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Abstract. In [ 5 ]  we have announced a h e a r  spllne method for 
nonparametric density and distribution estimation on the real line. In 

j this paper, asymptotic properties of a large family of such estimators 
are discussed. It is interesting that the results d o  not require the 
existence of derivatives of the density in question. For the asymptotic 
results on distrib'ution functions, knowledge of the behavior of the 
second modulus of smoothness in the Lm-norm is sufficient, and m the 

I 

case of density estimation - knowledge of the behavior of the second 
modulus of smoothness in the L1-norm and of the tail function is 
needed. The method of estimation is a kernel method which is not of 
convolution type. In the case of densities and of the L1-norm it is as 
good as the optimal kernel methods (of convolution type) in an 
essentially larger class of density functions. Moreover, a1 the same time 
we get for free the estimator for the distribution function correspond- 
ing to the density in question. At the end we have derived, for a given 
sample, an explicit function of the window parameter. It is called 
a window function and it makes possible in each case to determine the 
size of the optimal window parameter. In obtaining the results the 
techniques of approximation theory, in particular by splines, are used 
following the same guidelines as presented in [7], [q and [8]. 

1. Introduction. Density estimation is very much related to approximation 
of L1-functions on the real line by positive linear operators. The nonparametric 
kernel estimators for densities correspond to approximation by operator given 
by kernels (cf. [lj], 191, [Ill). For densities with support in [0, 11 the 
asymptotic properties of the kernel estimators constructed by means of the 
Bernstein-like polynomial operators are discussed in [7], [6]. An asymptotic 
nonparametric ,kernel density 'estimator for densities supported on the 
d-dimensional cube [0, lld is discussed in [8], where the kernel is the Dirichlet 
kernel corresponding to the multidimensional Haar orthogonal system. Since 
in the polynomial case we deal with degenerate B-splines, i.e., the basic 
Bernstein polynomials, and in the Haar case with B-splines of the lowest order, 
i.e., of order 1, it was natural to ask for kernel estimators constructed by means 
of more smooth B-splines. Our method corresponds to a kernel, i.e., a kernel 

* While this paper was in print its extension to several variables was presented by the author in 
the Multivm'ate Approximation and Interpolation, ISNM 94 (1990), Birkhauser-Verlag, Basel, pp. 25-53. 



function constructed by means of B-splines with equally spaced knots and it 
relies very much on the approximation theorem established in a particular but 
important case in 151. In this note we present theorems on asymptotic order of 
approximation of the theoretical density (distribution) by the spline estimators 
and we discuss, given a simple finite sample, a method for optima! choice of the 
window width parameter. 

2. The sglimm with equally spttmd hots,  In what follows we consider 
splines of order r 3 2, i.e., of degree r-1, of maximal smothness and 
corresponding to the uniform mesh 

with step h > 0 and the real parameter 8 which may depend on r, where Z i s  
the set of all integers. It is assum~d that all the knots are simple. For the 
properties listed below we reft3r to [13], [2] and [14]. 

All the 3-splines corresponding to the mesh (2.1) can be defined by means 
of the cardinal 3-spline of order r 

where [so, . . ., s,; f] denotes the divided difference of f taken at the points 
so, . . . , s,. Namely, 

x - t ,  
Nti,e(x) N(')(') . 

It is well known that 

C N t i , e ( ~ ) = l  for X E R ,  
1€Z 

where R = (- co, a). For a later convenience we introduce 

MITi.e(x) = h - 'Nlli,e(x)- 
Now, since 

J N(')(x) dx = 1 , 
R 

it follows that 

For the derivative of the cardink B-spline we have the formula 

whence 

I 
I 

PROPOSITKON 2.6. Let 1 < m < r and let g = xi aiN[iDe. Then 
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and 

where Aa, = a ,+ l -a , ,  A,g(x) = g(x+h)-g(x) and Am'' = dm(A). 

Proof. It is sufficient to apply (2.5) and the definition of Ni%,,.. 

In what follows, for given positive functions f (t), t E and g(t), t~ ?: we 
write f - g whenever there are two positive constants C,, C ,  such that the 
inequalities Clg(t) 6 f (t) ,< C,g( t )  hold for all t~ T 

The following result is given in [12]: 

PROPOSITION 2.9. Let g = z, Q,N$:~ , ;  and let 1 < p < co. Then llgllp 
-- tallPllall,, where the constants in these inequalities depend only on r, 
llnl/p = Ei lai]31jP for finite p and Ilall, = sup{la,l: i~ Z ) .  

In order to state the next result we recall the definition of the modulus of 
smoothness of order m of f E LP(R) in the Lp-norm, 1 4 p < m , 

where A r  is the m-th order progressive difference with step. t, i.e., 
in 

A;" f ( x )  = C (- 17'" 
j = O  

(7) f ( x  + j t ) ,  

and 

COROLLARY 2.11. Let 1 < rn < r, 1 < p < m, and let g = z i a i N { 3 , 0 .  Then, 
for h > 0, 

and the constants in these inequalities depend on r only. 

