MATHEMATICAL EXPECTATION AND MARTINGALES OF RANDOM SUBSETS OF A METRIC SPACE

BY
WOJCIECH HERER (WARSZAWA)

Abstract

Let F be a closed, bounded, non-empty random subset of a metric space (X, ϱ). For some class of metric spaces we define in terms of the metric ϱ (developing an idea of S. Doss) mathematical expectation and conditional mathematical expectation of F. We then consider martingales of random subsets of a metric space and prove theorems of convergence for such martingales.

0. Introduction and preliminaries. S. Doss has introduced in [3] a concept of mathematical expectation of a random variable with values in a metric space (see also [1] and [4]). This and other concepts of mathematical expectation were studied by M. Fréchet in [5] and [6].

In this paper we develop an idea of S . Doss and investigate notions of mathematical expectation (Section 1), conditional mathematical expectation (Section 2) and martingale (Section 3) of random subsets of a metric space.

Results of this paper were announced in [8] and [9].
Let (X, ϱ) be a metric space. By ($\hat{X}, \hat{\varrho}$) we denote the metric space of closed, bounded and non-empty subsets of X, equipped with the Hausdorff metric ϱ defined as

$$
\hat{\varrho}\left(F, F^{\prime}\right)=\max \left\{\sup _{x \in F^{\prime}} \varrho\left(x, F^{\prime}\right), \sup _{x^{\prime} \in F^{\prime}} \varrho\left(x^{\prime}, F\right)\right\},
$$

where $\varrho(x, F)=\inf \{\varrho(x, y): y \in F\}$ for $x \in X$ and $F \in \hat{X}$.
We put

$$
F=\operatorname{Lim}_{n} F_{n} \quad \text { iff } \quad \lim _{n} \hat{\varrho}\left(F_{n}, F\right)=0 .
$$

For $x \in X$ and $F \in \hat{X}$, we set

$$
\delta(x, F)=\sup \{\varrho(x, y): y \in F\} .
$$

A metric space (X, ϱ) is called finitely compact iff every closed bounded subset of X is compact. Let us note the following known

Proposition 0.1 ([11], Proposition 1.2.5). Let (X, ϱ) be a finitely compact metric space and let $\left\{F_{n}\right\}_{n=1}^{\infty}$ be a sequence of set elements of \hat{X} such that $\bigcup_{n=1}^{\infty} F_{n}$ is a bounded subset of X. Suppose there exists a dense set $D \subset X$ such that for every $x \in D$ the limit $\lim \varrho\left(x, F_{n}\right)$ exists and is finite. Then the sequence $\left\{F_{n}\right\}_{n=1}^{\infty}$ converges in (\hat{X}, ϱ).

Let (Ω, \mathscr{A}, P) be a probability space. An event $A \in \mathscr{A}$ is called negligible iff $P(A)=0$. For a collection \mathscr{B} of subsets of Ω we denote by $\sigma(\mathscr{B})$ the σ-field generated by \mathscr{B}.

A Borel measurable map $F: \Omega \rightarrow \hat{X}$ is called an \hat{X}-valued random set (r.s.) and a Borel measurable map $f: \Omega \rightarrow X$ is called an X-valued random variable (r.v.). We shall frequently identify a random variable f with a random set $\{f\}$. An r.s. is called scalarly integrable iff

$$
\int_{\Omega} \delta(x, F(\omega)) d P(\omega)<\infty \quad \text { for every } x \in X
$$

Throughout this paper (Ω, \mathscr{A}, P) will be a fixed complete, non-atomic probability space and all random sets will be defined on (Ω, \mathscr{A}, P).

1. Mathematical expectation.

Definition 1.1. Let (X, ϱ) be a metric space and F an \hat{X}-valued random set. The set $E[F]$ defined as

$$
E[F]=\left\{a \in X: \varrho(x, a) \leqslant \int_{\Omega} \delta(x, F(\omega)) d P(\omega)<\infty, \forall x \in X\right\}
$$

is called a mathematical expectation of F.
For every \hat{X}-valued r.s. F the set $E[F]$ is evidently closed. If F is scalarly integrable, then the set $E[F]$ is also bounded.

We shall state now the condition imposed on a metric space (X, ϱ) in order that for every X-valued r.s. F the set $E[F]$ is non-empty.

Defintion 1.2. A metric space (X, ϱ) is called convex in the sense of Doss (or D-convex) iff for any two elements $x_{1}, x_{2} \in X$ there exists an element $a \in X$ such that

$$
\varrho(x, a) \leqslant \frac{1}{2}\left[\varrho\left(x, x_{1}\right)+\varrho\left(x, x_{2}\right)\right], \quad \forall x \in X .
$$

Remark 1.1. It is easily checked that every \mathbf{D}-convex metric space is metrically convex in the sense of Menger (see [2], Definition 14.1) but not conversely (e.g., a circle in the Euclidean plane with an arc metric).

Remark 1.2. In ([7], Section 8) the authors have proved that the hyperbolic plane (of Lobochevski) equipped with the geodesic metric is a D-convex metric space (it can be proved that any simply connected Riemannian manifold of non - positive curvature equipped with geodesic metric is a D -convex metric space).

Remark 1.3. Suppose $(Y,\|\cdot\|)$ is a Banach space and $\varrho(x, y)=\|x-y\|$ for $x, y \in Y$. Then for every Y-valued Bochner-integrable random variable the Bochner integral $\int_{\Omega} f(\omega) d P(\omega) \in E[f]$.

Doss has proved in ([3], Theorème 1) that

$$
E[f]=\left\{\int_{\Omega} f d P\right\} \quad \text { if } \operatorname{dim} Y=1
$$

In ([7], Theorem 1) the authors have proved (answering the question of Frechet [6]) that $E[f]=\left\{\int_{\Omega} f d P\right\}$ for any two-valued random variable f.

Remark 1.4. Suppose X is a closed, bounded, convex subset of a Banach space Y. Then the metric space (X, ϱ) is D -convex and the Bochner integral $\int_{\Omega} f d P \in E[f]$ for any Bochner-integrable X-valued random variable f.

The following example shows that the Bochner integral is not necessarily the only element of $E[f]$.

