_n(\omega)$ and $A'_n(\omega)$ the atoms of $\mathscr{F}_{p_{r_n}}$ and $\mathscr{F}'_{p_{r_n}}$, respectively, such that $\omega \in A_n(\omega)$ and $\omega \in A'_n(\omega)$.

W. Herer

Since \mathscr{F}_{∞} is generated by the \mathscr{F}_n 's, for every $n = 1, 2, \ldots$ there is a sequence of sets $\{B_{n,m}\}_{m=1}^{\infty}$ such that $B_{n,m} \in \mathscr{F}_{p_{r_n+m}}$ for $m = 1, 2, \ldots$ and

$$\lim_{m} P(A'_n(\omega_0) \Delta B_{n,m}) = 0.$$

Since, by (2.2), $A'_n(\omega_0) \subset A_n(\omega_0)$, we can and shall assume that $B_{n,m} \subset A_{n,m}(\omega_0)$ for n, m = 1, 2, ... From (2.3) we have

(2.5)
$$\varrho(x_n, E[F | A_j(\omega_0)]) \leq 1/n, \quad \forall n \geq 1, \ \forall j \geq n.$$

Since $A_j(\omega) = A_j(\omega_0)$ for every $\omega \in A_j(\omega_0)$ (j = 1, 2, ...), from (2.5) we obtain

$$(2.6) \qquad \varrho(x_n, E[F \mid A_j(\omega)]) \leq 1/n, \quad \forall n \ge 1, \ \forall j \ge n, \ \forall \omega \in A_j(\omega_0).$$

Since \mathscr{F}_k (k = 1, 2, ...) are finite subfields of \mathscr{A} , there are finite sets of indices I = I(n, m) (n, m = 1, 2, ...) such that

$$B_{n,m} = \bigcup_{i \in I} A_{n+m}(\omega_i) \quad \text{and} \quad A_{n+m}(\omega_i) \cap A_{n+m}(\omega_l) = \emptyset \quad \text{for } i \neq l, \ i, l \in I.$$

By (2.6) there exist elements $a_{n,m}^i \in E[F | A_{n+m}(\omega_i)]$ such that $\varrho(x_n, a_{n,m}^i) \leq 1/n$. Since the metric space (X, ϱ) is D-convex, there exist elements $b_{n,m} \in X$ (n, m = 1, 2, ...) such that

$$\varrho(x, b_{n,m}) \leq \sum_{i \in I} \frac{P(A_{n+m}(\omega_i))}{P(B_{n,m})} \varrho(x, a_{n,m}^i), \quad \forall x \in X$$

It is easily checked that

(2.7) $b_{n,m} \in E[F | B_{n,m}]$ and $\varrho(x_n, b_{n,m}) \leq 1/n$ (n, m = 1, 2, ...).

Since (X, ϱ) is finitely compact, for every n = 1, 2, ... the bounded sequence $\{b_{n,m}\}_{m=1}^{\infty}$ contains a convergent subsequence $\{b_{n,k_m}\}_{m=1}^{\infty}$. Put

$$b_n = \lim_m b_{n,k_m}$$
 (*n* = 1, 2, ...).

Since for n = 1, 2, ... we have $P(B_{n,k_m} \Delta A'_n(\omega_0)) \to 0$ as $m \to \infty$, we infer from (2.7) and Lemma 2.1 that

(2.8)
$$b_n \in E[F | A'_n(\omega_0)]$$
 and $\varrho(x_n, b_n) \le 1/n$ for $n = 1, 2, ...$

Thus

$$x = \lim_{n} x_{n} = \lim_{n} b_{n} \in \lim_{n} E[F | A'_{n}(\omega_{0})] = \lim_{n} E^{\mathscr{F}'_{n}}[F](\omega_{0}),$$

which proves (2.4) and completes the proof of Lemma 2.3.

Proof of Theorem 2.2. Since each \mathscr{B}_n is countably generated, for each n = 1, 2, ... there exists an increasing sequence $\{\mathscr{F}_{n,m}\}_{m=1}^{\infty}$ of finite subfields of \mathscr{B}_n which generates \mathscr{B}_n . Since each $E^{\mathscr{B}_n}[F]$ is a limit in L_0 of a net

 ${E^{\mathscr{F}}[F]}_{\mathscr{F}\in\mathscr{F}(\mathscr{B}_n)}$ and $\mathscr{B}_n \subset \mathscr{B}_{n+1}$, we can and shall assume that $\lim_{m} \hat{\varrho}_0(E^{\mathscr{F}_{n,m}}[F], E^{\mathscr{B}_n}[F]) = 0$ and $\mathscr{F}_{n,m} \subset \mathscr{F}_{n+1,m}$ for n, m = 1, 2, ...