P r o  of. Apply Propositions 2.9 and 2.6, definition (2.10) and the inequality 

It is well known and it follows by induction with the help of (2.2) and (2.5) 
that the nontrivial B-splines over a given interval are linearly independent over 
that interval. In particular, every polynomial of degree not exceeding r- 1 is 
a linear combination of the B-splines. In addition, we have 
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where 
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Comparing the coefficients on both sides of the last but one formula at the 
powers of y gives for 0 < rn < r 

It is also important to recall the formula for the moments of the spline 
density Mxi,B, Namely, for a nonnegative integer m we have 

In our estimation method the following properties of the spline densities 
and distributions are important. For a given spline probability density g such 
that 

(2.14) g(x) = C giNfX ,~  (XI 
i 

we obtain by (2.5) for the probability distribution function 

the formula 

where 

It is important that the values g(x) and Gtx) can easily be calculated by the 
numerically stable algorithm due to C. de Boor, M. G. Cox and L. Mansfield- 
(see, e.g., PI). 

3. The direct approximation theorem by local spline operators. The ap- 
proximating operators can now be defined for the integers k > 0, r > 0 and for 
any f E ~ , , , ( R )  as follows: 
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where 1 is a nonnegative integer such that k + 2I = r and 

A pair (r, k) of positive integers is called admissible if r 3 k and r - k  is 
even. Since the coefficient functional (the restriction r 2 k is not essen- 
tial) f ~ ( f ,  Ml!)r,h,e) is local for admissible (k, I) and h > 0, i.e., its sup- 
port is contained in the support of Nlrk,,, these operators are local spline 
operators in de Boor's terminology [2]. These operators are not projections 
except for the case r = k = 1 (see 181) but their LP-norms are equal to 1, i.e., 
for all 1 < p < w 

It also follows by (3.11, (2.2) and (2.3) that these operators have in addition the 
.following properties: . 

1" Qg'( f) , o for f 2 0. 
2 O  Qt:sk)(l) = 1. 
3" For f E L1 (R) 

J f = 1 implies 1 Qj$)( f) = 1 .  
R R 

Consequently, the operator Q@): L1 (R) -, Li (R) takes probability densities 
into probability densities, and its kernel wiU be used for constructing 
nonparametric density estimators. 

PROPOSITION 3.3. Let (r, k)  be admissible. Then for any linear function f, 
we have , 

Qt,ii'(fo) = fo .  

Proof. Since the operator has property 2, it is enough to check the 
statement for f,(x) = x, but this is implied by formulas (2.12) and (2.13) with 
m =  1. 

To prove the main direct approximation theorem the following is needed: 

LEMMA 3.4. Let (r, k)  be admissible. Moreover, let the function f be defined 
on R and Eet it satisfy the Lipschitz condition 

ol,,(f; 6) < S for 6 > 0 .  

Then 
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Proof. For given x E R  let i be such that t i  < x < t i+ Now, 

t j * l + k  

f ( x )  -Qgi) ( f ;  X) = N!k.o(~) Mj? ~ , l r , ~ ( ~ ) ( f  -f ( Y ) ) ~ Y ,  
i-rCjCi t j + ~  

In what follows W,"(R) and W,I;,,(R) denote the usual Sobolev spaces over 
'R with the index of smoothness m and the exponent of integration p. 
1 The next lemma was earlier applied in [I] in the case of Bernstein 
,polynomials and as appears it is natural to use the same idea in the case of our 
local spline op&ators. 

LEMMA 3.5. Let f E W,2(R) and let supp D2 f c [ a ,  b] for some finite 
a ,  b E R. Then for a11 x E R we haue 

b - x  X - u  b 

f (XI = = f  (a)+-f (b) -  JKa,b(* ,  Y ) D ' ~  06, b - a  a 

where D = d/dx and 

1 
y) = -min(x-a ,  y -a )min(b-x ,  b - y ) .  

b - a  

Proof. Apply Peano's formula for the second order divided differences. 

In the space Lm(R) we consider its separable subspace C-,+  (R) of all 
functions continuous with finite limits at + oo and at -a. 

We are ready now to prove the basic direct result on the order of 
approximation by the local spline Qf't) operators. 