Example 1.1. Let

$$
X=\left\{\left[\alpha_{1}, \alpha_{2}\right]: \alpha_{1} \geqslant 0, \alpha_{2} \geqslant 0, \alpha_{1}+\alpha_{2} \leqslant 1\right\}
$$

and

$$
\varrho\left(\left[\alpha_{1}, \alpha_{2}\right],\left[\beta_{1}, \beta_{2}\right]\right)=\left|\alpha_{1}-\beta_{1}\right|+\left|\alpha_{2}-\beta_{2}\right| .
$$

Let f be an X-valued r.v. satisfying

$$
P(f=[1,0])=P(f=[0,1])=\frac{1}{2} .
$$

One checks easily that $E[f]=\left\{\left[\alpha_{1}, \alpha_{2}\right] \in X: \alpha_{1}=\alpha_{2}\right\}$.
Theorem 1.1. Let (X, ϱ) be a finitely compact metric space. Then for every \hat{X}-valued random set F the set $E[F]$ is non-empty iff (X, ϱ) is a D-convex metric space.

Proof. The necessity of D -convexity of a metric space (X, ϱ) is evident, since "D-convexity" means precisely that for every X-valued r.v. f satisfying $P\left(f=x_{1}\right)=P\left(f=x_{2}\right)=\frac{1}{2}$, one has $E[f] \neq \varnothing$.

We shall prove now that if a metric space (X, ϱ) is D -convex, then for every \hat{X}-valued r.s. F the set $E[F]$ is non-empty.

If a random set F is not scalarly integrable, then $E[F]=X \neq \varnothing$.
If F is a scalarly integrable r.s., then any measurable selection f of F (which always exists by [10]) is a scalarly integrable r.v. and $E[f] \subset E[F]$.

It is thus sufficient to prove that if a metric space (X, ϱ) is D -convex, then for every scalarly integrable X-valued r.v. f the set $E[f]$ is nonempty.

This will be proved in several steps.
$\left(1^{\circ}\right)$ If f is an X-valued r.v. with card $f(\Omega) \leqslant 2$, then $E[f] \neq \varnothing$.

We have to prove that for every $x_{1}, x_{2} \in X$ and any $p \in[0,1]$ there is an element $a \in X$ such that

$$
\varrho(x, a) \leqslant p \varrho\left(x, x_{1}\right)+(1-p) \varrho\left(x, x_{2}\right), \quad \forall x \in X .
$$

We shall prove this first for dyadic rationals $p=k / 2^{n}\left(k=1, \ldots, 2^{n} ; n=1,2, \ldots\right)$. We shall proceed by induction; for $n=1$ our statement is true by the definition of D - convexity of a metric space (X, ϱ). If for some $n \geqslant 1$ and $1 \leqslant k, l \leqslant 2^{n}$ one has

$$
\varrho(x, a) \leqslant \frac{k}{2^{n}} \varrho\left(x, x_{1}\right)+\left(1-\frac{k}{2^{n}}\right) \varrho\left(x, x_{2}\right), \quad \forall x \in X,
$$

and

$$
\varrho(x, b) \leqslant \frac{l}{2^{n}} \varrho\left(x, x_{1}\right)+\left(1-\frac{l}{2^{n}}\right) \varrho\left(x, x_{2}\right), \quad \forall x \in X,
$$

then there exists $c \in X$ such that

$$
\varrho(x, c) \leqslant \frac{1}{2}[\varrho(x, a)+\varrho(x, b)]=\frac{k+l}{2^{n+1}} \varrho\left(x, x_{1}\right)+\left(1-\frac{k+l}{2^{n+1}}\right) \varrho\left(x, x_{2}\right),
$$

which completes the induction.
Let $p \in[0,1]$ be arbitrary and let $\left\{p_{n}\right\}_{n=1}^{\infty}$ be a sequence of dyadic rationals converging to p. For every $n=1,2, \ldots$ there are elements $a_{n} \in X$ such that

$$
\varrho\left(x, a_{n}\right) \leqslant p_{n} \varrho\left(x, x_{1}\right)+\left(1-p_{n}\right) \varrho\left(x, x_{2}\right), \quad \forall x \in X .
$$

Since the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is bounded and (X, ϱ) is finitely compact, we can extract from $\left\{a_{n}\right\}_{n=1}^{\infty}$ a subsequence $\left\{a_{k_{n}}\right\}_{n=1}^{\infty}$ converging to some $a \in X$. One evidently has

$$
\varrho(x, a) \leqslant p \varrho\left(x, x_{1}\right)+(1-p) \varrho\left(x, x_{2}\right), \quad \forall x \in X .
$$

(2 2° If f is an X-valued r.v. with $f(\Omega)$ finite, then $E[f] \neq \varnothing$.
We shall proceed by induction. By $\left(1^{\circ}\right)$, our statement is true if card $f(\Omega) \leqslant 2$.

Let $f(\Omega)=\left\{x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}\right\}$ and $P\left(f=x_{i}\right)=p_{i}$ for $i=1,2, \ldots, n+1$. Let us consider the r.v. distributed as follows:

$$
P\left(g=x_{i}\right)=p_{i} \sum_{j=1}^{n} p_{j} \quad \text { for } i=1,2, \ldots, n .
$$

Supposing that $\left(2^{\circ}\right)$ is true for an n-valued r.v. g we have $E[g] \neq \varnothing$. Let $a \in E[g]$ and let us consider the r.v. h distributed as follows:

$$
P(h=a)=\sum_{j=1}^{n} p_{j}, \quad P\left(h=x_{n+1}\right)=p_{n+1} .
$$

Then by $\left(1^{\circ}\right)$ we infer that $E[h] \neq \emptyset$. It is easily checked that $E[h] \subset E[f]$, and thus $E[f] \neq \varnothing$.
(3°) If f is an X-valued scalarly integrable r.v. with $f(\Omega)$ countable, then $E[f] \neq \varnothing$.