Let us fix an arbitrary $\varepsilon > 0$. By Egoroff's theorem there are sets $B_n \in \mathscr{B}_n$ such that $P(B_n) > 1 - \varepsilon/2^n$ (n = 1, 2, ...) and

$$\lim_{m} E^{\mathscr{F}_{n,m}}[F] = E^{\mathscr{B}_{n}}[F] \text{ uniformly on } B_{n} \quad (n = 1, 2, \ldots).$$

Thus there exists a subsequence $\{m_n\}$ of positive integers such that

(2.9)
$$\sup_{\omega \in B} \hat{\varrho}_0(E^{\mathscr{F}_{n,m_n}}[F](\omega), E^{\mathscr{B}_n}[F](\omega)) \to 0 \quad \text{as } n \to \infty,$$

where

$$B=\bigcap_{n=1}^{\infty}B_n.$$

Defining $\mathscr{F}_n = \mathscr{F}_{n,m_n}$ we obtain an increasing sequence $\{\mathscr{F}_n\}_{n=1}^{\infty}$ of finite subfields of \mathscr{B}_{∞} which generates \mathscr{B}_{∞} . By Lemma 2.3 we have

$$\lim_{n} E^{\mathscr{F}_{n}}[F] \subset E^{\mathscr{B}_{\infty}}[F] \text{ a.s.}$$

Let $B_{\varepsilon} \in \mathscr{B}_{\infty}$, $B_{\varepsilon} \subset \mathscr{B}$, be a set with $P(B_{\varepsilon}) > 1 - 2\varepsilon$ and such that $E^{\mathscr{F}_{n}}[F]$ converges uniformly on B_{ε} . It follows from (2.9) that $E^{\mathscr{B}_{n}}[F]$ converges uniformly on B_{ε} and

$$\lim_{n} E^{\mathscr{B}_{n}}[F](\omega) = \lim_{n} E^{\mathscr{F}_{n}}[F](\omega) \subset B^{\mathscr{B}_{\infty}}[F](\omega), \quad \forall \omega \in B_{\varepsilon},$$

which completes the proof since $P(B_{\varepsilon}) > 1-2\varepsilon$ and $\varepsilon > 0$ was chosen arbitrarily.

3. Martingales. Throughout this section (X, ϱ) is a finitely compact, D-convex metric space and all random sets take values in \hat{X} .

If F is a random set and \mathscr{B} a sub- σ -field of \mathscr{A} , then we denote by $S(F; \mathscr{B})$ the collection of all \mathscr{B} -measurable selections of F.

DEFINITION 3.1. Let $\{\mathscr{B}_n\}_{n=1}^{\infty}$ be an increasing sequence of sub- σ -fields of \mathscr{A} and $\{F_n\}_{n=1}^{\infty}$ a sequence of scalarly integrable, \mathscr{B}_n -measurable random sets. We say that $\{F_n, \mathscr{B}_n\}_{n=1}^{\infty}$ is a martingale iff

 $E^{\mathscr{B}_n}[f] \subset F_n$ a.s. for every $f \in S(F_{n+1}; \mathscr{B}_{n+1}), n = 1, 2, ...$

LEMMA 3.1. Let F be a scalarly integrable random set, \mathcal{B} a sub- σ -field of \mathscr{A} and $\{\mathscr{F}_m\}_{m=1}^{\infty}$ an increasing sequence of finite subfields of \mathscr{B} such that

$$E^{\mathscr{B}}[F] = \lim_{m} E^{\mathscr{F}_m}[F] \ a.s.$$

Then for every $x \in X$ there exists a negligible event N such that for every $\omega \in \Omega \setminus N$ and $a \in E^{\mathscr{B}}[F](\omega)$ we have

$$\varrho(x, a) \leq E^{\mathscr{F}_{\infty}}[\delta(x, F)](\omega), \quad \text{where } \mathscr{F}_{\infty} = \sigma(\bigcup_{m=1}^{\infty} \mathscr{F}_{m}).$$

Proof. Let N' be a negligible event such that

$$E^{\mathscr{B}}[F](\omega) = \lim_{m} E^{\mathscr{F}_{m}}[F](\omega), \quad \forall \omega \in \Omega \setminus N'.$$