THEOREM 3.6. Let ( r ,  k)  be admissible with r > 1 .  Then, for f E LP(R) in the 
case 1 < p < co and for ~ E C - , + ( I t )  in the case p = m, we have 

where Cr,k = 8 + 2(r + k)'. Moreover, i f f  E LL,(R) and x E R is a strong Lebesgue 
point of therr 

Proof. Assume at first that p < co. Since the LP-norms of the operators 
Q$'t) are equal to 1 and ~ ~ , ~ ( f ;  h) < 411 f I[,, it is sufficient to prove the result 
for f €LP(R) with compact support. Using Steklov means we define in a 
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standard way the smoothing of f of order m, i.e., 

The function g is in W,"(R). If the support off is contained in [a', b'] ,  then the 
support of g is contained in [a, b]  with b' = b and a = a'-mzh. Moreover, 

whence 

It also follows that 

Thus 

In what follows it is enough to take m = 2. The next step is to prove 

The locality of the operators Q@), Proposition 3.3 and Lemma 3.5 give I 

Now, the function K,,,(-, y) for fixed y E [a, b] satisfies a Lipschitz condition in I 
the Lm-norm with constant 1. Lemma 3.4 and (3.10) then give r 

and this implies (3.9). Applying now the triangle inequality to the identity 

f- Qb!)(f = (f - 9)  + (9 - Qfr:ii)lg)) + Qkek'lg -f 
we obtain 

Now, (3.1 I), (3.7), (3.9) and (3.8) give the inequality stated in the theorem. In the . 
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case p = m we reduce the proof to f E W:,,,,(R) with finite supp Df; and then 
proceed like in the previous case. The proof of the convergence at the Lebesgue 
point is standard and it is omitted. 

Since we are interested in estimating simultaneousIy the densities and the 
probability distribution functions, it is convenient to introduce the operators 

X 

(3.12) #,3k'(F; XI = z j I1.f!k!i.,,odF J m , , b ) d ~ .  
~ E Z  R - 0 3  

I PROPOSITION 3.13. Let (r, k)  be admissible. Then 

I I and it preserves, the limits at + c~ and at -a. For F bounded and deJined 
everywhere on R we haue 

where the 1) - 11 ,-nirm in the case k = 1 has to be replaced by the customary rnax 
norm. Now, if k > 1, then for FsC- , , (R)  and h > 0 we have 

I 
and if k = 1, then 

r + k  
IlF-~'cr,,l, 4 wl,.(R h ) .  

Proof.  Let r-k = 2E. Note that for k > 1 

and therefore (3.16) follows from Theorem 3.6. The proof of (3.17) is direct. 
Namely, 

(3.19) & ~ d k ) ( F ) = ~ F ( t i + l + l ) N { r ~ t )  w i t h k = l , l = ( r - 1 ) / 2 .  
i=Z 

Now, for x E ( t j ,  t j +  we get 

(3.20) Thyik)(F; x)-F(x) = C (F(ti+~+l)-F(~))N!r{t)(x), 
j - r < i < j  

whence (3.17) follows. 

FRO~SITION 3.21. Let (r, k) be admissible and let F be a function on R 
of bounded total uariation on each finite interval. Then at each continuity point 
x of F 

Proof. In the case k > 1 we use (3.18) and apply Theorem 3.6. For k = 1 
the statement follows directly from (3.20). 
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4. The saturation theorem. The aim of this section is to show that the 
order of approximation in Theorem 3.6 cannot be improved by increasing the 
smoothness of the approximating function. 

PROPOSITION 4.1. Let (r, k) be admissible with r > 1. Then for a continuous 
concaue functidn f on R we have the inequality 

f ( x ) > Q f $ ) ( f ; x )  for XER,  h > O .  ' 

Proof.  Using the definition of Qff)( j ) ,  (2.13) and (2.12) we find by 
Jensen's inequality that 

PROPOSITION 4.2. Let ( r ,  k )  be admissible with r > 1 and let fo(x)  = x2. 
Then 

Proof.  Proposition 3.3 implies that for the proof the modified 
f,(x) = (X - h0)' can be used. According to (2.13), for r = k +21 we have 

Moreover, (2.12) gives 

fo = 2 h2((i+ r/2)' -r/12)Nllfi,e, 
i 

and this completes the proof. 

We are now ready to prove the main result of this section. 

THEOREM 4.3. Let ( r ,  k)  be admissible with r > 1 .  Let f E W;,,,(R) and let 
X E  R be the strong Lebesgue point of D2$ Then 

lim Qti)(f; *I -f (4 - r + k ~2 (X) -- 
hZ h + o +  24 

Proof.  For the proof let a, b be some finite numbers such that 
A < x < B, where A = a + ( b  - a)/4 and B = b -(b - a)/4. Let us define the 
function $ of class C2(R)  as follows: 

1 if XE(A, B), 

= { $(x) 2 0 elsewhere in R.  
0 if x# (a7  b), 

Moreover, let g = f$. Then by (3.10) we get 
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where 
1 