Let $f(\Omega)=\left\{x_{1}, x_{2}, \ldots\right\}$ and $P\left(f=x_{i}\right)=p_{i}$ for $i=1,2, \ldots$ By $\left(2^{\circ}\right)$, for every $n=1,2, \ldots$ there are elements $a_{n} \in X$ such that

$$
\varrho\left(x, a_{n}\right) \leqslant \sum_{i=1}^{n} \varrho\left(x, x_{i}\right) q_{i}^{n}, \quad \forall x \in X,
$$

where

$$
q_{i}^{n}=p_{i} / \sum_{j=1}^{n} p_{j}, \quad i=1,2, \ldots, n
$$

For every $x \in X$ we have

$$
\lim _{n} \sum_{i=1}^{n} \varrho\left(x, x_{i}\right) q_{i}^{n}=\sum_{i=1}^{\infty} \varrho\left(x, x_{i}\right) p_{i}<\infty .
$$

This implies that the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is bounded, and since the metric space (X, ϱ) is finitely compact, we can extract from $\left\{a_{n}\right\}_{n=1}^{\infty}$ a subsequence $\left\{a_{k_{n}}\right\}_{n=1}^{\infty}$ convergent to some $a \in X$. Then for every $x \in X$ we have

$$
\varrho(x, a)=\lim _{n} \varrho\left(x, a_{k_{n}}\right) \leqslant \lim _{n} \sum_{i=1}^{k_{n}} \varrho\left(x, x_{i}\right) q^{k_{n}}=\sum_{i=1}^{\infty} \varrho\left(x, x_{i}\right) p_{i},
$$

which means that $a \in E[f]$.
(4 4° If f is an arbitrary scalarly integrable X-valued r.v., then $E[f] \neq \emptyset$.
Since the metric space (X, ϱ) is separable, for every $n=1,2, \ldots$ there exists an X-valued r.v. f_{n} such that $f_{n}(\Omega)$ is countable and

$$
\varrho\left(f_{n}(\omega), f(\omega)\right) \leqslant 1 / n, \quad \forall \omega \in \Omega
$$

which implies that

$$
\varrho\left(x, f_{n}(\omega)\right) \leqslant \varrho(x, f(\omega))+1 / n, \quad \forall \omega \in \Omega, \quad \forall x \in X, \forall n \geqslant 1 .
$$

By (3°) there exists a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ of elements of X such that

$$
\varrho\left(x, a_{n}\right) \leqslant \int_{\Omega} \varrho\left(x, f_{n}\right) d P \leqslant \int_{\Omega} \varrho(x, f) d P+1 / n, \quad \forall x \in X, \forall n \geqslant 1 .
$$

Thus the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is bounded and we can extract from it a subsequence $\left\{a_{k_{n}}\right\}_{n=1}^{\infty}$ convergent to some $a \in X$. Since

$$
\varrho\left(x, f_{n}(\omega)\right) \leqslant \varrho(x, f(\omega))+1 / n \quad \text { for } x \in X, \omega \in \Omega, n=1,2, \ldots,
$$

by Lebesgue's bounded convergence theorem we have

$$
\varrho(x, a)=\lim _{n} \varrho\left(x, a_{k_{n}}\right) \leqslant \lim _{n} \int_{\Omega} \varrho\left(x, f_{n}\right) d P=\int_{\Omega} \varrho(x, f) d P, \quad \forall x \in X,
$$

which means that $a \in E[f]$.
2. Conditional mathematical expectation. Throughout this section we shall assume that (X, ϱ) is a finitely compact, D -convex metric space and F is an \hat{X}-valued scalarly integrable random set.

Suppose \mathscr{F} is a finite subfield of \mathscr{A} with non-negligible atoms (throughout this paper we shall always assume that finite subfields of \mathscr{A} have non-negligible atoms). Let us define the following random set:

$$
E^{\mathscr{F}}[F](\omega)=E[F \mid A] \quad \text { for } \omega \in A, \text { an atom of } \mathscr{F},
$$

where

$$
E[F \mid A]=\left\{a \in X: \varrho(x, a) \leqslant \frac{1}{P(A)} \int_{\Omega} \delta(x, F) d P, \forall x \in X\right\} .
$$

Lemma 2.1. Let $\left\{\mathscr{F}_{n}\right\}_{n=1}^{\infty}$ be an increasing sequence of finite subfields of \mathscr{A}. Then:
$\left(1^{\circ}\right) \bigcup_{n=1}^{\infty} E^{F_{n}}[F](\omega)$ is a bounded subset of X for almost every $\omega \in \Omega$.
 to a finite limit for almost every $\omega \in \Omega$.

Proof. (1 ${ }^{\circ}$) Let x be some element of X. For every $\omega \in \Omega$ and every $a \in E^{\mathscr{F}_{n}}[F](\omega)$ we have

$$
\varrho(x, a) \leqslant \frac{1}{P\left(A_{n}\right)} \int_{A_{n}} \delta(x, F) d P, \quad \text { where } \omega \in A_{n}, \text { an atom of } \mathscr{F}_{n} .
$$

The real martingale

$$
\left\{\frac{1}{P\left(A_{n}\right)} \int_{A_{n}} \delta(x, F) d P, \mathscr{F}_{n}\right\}_{n=1}^{\infty}
$$

converges almost surely to a finite limit ([12], Proposition II-2-11). Thus for almost every $\omega \in \Omega$

$$
\sup \sup \varrho(x, a)<\infty, \quad \text { where } F_{n}=E^{\mathscr{F}_{n}}[F](\omega)
$$

which proves that the set $\bigcup_{n=1}^{\infty} E^{\mathscr{F}_{n}}[F](\omega)$ is bounded for almost every $\omega \in \Omega$.
$\left(2^{\circ}\right)$ Let x be some element of X. Denote by $\left\{\xi_{n}\right\}_{n=1}^{\infty}$ the sequence of real random variables defined as

$$
\xi_{n}(\omega)=\varrho\left(x, E^{F_{n}}[F](\omega)\right) \quad \text { for } \omega \in \Omega(n=1,2, \ldots)
$$

It is sufficient to prove that $\left\{\xi_{n}, \mathscr{F}_{n}\right\}_{n=1}^{\infty}$ is a submartingale satisfying Doob's condition ([12], Theorem IV.1.2):

$$
\sup _{n} \int_{\Omega} \xi_{n} d P<\infty .
$$

For every A, an atom of \mathscr{F}_{n}, we have

$$
\int_{A} \xi_{n} d P=\int_{A} \varrho\left(x, E^{\mathscr{F}_{n}}[F]\right) d P=P(A) \varrho(x, E[F \mid A]) \leqslant \int_{A} \delta(x, F) d P .
$$