Let $a \in E^{\mathscr{B}}[F](\omega)$ for some $\omega \in \Omega \setminus N'$. Thus there exists a sequence $\{a_m\}_{m=1}^{\infty}$ of elements of X converging to a and such that $a_m \in E^{\mathscr{F}_m}[F](\omega)$ (m = 1, 2, ...), which means that for every $x \in X$ the following inequality holds:

$$\varrho(x, a_m) \leq \frac{1}{P(A_m)} \int_{A_m} \delta(x, F), \text{ where } \omega \in A_m, \text{ an atom of } \mathscr{F}_m.$$

The real martingale

$$\left\{\frac{1}{P(A_m)}\int\limits_{A_m}\delta(x, F)\,dP,\,\mathscr{F}_m\right\}_{m=1}^{\infty}$$

converges to $E^{\mathscr{F}_{\infty}}[\delta(x, F)]$ outside some negligible event N'' ([12], Proposition II.2.11). Thus for every $x \in X$ there is a negligible event $N = N' \cup N''$ such that

$$\varrho(x, a) = \lim_{m} \varrho(x, a_m) \leq E^{\mathscr{F}_{\infty}}[\delta(x, F)](\omega), \quad \forall \omega \in \Omega \backslash N.$$

THEOREM 3.1. Let F be a scalarly integrable random set and $\{\mathscr{B}_n\}_{n=1}^{\infty}$ an increasing sequence of sub- σ -fields of A. Then $\{E^{\mathscr{B}_n}[F], \mathscr{B}_n\}_{n=1}^{\infty}$ is a martingale.

Proof. Let $n \ge 1$ be fixed and $f \in S(E^{\mathscr{B}_{n+1}}[F]; \mathscr{B}_{n+1})$. Let $\{F_m^n\}_{m=1}^{\infty}$ and $\{\mathscr{F}_m^{n+1}\}_{m=1}^{\infty}$ be two increasing sequences of finite subfields of \mathscr{B}_n and \mathscr{B}_{n+1} , respectively, such that $\mathscr{F}_m^n \subset \mathscr{F}_m^{n+1}$ for $m = 1, 2, \ldots$ and satisfying

$$E^{\mathscr{B}_{n}}[f](\omega) = \lim_{m} E^{\mathscr{F}_{m}^{n}}[f](\omega), \quad E^{\mathscr{B}_{n}}[F](\omega) = \lim_{m} E^{\mathscr{F}_{m}^{n}}[F],$$
$$E^{\mathscr{B}_{n+1}}[F] = \lim_{m} E^{\mathscr{F}_{m}^{n+1}}[F](\omega), \quad \forall \omega \in \Omega \setminus N,$$

for some negligible event N.

Let $a \in E^{\mathscr{B}_n}[f](\omega)$ for some $\omega \in \Omega \setminus N$. There is then a sequence $\{a_m\}_{m=1}^{\infty}$ of elements of X converging to a such that $a_m \in E^{\mathscr{F}_m^n}[f](\omega)$ for m = 1, 2, ..., which means that for every $x \in X$ the following inequality holds:

$$\varrho(x, a_m) \leq \frac{1}{P(A_m)} \int_{A_m} \varrho(x, f) dP$$
, where $\omega \in A_m$, an atom of \mathscr{F}_m^n .

Since $f(\omega) \in E^{\otimes_{n+1}}[F](\omega)$ for every $\omega \in \Omega$, by Lemma 3.1 we have

$$\varrho(x, a_m) \leq \frac{1}{P(A_m)} \int_{A_m} E^{\mathscr{F}_{\infty}^{n+1}} [\delta(x, F)] dP, \quad \forall x \in X,$$

where

$$\mathscr{F}_{\infty}^{n+1} = \sigma(\bigcup_{m=1}^{\infty} \mathscr{F}_{m}^{n+1}).$$

But $\mathscr{F}_m^n \subset \mathscr{F}_\infty^{n+1}$ for m = 1, 2, ..., and thus we have

$$\varrho(x, a_m) \leq \frac{1}{P(A_m)} \int_{A_m} \delta(x, F) dP, \quad \forall x \in X, \ m \geq 1,$$

which means that $a_m \in E^{\mathscr{F}_m^n}[F](\omega)$ for m = 1, 2, ..., and thus

$$a = \lim_{m} a_m \in E^{\mathscr{B}_n}[F](\omega).$$

The theorem is proved.

THEOREM 3.2. Let $\{F_n, \mathscr{B}_n\}_{n=1}^{\infty}$ be a martingale and suppose that:

(a) The set $\bigcup_{n=1}^{\infty} F_n(\omega)$ is a bounded subset of X for almost every $\omega \in \Omega$.