Lh(x, )I) = j ; i [Ka ,b(xy  ~ ) - Q t P ' ( ~ a , b ( . )  Y) ;  *)Iq 
The kernel L, is an approximate identity. It has the following properties: 

lo L,(x, y )  2 0 for x, Y E  R. 
2" L,(x, y) = 0 for Ix-yl > h(r+k)/2.  
3" L,(x, y )  6 (r+k)/2h for x, ~ E R .  
4" For small h > 0 we have 

r + k  ' 1 LdxY Y ) ~ Y  = 4 for X E R .  
R 

Property lo follows from Proposition 4.1. The locality of the operator Qf$) and 
Proposition 3.3 imply 2", and Proposition 3.4 gives 3". To see the last property 
we note that (4.4) implies 

which in particular for f (x)  = fo(x) = x2 in combination with Proposition 4.2 
gives 4". 

Now, since the point x  is strong Lebesgue, we have 

1 1 lo2f (y ) -D2f(x) ldy=o( l )  a s h + O + .  
( r + k ) h  ly-xl<h(r+k) /2  

Thus, properties 1'4" and (4.5) give for h + 0, 

and this completes the proof. 

COROLLARY 4.6. Let (r ,  k) be admissible with r > 1. Assume that f  E W:(R) 
for some p, 1 < p < oo, or that f E C - , + ( R ) n  C2(R) in the case p = a. Then 

I Ilf-Qkil(f)ll, = o(h2) as h + O +  
. implies that f = 0. 

5. The inverse approximation theorem. For the given set of simple knots 
(2.1) we introduce the linear spaces 

S;,@(R) = span {N$!,,: i E Z ) ,  
for finite p 2 1 

S:,$(R) = S;I,e(R) LP(R), 
and 

S,:?(R) = S;I,@(R) n C-, + (R).  
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For each function f E LP(R) the best approximation by S',,,(R) is the number 

&X:ip'(f = inf{ l l  f - s 11,: !3 E %$(R)l. 

The inverse approximation theorems are statements in which the moduli of 
smoothness w,,(f; h) are estimated from above by some means of bx;P)(f). 
One way of handling the best approximations Cf;P1( f) is comparing them with 
approximations by orthogonal projections. To this end we introduce the 
orthogonul projection Pfi of L2(R) onto S>,i(R) and write 

where Kpfl is the uniquely determined kernel. We have proved in [4] 

PROPOSTION 5.2. The kernel K t b  for h > 0 and for 6 E R has the following 
properties: 

(5.3) K$L(X, y) = K$&, x) for x ,  Y E  R y  

(5.4) K&(X;)ES;$(R) for X E R ,  l < p < m ,  

(5.51 
1 

(K[)B(x, y)! < C'- qlx-yl/' for X, y E R ,  h 

where C > 0 and q, 0 < g < 1, depend on r only. Moreover, we have 

(5.6) jK@(x,  y)yidy=xi for X E R ,  i=O ,..., r-1. 
R 

COROLLARY 5.7. The operators P ~ L :  LP(R) -+ LP(R) are projections onto 
a,$(R). For each integer r 2 1 there is a constant C, depending on r only such 
that 

To prove the inverse result the following well-known elementary in- 
equality for progressive differences (see, e.g., [3]) is needed: 

LEMMA 5.9. Let the integers i 2 0, j 2 0 be given and let f E Wj(R) for some 
p, 1 < p < a. Then 

(5.10) IlAh'j f I),, < hiIIDidi f 1 1 ,  for h > 0. 

Moreover, the following Bernstein type inequality for splines with equally 
spaced knots (cf. 131) will be used: 

LEMMA 5.11. Let r 2 1, 1 < p  < m, ~ E R ,  6 > 0 and h > 0 be given. Then 
there is Cr < cc depending on r only such that for f €S>pB(R) we have for integer 
m.2 0 
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(5.13) I l  A: f i l ,  < cr(6/h)'-'"" IIf l l , .  
COROLLARY 5.14. The inequality in (5.12) in the case p = 1 holds true fur 

rn = r as waI1. 
* 

To state the main inverse result we need some more notation. In what 
follows we are interested in the approximation by splines corresponding to the 
parameter 0 = r/2 in (2.1). Let us introduce the number 

if Y is even, 
.:= {; 

if r is odd. 

We are now in a position to state the main result of this section. The proof 
follows the same argument as presented in 131 but it differs in some detail and 
for the sake of completeness it is outlined below. 

THEOREM 5.16. Let r 2 1, 1 < p < oo and let 8 and x be defined as above. 
Moreover, lee m be an integer such that 1 6 m < r and let 6 > 0. Then there is 
a finite constant C ,  depending on r only such that 

where N = flogllx(l/6)]. 

P r o  of. The argument will be outlined only in the case of finite p. Let us 
introduce 

.fi = P;!,,I f). 