Hence

$$
\int_{\Omega} \xi_{n} d P \leqslant \int_{\Omega} \delta(x, F) d P<\infty
$$

and Doob's condition is satisfied.
For every $n=1,2, \ldots, \xi_{n}$ is evidently $\mathscr{\mathscr { F }}_{n}$-measurable. Thus we have to check that for every $n=1,2, \ldots$ and every atom A of \mathscr{F}_{n} the inequality

$$
\int_{A} \xi_{n} d P \leqslant \int_{A} \xi_{n+1} d P
$$

holds, that is

$$
\begin{equation*}
P(A) \varrho(x, E[F \mid A]) \leqslant \int_{A} \varrho\left(x, E^{\mathscr{F}_{n+1}}[F]\right) d P \quad(n=1,2, \ldots) \tag{2.1}
\end{equation*}
$$

Let A_{1}, \ldots, A_{k} be (disjoint) atoms of \mathscr{F}_{n+1} such that

$$
A=\bigcup_{i=1}^{k} A_{i}
$$

Since every set $E\left[F \mid A_{i}\right]$ is non-empty and compact, we can find the elements $a_{i} \in E\left[F \mid A_{i}\right]$ such that

$$
\varrho\left(x, a_{i}\right)=\varrho\left(x, E\left[F \mid A_{i}\right]\right) \quad \text { for } i=1, \ldots, k
$$

Let g be an X-valued r.v. distributed as follows:

$$
P\left(g=a_{i}\right)=\frac{P\left(A_{i}\right)}{P(A)} \quad \text { for } i=1, \ldots, k
$$

It is easily checked that $E[g] \subset E[F \mid A]$. Hence for every $a \in E[g]$ we have

$$
\varrho(x, E[F \mid A]) \leqslant \varrho(x, a)
$$

Thus, taking an arbitrary element $a \in E[g]$, we obtain

$$
\begin{aligned}
P(A) \varrho(x, E[F \mid A]) \leqslant & P(A) \varrho(x, a) \leqslant P(A) \sum_{i=1}^{k} \frac{P\left(A_{i}\right)}{P(A)} \varrho\left(x, a_{i}\right) \\
& =\sum_{i=1}^{k} P\left(A_{i}\right) \varrho\left(x, E\left[F \mid A_{i}\right]\right)=\int_{A} \varrho\left(x, E^{F_{n+1}}[F]\right) d P
\end{aligned}
$$

which proves (2.1) and completes the proof of the lemma.
Theorem 2.1. Let $\left\{\mathscr{F}_{n}\right\}_{n=1}^{\infty}$ be an increasing sequence of finite subfields of \mathscr{A}. Then the sequence $\left\{E^{\mathscr{F}_{n}}[F]\right\}_{n=1}^{\infty}$ of \hat{X}-valued random sets converges almost surely.

Proof. Let D be a countable dense set in (X, ϱ). By Lemma 2.1 there exists a negligible event N such that for every $\omega \in \Omega \backslash N$ the set $\bigcup_{n=1}^{\infty} E^{\mathscr{F}_{n}}[F](\omega)$ is bounded in X and $\lim _{n} \varrho\left(x, E^{F_{n}}[F](\omega)\right)$ exists and is finite for every $x \in D$. Thus by Lemma 0.1 it follows that the sequence $\left\{E^{\mathscr{F}_{n}}[F](\omega)\right\}_{n=1}^{\infty}$ is convergent in $(\hat{X}, \hat{\varrho})$ for every $\omega \in \Omega \backslash N$.

We shall now define conditional mathematical expectation of F relative to an arbitrary sub- σ-field \mathscr{B} of \mathscr{A}.

Let L_{0} be a space of (equivalence classes of) \hat{X}-valued random sets equipped with topology of convergence in probability with respect to the Hausdorff metric $\hat{\varrho}$ in \hat{X}. This topology is metrizable by the metric:

$$
\hat{\varrho}_{0}\left(F, F^{\prime}\right)=\inf \left\{\varepsilon>0: P\left(\hat{\varrho}\left(F, F^{\prime}\right)>\varepsilon\right)<\varepsilon\right\}
$$

and the metric space $\left(L_{0}, \hat{\varrho}_{0}\right)$ is complete.
Let us remark that, as in the real case, almost sure convergence of F_{n} to F implies that $\varrho_{0}\left(F_{n}, F\right) \rightarrow 0$ as $n \rightarrow \infty$.

Let \mathscr{B} be an arbitrary (not necessarily finite) sub- σ-field of \mathscr{A} and let $\mathscr{F}(\mathscr{B})$ be the collection of all finite subfields of \mathscr{B} downward directed by inclusion. Theorem 2.1 states that, for any increasing sequence $\left\{\mathscr{F}_{n}\right\}_{n=1}^{\infty}$ of elements in the directed set $\mathscr{F}(\mathscr{B})$, the sequence $\left\{E^{\mathscr{F n}}[F]\right\}_{n=1}^{\infty}$ converges in a complete metric space ($L_{0}, \hat{\varrho}_{0}$). This implies ([12], Lemma V-1-1) that the net $\left\{E^{\mathscr{F}}[F]\right\}_{\mathcal{F e F}_{\mathcal{F}}(\mathcal{P})}$ is convergent in $\left(L_{0}, \varrho_{0}\right)$.

Defintion 2.1. Any random set from the equivalence class $\lim _{\mathscr{S} \in \mathscr{F}(\mathscr{F})} E^{\mathscr{F}}[F]$ is called a (version of the) conditional mathematical expectation of F relative to \mathscr{B}.

We shall prove now the following metric analogous of a theorem of P. Lévy.

Theorem 2.2. Let $\left\{\mathscr{B}_{n}\right\}_{n=1}^{\infty}$ be an increasing sequence of countably generated sub- σ-fields of \mathscr{A}. Then the sequence $\left\{E^{\mathscr{S}_{n}}[F]\right\}_{n=1}^{\infty}$ of \hat{X}-valued random sets converges almost surely and

$$
\operatorname{Lim}_{n} E^{\mathscr{Q}_{n}}[F] \subset E^{\mathscr{Q}_{\infty}}[F] \text { a.s., } \quad \text { where } \mathscr{B}_{\infty}=\sigma\left(\bigcup_{n=1}^{\infty} \mathscr{B}_{n}\right) .
$$

Before proving Theorem 2.2 let us state two lemmas.
Lemma 2.2. Let $\left\{A_{n}\right\}_{n=0}^{\infty}$ be a sequence of non-negligible events in \mathscr{A} such that $P\left(A_{n} \Delta A_{0}\right) \rightarrow 0$ as $n \rightarrow \infty$ (Δ stands for symmetric difference of sets). If a sequence $a_{n} \in E\left[F \mid A_{n}\right](n=1,2, \ldots)$ is convergent, then $\lim a_{n} \in E\left[F \mid A_{0}\right]$.