(b) $\sup \int \varrho(x, F_n) dP < \infty, \forall x \in X.$

(c) The σ -fields \mathscr{B}_n are countably generated for n = 1, 2, ...

Then the sequence $\{F_n\}_{n=1}^{\infty}$ of random sets converges almost surely.

Proof. We shall show first that $\{\varrho(x, F_n), \mathscr{B}_n\}_{n=1}^{\infty}$ is a (real) submartingale for every $x \in X$.

Let $n \ge 1$ be fixed and let $f \in S(F_{n+1}; \mathscr{B}_{n+1})$ satisfy

$$\varrho(x, f(\omega)) = \varrho(x, F_{n+1}(\omega)), \quad \forall \omega \in \Omega.$$

Since $\{F_n, \mathscr{B}_n\}_{n=1}^{\infty}$ is a martingale, for every $x \in X$ we have

$$\varrho(x, F_n) \leq \varrho(x, E^{\mathscr{B}_n}[f])$$
 a.s.

Thus for every $A \in \mathcal{B}_n$ we have

$$\int_{A} \varrho(x, F_n) dP \leq \int_{A} \varrho(x, E^{\mathscr{B}_n}[f]) dP.$$

Since the σ -field \mathscr{B}_n is countably generated, from Lemma 3.1 we obtain

$$\int_{A} \varrho(x, E^{\mathscr{B}_n}[f]) dP \leq \int_{A} E^{\mathscr{B}_n}[\varrho(x, f)] dP.$$

But

$$\int_{A} E^{\mathscr{B}_n}[\varrho(x,f)] dP = \int_{A} \varrho(x,f) dP = \int_{A} \varrho(x, F_{n+1}) dP,$$

which proves that $\{\varrho(x, F_n), \mathscr{B}_n\}_{n=1}^{\infty}$ is a submartingale.

By (b), the submartingale $\{\varrho(x, F_n), \mathscr{B}_n\}_{n=1}^{\infty}$ converges almost surely ([12], Theorem IV.1.2) for every $x \in X$. Let D be a countable dense subset of X. There exists a negligible event N such that for every $\omega \in \Omega \setminus N$ the set $\bigcup_{n=1}^{\infty} F_n(\omega)$ is a bounded subset of X and the sequence of reals $\{\varrho(x, F_n(\omega))\}_{n=1}^{\infty}$ converges for every $x \in D$. Hence, by Proposition 0.1, the sequence $\{F_n(\omega)\}_{n=1}^{\infty}$ converges in $(\hat{X}, \hat{\varrho})$ for every $\omega \in \Omega \setminus N$.

REFERENCES

- V. E. Beneš, Martingales on metric spaces, Teor. Veroyatnost. i Primenen. 7 (1962), pp. 82-83.
- [2] L. M. Blumenthal, Theory and Applications of Distance Geometry, Oxford 1953.
- [3] S. Doss, Sur la moyenne d'un élément aléatoire dans un espace distancié, Bull. Sci. Math. 73 (1949), pp. 48–72.
- [4] Moyennes conditionnelles et martingales dans un espace métrique, C. R. Acad. Sci. Paris 254
 (A) (1962), pp. 3630–3632.
- [5] M. Fréchet, Sur diverses définitions de la moyenne d'un élément aléatoire de nature quelconque, Giorn. Inst. Ital. Att. 19 (1956), pp. 1–15; ibidem 20 (1957), pp. 1–37.
- [6] Définitions de la somme et du produit par scalaire en terme de distance, Ann. Sci. École Norm. Sup., Paris, (3) 75 (1958), pp. 223–255.
- [7] S. Gahler and G. Murphy, A metric characterization of normed linear spaces, Math. Nachr. 102 (1981), pp. 297-309.
- [8] W. Herer, Espérance mathématique au sense de Doss d'une variable aléatoire à valeurs dans un espace métrique, C. R. Acad. Sci. Paris, Série I, 302 (1986), pp. 131–134.
- [9] Martingales à valeurs fermées bornées d'un espace métrique, ibidem 305 (1987), pp. 257–258.
- [10] K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), pp. 397-403.
- [11] G. Matheron, Random Sets and Integral Geometry, J. Wiley, New York 1975.
- [12] J. Neveu, Discrete Parameter Martingales, North Holland, Amsterdam 1975.

Institute of Mathematics Technical University of Warsaw pl. Jedności Robotniczej 1 00-661 Warsaw, Poland

Received on 2.5.1988

304