Then 

and by Lernma 5.11 with h = 1 we have 

(5 .19)  IIAFfoIIP G Clam IIfoIIp G CramIIf I I p ,  

lIA:follp G c:s r - I f  l / p  l l f O l l g  < crx-If lip Ilf 1 1 , .  

Now, the operators P::,, are, by (5.8), bounded projections onto SI;[* and, by 
the choice of x and 0 we have made, it follows that Si c Si+ , ,  where Si: = S;:*. 
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Clearly, fi E Si, and therefore by Lemma 5.11 we have 

(5.20) IlAT(A+ I -f-311, G ci(8/2)m Il A+ 1 G Cr(d/~i)md'~;,:'( f), 

IIA;l(f,+,-fi)I1, < C : ( ~ / X ~ ) ' - ~ + " *  1 1  h + 1 -A 1 1  4 Cr(6/~i)r-h1 + l/P&:;,:)(f). 

Finally, 

The combination of (5.19), (5.20) and of (5.21) gives (5.17) and (5.18). 

We may now conclude this section with the basic characterization of 
Lipschitz classes in the L1-norm by means of the orders of approximation by 
the operators Qp;), where 0 = r/2. 

THEOREM 5.22. Let r >, 2, 0 < a < 2 and let f E L1(R). Then the following 
conditions are equivalent: 

(5.23) IIf-Qgf'(f)IIl = o ( h W s  h + o + ,  
(5.24) ~z , l ( f ;h)=O(h")  as h + O , ,  

where (r ,  k)  is an admissible pair. Moreouar, for u = 2 the relation (5.24) im- 
plies (5.23). 

P r o  of. Using the obvious inequality 

we find by Theorem 5.16 that (5.23) implies (5.24) for a <  2. The remaining part 
is a consequence of Theorem 3.6. 

6. The estimators and tbir  consistency. We now assume that a probability 
space (0, 6, Pr) is given. The mean value with respect to Pr is denoted by E. 
We also assume that a simple sample of size n, i.e., a sequence (XI, . . . , X,) of 
i.i.d. real-valued random variables, is given. Their common distribution is 
denoted by F. For the empirical distribution we use the standard notation 

In what follows it is aseumed that the pair (r, k) is admissible and that 0 = r/2. 

DEFINITION 6.1. The estimator for F(x)  is defined as follows: 

where the right-hand side is defined by (3.18) for k > 1 and by (3.19) for k = 1. 
If there will be no misunderstanding the upper index (r, k]  at Fn,, will be 
suppressed. 

It follows immediately that 

(6.2) EFnSh = #,'&)(F,; X) for h > 0. 
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THEOREM 6.3. Let F be a continuous probability distribution function on R. 
Then 

Pr(llF-F,,,Il, + O  as h + O + ,  n - r  a) = 1. 

P r o  of. For k = 1, Definition 6.1, (6.2), (3.19) and (3.17) imply 

16.4) IIF-Fn,hIIm 6 [IF- %dkl(F)II, + I I  G,?k)(F)- TII>~)(F~)II~ 

Since F is continuous, o,,, ( F ;  k) 4 O as h + 0, and by Glivenko's theorem we 
have 

Pr(]lF-F,II, 4 0  as n 4 a) = 1 .  

Similarly, for k > 1 we obtain now, by (3.18), (3.17) and by (3.2) with p = co, 

(6.5) IIF-Fn,hII m G C r p ~ m ~ , ~ ( F ;  h)+ liF-FnIlm> 

and this completes the proof. 

For a later use let 9 denote the set of all densities on R. 

DEFINITION 6.6. For an absolutely continuous probability distribution 
function F let f = DF, The density estimator is now defined by the formula 

It then follows that f,,h~9. The upper index (r, k) will usually be 
suppressed unless it could cause a confusion. 

PROPOSITION 6.7. For the admissible ( r ,  k)  we have 

with 

with r = 21 + k and for h > 0. In particular, 

The simple proof is left out. 
For the absolutely continuous probability distributions the natural 

distance is the total variation over R. Since 

where V(g; R) is the total variation of g over R, the Lf-metric on the space 
9 seems to be natural. For more arguments for the L1-metric we refer to [9]. 
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PROPOSI~ON 6.12. Let Fa > 0 and let z 0. Then there is a constant C,, 
depending on  r only, such that for any absolutely continuous F, f = DF, we haue 

P r oo f. Introducing Qf = Qf$)( f) we find 

We write the last term as follows: 

Using the f a d  that both Qf and fMSh are densities, for the latter term,wc obtain 

Moreover, 

S erg  j IQf-fl+ j f G ll&f-fll1+ j f. 
l x l ? ~  Irf32 Irl> r Ill 9 r 

This, (6.16), (6.15) and (6.14) give 

It now follows by the definitions of ef and f,,,, that Qf-fn,h = Dg, where 

g = T,';ikl (F - FJ E SX'!, . 
However, Proposition 2.9 and Corollary 2.11 imply the Bernstein type 
inequality 