Proof. For every $n=1,2, \ldots$

$$
\varrho\left(x, a_{n}\right) \leqslant \frac{1}{P\left(A_{n}\right)} \int_{A_{n}} \delta(x, F) d P, \quad \forall x \in X .
$$

Hence, for every $x \in X$,

$$
\varrho\left(x, \lim _{n} a_{n}\right)=\lim _{n} \varrho\left(x, a_{n}\right) \leqslant \frac{1}{P\left(A_{0}\right)} \int_{A_{0}} \delta(x, F) d P
$$

which means that $\lim _{n} a_{n} \in E\left[F \mid A_{0}\right]$.
Lemma 2.3. Let $\left\{\mathscr{F}_{n}\right\}_{n=1}^{\infty}$ be an increasing sequence of finite subfields of \mathscr{A}. Then

$$
\operatorname{Lim}_{n} \mathbb{E}^{\mathscr{F}_{n}}[F] \subset E^{\mathscr{F}_{\infty}}[F] \text { a.s., } \quad \text { where } \mathscr{F}_{\infty}=\sigma\left(\bigcup_{n=1}^{\infty} \mathscr{F}_{n}\right)
$$

Proof. Since $E^{\mathscr{F}_{\infty}}[F]$ is a limit in $\left(L_{0}, \varrho_{0}\right)$ of a net $\left\{E^{\mathscr{F}}[F]\right\}_{\mathscr{F} \in \mathscr{F}\left(\mathscr{F}_{\infty}\right)}$, there exists an increasing sequence $\left\{\mathscr{F}_{n}^{\prime}\right\}_{n=1}^{\infty}$ of finite subfields of \mathscr{F}_{∞} such that

$$
\begin{equation*}
\lim _{n} \hat{\varrho}_{0}\left(E^{\mathscr{F}_{n}^{\prime}}[F], E^{\mathscr{F}_{\infty}}[F]\right)=0 \quad \text { and } \quad \mathscr{F}_{n} \subset \mathscr{F}_{n}^{\prime} \quad \text { for } n=1,2, \ldots \tag{2.2}
\end{equation*}
$$

By Theorem 2.1, both sequences $\left\{E^{\mathscr{F}_{n}}[F]\right\}_{n=1}^{\infty}$ and $\left\{E^{\mathscr{F}^{\prime}}[F]\right\}_{n=1}^{\infty}$ converge almost surely. By Egoroff's theorem (which is just as valid for r.v.'s with values in a metric space as for real r.v.'s) and by the density of $\bigcup_{n=1}^{\infty} \mathscr{F}_{n}$ in \mathscr{F}_{∞} we infer that for every $\varepsilon>0$ there is a positive integer $n(\varepsilon)$ and a set $B_{\varepsilon} \in \mathscr{F}_{n(\varepsilon)}$ such that $P\left(B_{\varepsilon}\right)>1-\varepsilon$ and both sequences $\left\{E^{\mathscr{F}_{n}}[F]\right\}_{n=1}^{\infty}$ and $\left\{E^{\mathscr{F}_{n}^{\prime}}[F]\right\}_{n=1}^{\infty}$ converge uniformly on B_{ε}. Thus there exists a subsequence $\left\{p_{n}\right\}_{n=1}^{\infty}$ of positive integers with $p_{1} \geqslant n(\varepsilon)$ and such that

$$
\begin{equation*}
\hat{\varrho}_{0}\left(E^{\mathscr{D}_{i}}[F](\omega), E^{\mathscr{D}_{p_{s}}}[F](\omega)\right) \leqslant 1 / n, \quad \forall \omega \in B_{\varepsilon}, \quad \forall n \geqslant 1, \forall i, j \geqslant n . \tag{2.3}
\end{equation*}
$$

Let us fix arbitrary $\omega_{0} \in B_{\varepsilon}$. We shall prove that

$$
\begin{equation*}
\operatorname{Lim}_{n} E^{\mathscr{F}_{n}}[F]\left(\omega_{0}\right) \subset \operatorname{Lim}_{n} E^{F^{\prime} n}[F]\left(\omega_{0}\right) . \tag{2.4}
\end{equation*}
$$

If $x \in \operatorname{Lim} E^{\mathscr{F}_{n}}[F]\left(\omega_{0}\right)$, then there exists a subsequence $\left\{p_{r_{n}}\right\}_{n=1}^{\infty}$ of $\left\{p_{n}\right\}_{n=1}^{\infty}$ and a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ of elements $x_{n} \in E^{\mathscr{F}_{P_{n}}}[F]\left(\omega_{0}\right)(n=1,2, \ldots)$ such that

$$
x=\lim _{n} x_{n}
$$

For every $n=1,2, \ldots$ and every $\omega \in B_{\varepsilon}$ let us denote by $A_{n}(\omega)$ and $A_{n}^{\prime}(\omega)$ the atoms of $\mathscr{F}_{p_{r_{n}}}$ and $\mathscr{F}_{p_{r_{n}}}^{\prime}$, respectively, such that $\omega \in A_{n}(\omega)$ and $\omega \in A_{n}^{\prime}(\omega)$.

Since \mathscr{F}_{∞} is generated by the \mathscr{F}_{n} 's, for every $n=1,2, \ldots$ there is a sequence of sets $\left\{B_{n, m}\right\}_{m=1}^{\infty}$ such that $B_{n, m} \in \mathscr{F}_{p_{r_{n+m}}}$ for $m=1,2, \ldots$ and

$$
\lim _{m} P\left(A_{n}^{\prime}\left(\omega_{0}\right) \Delta B_{n, m}\right)=0
$$

Since, by (2.2), $A_{n}^{\prime}\left(\omega_{0}\right) \subset A_{n}\left(\omega_{0}\right)$, we can and shall assume that $B_{n, m} \subset A_{n, m}\left(\omega_{0}\right)$ for $n, m=1,2, \ldots$ From (2.3) we have

$$
\begin{equation*}
\varrho\left(x_{n}, E\left[F \mid A_{j}\left(\omega_{0}\right)\right]\right) \leqslant 1 / n, \quad \forall n \geqslant 1, \forall j \geqslant n . \tag{2.5}
\end{equation*}
$$