(6.18) I l l p  , l p  for g~Sk',k, 

and therefore 

Since, by (3.15), Ilgll, < lIF - Frill ,, the proof of (6.13) now follows by (6.17). 
THEOREM 6.19. k t  r > 1 and let f be a giuen density on  R. Then 

Pr( l l f - fn ,hl l l  n* W) = 

provided that h depends on n in such a way that 

Iog n -- -o(h2) a s n - * m , h + O + .  
n 
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Proof.  The argument is based on the inequality (6.13). Theorem 3.6 
implies that 

Since f E L1 (R),  we have 

To estimate the middle term of the right-hand side of (6.13) we use the 
inequality 

which follows by the well-known N. V. Smirnov formula for the distribution of 

sup{F(x)-F,(x): XER) 

(see [I 11). Substituting I = sh $ in (6.20), we obtain 

(6.21) Pr{h-lll~-Fnllm 3 E) 6 C e x p ( - 2 ~ ~ ( h ~ n ) ) .  

Now, the elementary convergence properties of Dirichlet series imply 

whenever (log n)/n = o(h2). Choosing 

we see that r - ,  cr, as n +  oo. Thus 

and this completes the proof. 

Recently G. Krzykowski has proved Theorem 6.19 under the weaker 
condition: nh + ao as n + co and h + 0,. 

7. Asymptotic orders of approximation by estimators for distributions. It is 
assumed in this section that the dependence of h on n is such that. 

We also assume that 8 is given as in the paragraph following Corollary 5.14. 

THEOREM 7.2. Lee (r, k) be admissible and let afi < 3, where 0 < a < 2 and 
fl > 0. Moreover, let F be a continuous probability distribution on R. Then, for 
k >  1, 



Spline density estimation 17 

implies 

(7.4) Fr(IlF-F~j'1, = O(l/n"fl) as n -+ coj = 1. 

Conversely, for 0 < a < 2, (7.4) implies (7.3). In  the case k = 1 and 0 < a 6 1 the 
, condition 

implies (7.4). Conversely, for 0 < u < 1, (7.4) implies (7.5). 

Proof.  Let k > 1. Assuming 0 < a < 2, by (7.3) and (6.5) we obtain 

Now, (6.21) and (6.22) with h = (logn)/& give with probability 1 

(7.7) ; IIF-F,II, = o((logn)/J;;). 

Therefore the combination of (7.6) and (7.7) implies (7.4). Conversely, let 
0 < a < 2; then by the definition of the best approximation we have 

Now, (7.4) and (7.8) imply 

whence by (5.17) with rn = 2 and p = co we obtain (7.3). Let now k = I, 
0 < ct < 1, and assume that (7.5) is satisfied. Then (6.4) and (7.7) imply 
(7.4). Conversely, if 0 < a < 1 and (7.4) holds, then by (7.8) and by (5.17) 
with p = m, m = 1, we obtain (7.5). 

THEOREM 7.10. Let (r, k) be admissible and let aB = $, where 0 < a < 2 and 
b >  0. Moreover, let F be a continuous distribution on R. Then, for k > 1, (7.3) 
implies 

Conversely, for 0 < a < 2, (7.11) implies (7.3). 
In the case k = 1 and 0 < a < 1, (7.5) implies (7.1 1). Conversely, for 

0 < a < 1, (7.1 1) implies (7.5). 

Proof.  Let k > l and 0 < a 6 2. Inequalities (7.6) and (6.20) give 
(7.11). Assuming (7.1 1) we find that (7.8) implies (7.9), whence by the same 
argument as in the previous proof (7.3) follows. Suppose now that 0 < a <  2. 
Then (7.8) and (7.11) imply (7.9), whence by (5.17) with m = 2 and p = oo we 
obtain (7.3). If k = 1, 0 < a < 1 and if (7.5) holds, then (6.4) and (6.20) imply 
(7.11). Conversely, if 0 c a < 1 and if (7.11) holds, then by (7.8) and by (5.17) 
with p = GO, m = 1, we obtain (7.5). 

. 2 - PAMS 12.1 
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COROLLARY 7.12. Let (r, k) be admissible. Then for any probability dis- 
tribution F with bounded density we have (7.11) with h2 - l /n,  i.e., j = $. 
Moreover, this is the best possible result for a fairly large subclass of 
distributions with bounded densities. 

COROLLARY 7.13. Let ( r ,  k)  be dmissible and let k > 1. k t  the density 
f = DF satisfy the Lipschitz condition with exponent 1. Then (7.11) holds with 
h4 l /n ,  i-e., f i  = i. 