Since $A_{j}(\omega)=A_{j}\left(\omega_{0}\right)$ for every $\omega \in A_{j}\left(\omega_{0}\right)(j=1,2, \ldots)$, from (2.5) we obtain

$$
\begin{equation*}
\varrho\left(x_{n}, E\left[F \mid A_{j}(\omega)\right]\right) \leqslant 1 / n, \quad \forall n \geqslant 1, \forall j \geqslant n, \forall \omega \in A_{j}\left(\omega_{0}\right) . \tag{2.6}
\end{equation*}
$$

Since $\mathscr{F}_{k}(k=1,2, \ldots)$ are finite subfields of \mathscr{A}, there are finite sets of indices $I=I(n, m)(n, m=1,2, \ldots)$ such that

$$
B_{n, m}=\bigcup_{i \in I} A_{n+m}\left(\omega_{i}\right) \quad \text { and } \quad A_{n+m}\left(\omega_{i}\right) \cap A_{n+m}\left(\omega_{i}\right)=\varnothing \quad \text { for } i \neq l, i, l \in I .
$$

By (2.6) there exist elements $a_{n, m}^{i} \in E\left[F \mid A_{n+m}\left(\omega_{i}\right)\right]$ such that $\varrho\left(x_{n}, a_{n, m}^{i}\right) \leqslant 1 / n$. Since the metric space (X, ϱ) is D -convex, there exist elements $b_{n, m} \in X$ ($n, m=1,2, \ldots$) such that

$$
\varrho\left(x, b_{n, m}\right) \leqslant \sum_{i \in I} \frac{P\left(A_{n+m}\left(\omega_{i}\right)\right)}{P\left(B_{n, m}\right)} \varrho\left(x, a_{n, m}^{i}\right), \quad \forall x \in X .
$$

It is easily checked that

$$
\begin{equation*}
b_{n, m} \in E\left[F \mid B_{n, m}\right] \quad \text { and } \quad \varrho\left(x_{n}, b_{n, m}\right) \leqslant 1 / n \quad(n, m=1,2, \ldots) \tag{2.7}
\end{equation*}
$$

Since (X, ϱ) is finitely compact, for every $n=1,2, \ldots$ the bounded sequence $\left\{b_{n, m}\right\}_{m=1}^{\infty}$ contains a convergent subsequence $\left\{b_{n, k_{m}}\right\}_{m=1}^{\infty}$. Put

$$
b_{n}=\lim _{m} b_{n, k_{m}} \quad(n=1,2, \ldots) .
$$

Since for $n=1,2, \ldots$ we have $P\left(B_{n, k_{m}} \Delta A_{n}^{\prime}\left(\omega_{0}\right)\right) \rightarrow 0$ as $m \rightarrow \infty$, we infer from (2.7) and Lemma 2.1 that

$$
\begin{equation*}
b_{n} \in E\left[F \mid A_{n}^{\prime}\left(\omega_{0}\right)\right] \quad \text { and } \quad \varrho\left(x_{n}, b_{n}\right) \leqslant 1 / n \quad \text { for } n=1,2, \ldots \tag{2.8}
\end{equation*}
$$

Thus

$$
x=\lim _{n} x_{n}=\lim _{n} b_{n} \in \operatorname{Lim}_{n} E\left[F \mid A_{n}^{\prime}\left(\omega_{0}\right)\right]=\operatorname{Lim}_{n} E^{F_{n}^{\prime}}[F]\left(\omega_{0}\right),
$$

which proves (2.4) and completes the proof of Lemma 2.3 .
Proof of Theorem 2.2. Since each \mathscr{B}_{n} is countably generated, for each $n=1,2, \ldots$ there exists an increasing sequence $\left\{\mathscr{F}_{n, m}\right\}_{m=1}^{\infty}$ of finite subfields of \mathscr{B}_{n} which generates \mathscr{B}_{n}. Since each $E^{\mathscr{B}_{n}}[F]$ is a limit in L_{0} of a net
$\left\{E^{\mathscr{F}}[F]\right\}_{\mathscr{F} \in \mathscr{F}\left(\mathscr{B}_{n}\right)}$ and $\mathscr{B}_{n} \subset \mathscr{B}_{n+1}$, we can and shall assume that

$$
\lim _{m} \varrho_{0}\left(E^{\mathscr{F} n, m}[F], E^{\mathscr{R}_{n}}[F]\right)=0 \quad \text { and } \quad \mathscr{\mathscr { F }}_{n, m} \subset \mathscr{F}_{n+1, m} \quad \text { for } n, m=1,2, \ldots
$$

Let us fix an arbitrary $\varepsilon>0$. By Egoroff's theorem there are sets $B_{n} \in \mathscr{B}_{n}$ such that $P\left(B_{n}\right)>1-\varepsilon / 2^{n}(n=1,2, \ldots)$ and

$$
\operatorname{Lim}_{m} E^{\mathscr{F}_{n, m}}[F]=E^{\mathscr{O}_{n}}[F] \text { uniformly on } B_{n} \quad(n=1,2, \ldots)
$$

Thus there exists a subsequence $\left\{m_{n}\right\}$ of positive integers such that

$$
\begin{equation*}
\sup _{\omega \in B} \hat{\varrho}_{0}\left(E^{\mathscr{J}_{n, m_{n}}}[F](\omega), E^{\mathscr{B}_{n}}[F](\omega)\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty, \tag{2.9}
\end{equation*}
$$

where

$$
B=\bigcap_{n=1}^{\infty} B_{n}
$$

Defining $\mathscr{F}_{n}=\mathscr{F}_{n, m_{n}}$ we obtain an increasing sequence $\left\{\mathscr{F}_{n}\right\}_{n=1}^{\infty}$ of finite subfields of \mathscr{B}_{∞} which generates \mathscr{B}_{∞}. By Lemma 2.3 we have

$$
\operatorname{Lim}_{n} E^{\mathscr{F}_{n}}[F] \subset E^{\mathscr{F}_{\infty}}[F] \text { a.s. }
$$

Let $B_{\varepsilon} \in \mathscr{B}_{\infty}, B_{\varepsilon} \subset \mathscr{B}$, be a set with $P\left(B_{\varepsilon}\right)>1-2 \varepsilon$ and such that $E^{\mathscr{F}_{n}}[F]$ converges uniformly on B_{z}. It follows from (2.9) that $E^{\mathscr{B}_{n}}[F]$ converges uniformly on B_{ε} and

$$
\operatorname{Lim}_{n} E^{\mathscr{G}_{n}}[F](\omega)=\operatorname{Lim}_{n} E^{\mathscr{F}_{n}}[F](\omega) \subset B^{\mathscr{S}_{\infty}}[F](\omega), \quad \forall \omega \in B_{\varepsilon},
$$

which completes the proof since $P\left(B_{\varepsilon}\right)>1-2 \varepsilon$ and $\varepsilon>0$ was chosen arbitrarily.
3. Martingales. Throughout this section (X, ϱ) is a finitely compact, D-convex metric space and all random sets take values in \hat{X}.