EXAMPLE. Let (r, k)  be admissible. The arcsin law is defined as follows: 
for x < 0, 
for O < x <  1 ,  
for x 2 1. 

One checks easily that 

and therefore (7.1:l) 'takes place with h = l/n, i.e., P = 1. 

8. Asymptotic orders af approximation by estimators for densities. The 
estimators for f €9 constructed in this section differ from those given by 
Definition 6.6 in that they have smaller support controlled by the tail of the 
corresponding probability distribution. 

For a given probability distribution F we define the tailfinction as follows: 

(8.1) @,(A) = 1-F(R)-F(-A) for A > 0. 
For F absolutely continuous we set f = D F  and 

Along with the operators Qh : = Qki) we now consider 

where A' = A + h(r + k)/2,  (r, k) is admissible, and r = k + 21. 
P R O ~ O N  8.4. Let (r, k) be admissibZe, 1' = R + h(r + k)/2 and let f E 9. Then 
1" SUPP(Q~,A~)  c ( - 2 , 0 ,  
2" 1 -$,(a) I IQh,hf  11 I $ 1, 
3" I I Q h f - Q h . ~ f l l ~  4,(2). 
The easy proof is left out. 
In general, for f €9 the function Q h , A  f is not necessarily a density. This 

leads to a new density estimator. 
We recall that 0 = r/2. 
DEFINITION 8.5. For admissible ( r ,  k) and for a simple sample X,, . . . , X ,  

corresponding to the distribution F we define 
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where r = k+ 21, I' = h + h{r -t- k)/2,  h > 0 and 1 > 0. Moreover, let 

. (8.7) 
fn.h,2. a,): = -. llh,h,A 1 1  1 

It follows by Proposition 8.4, lo, that s~pp(h:~ ,~ )  c (-A', A'). 

PROPOSITION 8.8. Let (r ,  k) be admissible and let r > 1. Moreover, let h and 
A be as in Definition 8.5. Then for some constant C ,  depending on r only, we have 

(8.9).  

Proof. Using (8.6) and (8.7) we find that 
I (8.10) IIf-fnh,~lll 6 ~ l f - f n . k . A l ~  1 +@F,(jE)' 

Moreover, if we use (8.3), then 

(8.11) ~ I ~ - ~ ~ , ~ , ~ I I ~ ~ I I ~ - , Q ~ ~ I I ~ + I I Q ~ ~ - Q ~ , A ~ I I ~ + I I ~ ~ , ~ , A - ~ ~ ~ , ~ , A ~ I ~ ~  
-$$ 

Now, 

and 

(8.13) I@F(~)-@P~(AII 2 IIF-FMII m -  

Thus, combining (8.13), (8.12), (8.11) and (8.10) we get 

! 
I We estimate the mean value of the last term as follows: 
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where 

Q f i , ~ b ,  4 = C M ! ? I , ~ , . ~ ( Y ) N ~ ~ , ~ x I ~  
- L ' < t i < A 1 - r f i  

This, (8.14), (6.21) and Theorem 3.6 give (8.9). 

THEOREM 8.15. k t  ( r ,  k )  be admissible and let r > 1. M o r ~ o v w ,  let the 
parameters ct and S be given such that 0 < a < 2, 6 2 0. Define 

Then for f E 9 the conditions 
' 

(8.1 7 )  ( ) = l )  as R+m 

imply 

(8.1 8) E I I f - f n f h . ~ I / 1 = O ( l / n ~ ~ )  n + m y  

where h - l/nfl, and I - nY. Conversely, for 0 < a c 2, 6 > 0 the property (8.18) 
implies both (8.16) and (8.17). 

Proof, Since a#I= Sy < $, the direct statement follows by Proposi- 
tion 8.8. The converse is obtained as follaws. The definition of 8:;; and (8.18) 
give 

whence the inequality (8.16) for 0 < a < 2 follows by (5.17) with k = 2 if r > 2 
and by (5.18) in the case r = 2. ,To obtain the inequality (8.17) from (8.18) 
observe that 

I f - , A  1 j If-hTh,Al = f, 
1x1 >A' 1x1 >A' 

whence 
1 f < j f = O(l/naP) = O(l /nSy)  = O(1-'). 

1x1 > A / %  1x1 > 8' 

COROLLARY 8.19. Let the support o f f  E 9 be bounded and let the condition 
(8.16) be satisfied. Then = 1/(1+2a)  (6 = m) and there is an S ~ E Z  determined 
by the size of the supp f such that 

The case of or = 2 when a/(1+2ol) = 3 (see [9], p. 37) is particularly 
interesting. Moreover, if the density f has not a bounded support but it rapidly 
decreases at m to 0 and at - oo and if it satisfies (8.16), then for each E > 0 
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there is S > 0 such that 

Note that the condition (8.16) is satisfied for large classes of densities: 
1" Iff E W ~ l o c ( R )  and Df is of bounded variation on R, then (8.16) holds 

with a = 2. 
2" If f is of bounded variation on R, then (8.16) holds with u = 1. 