If F is a random set and \mathscr{B} a sub- σ-field of \mathscr{A}, then we denote by $S(F ; \mathscr{B})$ the collection of all \mathscr{B}-measurable selections of F.

DEFINITION 3.1. Let $\left\{\mathscr{B}_{n}\right\}_{n=1}^{\infty}$ be an increasing sequence of sub- σ-fields of \mathscr{A} and $\left\{F_{n}\right\}_{n=1}^{\infty}$ a sequence of scalarly integrable, \mathscr{B}_{n}-measurable random sets. We say that $\left\{F_{n}, \mathscr{B}_{n}\right\}_{n=1}^{\infty}$ is a martingale iff

$$
E^{\mathscr{B}_{n}}[f] \subset F_{n} \text { a.s. for every } f \in S\left(F_{n+1} ; \mathscr{B}_{n+1}\right), n=1,2, \ldots
$$

Lemma 3.1. Let F be a scalarly integrable random set, \mathscr{B} a sub- $\sigma-$ field of \mathscr{A} and $\left\{\mathscr{F}_{m}\right\}_{m=1}^{\infty}$ an increasing sequence of finite subfields of \mathscr{B} such that

$$
E^{\mathscr{S}}[F]=\operatorname{Lim}_{m} E^{\mathscr{F}_{m}}[F] \text { a.s. }
$$

Then for every $x \in X$ there exists a negligible event N such that for every $\omega \in \Omega \backslash N$ and $a \in E^{\mathscr{S}}[F](\omega)$ we have

$$
\varrho(x, a) \leqslant E^{\mathscr{F}_{\infty}}[\delta(x, F)](\omega), \quad \text { where } \mathscr{F}_{\infty}=\sigma\left(\bigcup_{m=1}^{\infty} \mathscr{F}_{m}\right) .
$$

Proof. Let N^{\prime} be a negligible event such that

$$
E^{\mathscr{R}}[F](\omega)=\operatorname{Lim}_{m} E^{\mathscr{F}_{m}}[F](\omega), \quad \forall \omega \in \Omega \backslash N^{\prime}
$$

Let $a \in E^{\mathscr{S}}[F](\omega)$ for some $\omega \in \Omega \backslash N^{\prime}$. Thus there exists a sequence $\left\{a_{m}\right\}_{m=1}^{\infty}$ of elements of X converging to a and such that $a_{m} \in E^{\mathscr{F F}_{m}}[F](\omega)(m=1,2, \ldots)$, which means that for every $x \in X$ the following inequality holds:

$$
\varrho\left(x, a_{m}\right) \leqslant \frac{1}{P\left(A_{m}\right)} \int_{A_{m}} \delta(x, F), \quad \text { where } \omega \in A_{m}, \text { an atom of } \mathscr{F}_{m}
$$

The real martingale

$$
\left\{\frac{1}{P\left(A_{m}\right)} \int_{A_{m}} \delta(x, F) d P, \mathscr{F}_{m}\right\}_{m=1}^{\infty}
$$

converges to $E^{\mathscr{F P}_{\infty}}[\delta(x, F)]$ outside some negligible event $N^{\prime \prime}$ ([12], Proposition II.2.11). Thus for every $x \in X$ there is a negligible event $N=N^{\prime} \cup N^{\prime \prime}$ such that

$$
\varrho(x, a)=\lim _{m} \varrho\left(x, a_{m}\right) \leqslant E^{\mathscr{F}_{\infty}}[\delta(x, F)](\omega), \quad \forall \omega \in \Omega \backslash N .
$$

Theorem 3.1. Let F be a scalarly integrable random set and $\left\{\mathscr{B}_{n}\right\}_{n=1}^{\infty}$ an increasing sequence of sub- σ-fields of \mathscr{A}. Then $\left\{E^{\mathscr{P}_{n}}[F], \mathscr{B}_{n}\right\}_{n=1}^{\infty}$ is a martingale.

Proof. Let $n \geqslant 1$ be fixed and $f \in S\left(E^{\mathscr{S}_{n+1}}[F] ; \mathscr{B}_{n+1}\right)$. Let $\left\{F_{m}^{n}\right\}_{m=1}^{\infty}$ and $\left\{\mathscr{F}_{m}^{n+1}\right\}_{m=1}^{\infty}$ be two increasing sequences of finite subfields of \mathscr{B}_{n} and \mathscr{B}_{n+1}, respectively, such that $\mathscr{F}_{m}^{n} \subset \mathscr{F}_{m}^{n+1}$ for $m=1,2, \ldots$ and satisfying

$$
\begin{gathered}
E^{\mathscr{B}_{n}}[f](\omega)=\operatorname{Lim}_{m} E^{\mathscr{F}_{n}^{n}}[f](\omega), \quad E^{\mathscr{B}_{n}}[F](\omega)=\operatorname{Lim}_{m} E^{\mathscr{F}_{m}^{n}}[F], \\
E^{\mathscr{O}_{n+1}}[F]=\operatorname{Lim}_{m} E^{\mathscr{F}_{m}^{n+1}}[F](\omega), \quad \forall \omega \in \Omega \backslash N,
\end{gathered}
$$

for some negligible event N.
Let $a \in E^{\mathscr{P}_{n}}[f](\omega)$ for some $\omega \in \Omega \backslash N$. There is then a sequence $\left\{a_{m}\right\}_{m=1}^{\infty}$ of elements of X converging to a such that $a_{m} \in E^{\mathfrak{F}_{m}^{n}}[f](\omega)$ for $m=1,2, \ldots$, which means that for every $x \in X$ the following inequality holds:

$$
\varrho\left(x, a_{m}\right) \leqslant \frac{1}{P\left(A_{m}\right)} \int_{A_{m}} \varrho(x, f) d P, \quad \text { where } \omega \in A_{m}, \text { an atom of } \mathscr{F}_{m}^{n}
$$

Since $f(\omega) \in E^{\mathscr{O}_{n+1}}[F](\omega)$ for every $\omega \in \Omega$, by Lemma 3.1 we have

$$
\varrho\left(x, a_{m}\right) \leqslant \frac{1}{P\left(A_{m}\right)} \int_{A_{m}} E^{\mathscr{F}_{m}^{n+1}}[\delta(x, F)] d P, \quad \forall x \in X
$$

where

$$
\mathscr{F}_{\infty}^{n+1}=\sigma\left(\bigcup_{m=1}^{\infty} \mathscr{F}_{m}^{n+1}\right)
$$

But $\mathscr{F}_{m}^{n} \subset \mathscr{F}_{\infty}^{n+1}$ for $m=1,2, \ldots$, and thus we have

$$
\varrho\left(x, a_{m}\right) \leqslant \frac{1}{P\left(A_{m}\right)} \int_{A_{m}} \delta(x, F) d P, \quad \forall x \in X, m \geqslant 1,
$$

which means that $a_{m} \in E^{\mathscr{F}_{m}^{n}}[F](\omega)$ for $m=1,2, \ldots$, and thus

$$
a=\lim _{m} a_{m} \in E^{\mathscr{S}_{n}}[F](\omega) .
$$

The theorem is proved.
Theorem 3.2. Let $\left\{F_{n}, \mathscr{B}_{n}\right\}_{n=1}^{\infty}$ be a martingale and suppose that:
(a) The set $\bigcup_{n=1}^{\infty} F_{n}(\omega)$ is a bounded subset of X for almost every $\omega \in \Omega$.
(b) $\sup \int_{\Omega} \varrho\left(x, F_{n}\right) d P<\infty, \forall x \in X$.
(c) The σ-fields \mathscr{B}_{n} are countably generated for $n=1,2, \ldots$

Then the sequence $\left\{\dot{F}_{n}\right\}_{n=1}^{\infty}$ of random sets converges almost surely.
Proof. We shall show first that $\left\{\varrho\left(x, F_{n}\right), \mathscr{B}_{n}\right\}_{n=1}^{\infty}$ is a (real) submartingale for every $x \in X$.

Let $n \geqslant 1$ be fixed and let $f \in S\left(F_{n+1} ; \mathscr{B}_{n+1}\right)$ satisfy

$$
\varrho(x, f(\omega))=\varrho\left(x, F_{n+1}(\omega)\right), \quad \forall \omega \in \Omega .
$$

Since $\left\{F_{n}, \mathscr{B}_{n}\right\}_{n=1}^{\infty}$ is a martingale, for every $x \in X$ we have

$$
\varrho\left(x, F_{n}\right) \leqslant \varrho\left(x, E^{\mathscr{B}_{n}}[f]\right) \text { a.s. }
$$

Thus for every $A \in \mathscr{B}_{n}$ we have

$$
\int_{A} \varrho\left(x, F_{n}\right) d P \leqslant \int_{A} \varrho\left(x, E^{\mathscr{P _ { n }}}[f]\right) d P .
$$

Since the σ-field \mathscr{B}_{n} is countably generated, from Lemma 3.1 we obtain

$$
\int_{A} \varrho\left(x, E^{\mathscr{B}_{n}}[f]\right) d P \leqslant \int_{A} E^{\mathscr{R}_{n}}[\varrho(x, f)] d P .
$$

But

$$
\int_{A} E^{\mathscr{O}_{n}}[\varrho(x, f)] d P=\int_{A} \varrho(x, f) d P=\int_{A} \varrho\left(x, F_{n+1}\right) d P,
$$

which proves that $\left\{\varrho\left(x, F_{n}\right), \mathscr{B}_{n}\right\}_{n=1}^{\infty}$ is a submartingale.
By (b), the submartingale $\left\{\varrho\left(x, F_{n}\right), \mathscr{B}_{n}\right\}_{n=1}^{\infty}$ converges almost surely ([12], Theorem IV.1.2) for every $x \in X$. Let D be a countable dense subset of X. There exists a negligible event N such that for every $\omega \in \Omega \backslash N$ the set $\bigcup_{n=1}^{\infty} F_{n}(\omega)$ is a bounded subset of X and the sequence of reals $\left\{\varrho\left(x, F_{n}(\omega)\right)\right\}_{n=1}^{\infty}$ converges for every $x \in D$. Hence, by Proposition 0.1 , the sequence $\left\{F_{n}(\omega)\right\}_{n=1}^{\infty}$ converges in (\hat{X}, ϱ) for every $\omega \in \Omega \backslash N$.

REFERENCES

[1] V. E. Benes̆, Martingales on metric spaces, Teor. Veroyatnost. i Primenen. 7 (1962), pp. 82-83.
[2] L. M. Blumenthal, Theory and Applications of Distance Geometry, Oxford 1953.
[3] S. Doss, Sur la moyenne dư úlément aléatoire dans un espace distancié, Bull. Sci. Math. 73 (1949), pp. 48-72.
[4] - Moyennes conditionnelles et martingales dans un espace métrique, C. R. Acad. Sci. Paris 254 (A) (1962), pp. 3630-3632.
[5] M. Fréchet, Sur diverses définitions de la moyenne d'un élément aléatoire de nature quelconque, Giorn. Inst. Ital. Att. 19 (1956), pp. 1-15; ibidem 20 (1957), pp. 1-37.
[6] - Définitions de la somme et du produit par scalaire en terme de distance, Ann. Sci. École Norm. Sup., Paris, (3) 75 (1958), pp. 223-255.
[7] S. Gahler and G. Murphy, A metric characterization of normed linear spaces, Math. Nachr. 102 (1981), pp. 297-309.
[8] W. Herer, Espérance mathématique au sense de Doss d'une variable aléatoire à valeurs dans un espace métrique, C. R. Acad. Sci. Paris, Série I, 302 (1986), pp. 131-134.
[9] - Martingales à valeurs fermées bornées d'un espace métrique, ibidem 305 (1987), pp. 257-258.
[10] K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), pp. 397-403.
[11] G. Matheron, Random Sets and Integral Geometry, J. Wiley, New York 1975.
[12] J. Neveu, Discrete-Parameter Martingales, North-Holland, Amsterdam 1975.

Institute of Mathematics
Technical University of Warsaw
pl. Jedności Robotniczej 1
00-661 Warsaw, Poland