EXAMPLES. (1) (8.21) applies to the Gaussian law with u = 2. 
(2) (8.21) with or = 1 applies to the exponential (and double exponential) 

law. 
(3) (8.20) with a = $ applies to the arcsin law. 
(4) For the stable law (including nonsymmetric) with exponent p, 

0 < p < 2, we have or = 2 and 6 = 1 + p. In this case (8.18) can be applied with 
u j  = (2 + 2p)/(7 + 5p). 

9. The optimal width of the window parameter. For a given simple sample 
( X i ,  . . . , X,) we repeat Definitions 6.1 and 6.6. Namely, for admissible ( r ,  k )  we 
have 

(9.2) f,., : = fJ,;kj = DF('9"I n.h for h > 0 .  

The aim of this section is to derive the density estimator called a window 
function, i.e., a function of variables h, XI, . . . , X, which for a fixed sample will 
give the possibility of finding the optimal h by looking at its infimum. 

FROPOSITION 9.3. Assume that (r ,  k )  is admissible and that k > 1. Then 
there is a constant C depending on r only such that 

(9.4) - h  1 d l f  + -  I - h  h > 0, 

where V(g;  R) is the total variation of g over R. 

Proof. The Bernstein type inequality (5.12) and Theorem 3.6 give 

In the right-hand side of (9.4) we look at the second term. In that term, F is 
unknown and we replace it by the known estimator f i sh .  Similarly, in the first 
term of the right-hand side of (9.4) the f is the unknown and we replace it by 
the known estimator f,,,. Thus we end up with the following quantity: 
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We proceed with majorizing of this quantity. According to (3.18) and to 
Theorem 3.6 we have 

and the first term in (9.5) is being estimated with the help of the trivial 
inequality w,,,(f,,,; h) d 2w,,,(fn,,; h). Thus, up to a multiplicative constant, 
(9.5) is majorized by hLl,,,(fn,,; h). However, by Corollary 2.11 we have 

where the a,'s are given by the formula 

or, more explicitly, according to (6.8) 

'Thus the right-hand side of (9.61, by using (2.51, can be written as 

and therefore it is useful to introduce the function 

where x = (x,, ..., x,)€Rn and 

DEFENI~ON 9.9. For k > 1, ~ E Z ,  h > 0 and for a given simple sample 
X = (XI, . . . , X,J we define the window function as follows: 

(9.10) F ( h )  : = 9 ( k ) ( h ;  X), 

where the right-hand side is given by formulas (9.7) and (9.8). 

Since the window function is majorizing in the sense described above the 
error of estimating the distribution in the total variation norm or equivalently 
in estimating the density in the L1-norm, we call the smallest h, > 0 at which 
9 ( h )  attains its absolute minimum the optimal width of the window parameter 
h in the estimation process. 
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To state the main result on the window function we need the following 
periodic function: 

(9.1 1) Gfi)(x) = z Ig(k)(~ - ill. 
~ E Z  

Since k > 1, the function is continuous and it is also positive and periodic. We 
also introduce the constant 

(9.12) mk = min G[kl.  
R 

It is also helpful to introduce the notation 

where x = (x,, .. ., x , ) fR".  . . 

PROPOSITION 9.13. :Le t 'k t>  1, ~ E Z  and Iet X E Rn be a given simple sample. 
Then S(.) is continuous, positive and bounded by 2 on the positiue real axis. 
Moreover, 

and with probability one 

(9.1 5) liminfF(h) = m,. 
h+O+ 

Proof.  For the function gtk) given by, (9.6) we observe that 

and $ is the only zero of g(') in < - k / 2 ,  k /2  + 1). Now, for fixed i, if h is such 
that h > 211X11,, then Xj/h-i~(-$-i ,  4-i) for j = 1, ..., n and either 
g(kl(Xj/h-i) 2 0 for all j or g(k)(Xj/h - i) < 0 for all j. Thus, h > 2 IlXll, implies 
(9.14). Let now 

Since l~uppg(~)J  = k+ 1, it follows that Xj # Xj, implies that at least one of the 
numbers g(k)(Xj/h- i), glk)(Xf/h - i )  is zero. In addition, if Xj = Xj. for j + j', 
then the previous numbers are equal. Both these facts give by definitions the 
identity in (9.14). On the other hand, we always have 

Since IIG(k)ll < 2, we conclude by (9.16) that F ( h )  d 2. Suppose now that, for 
some h, > 0, F(h,) = 0. This implies that O(S,,~,,; hO) = 0, whence should 
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be a constant function with bounded support but this is impossible since f,,,, is 
a density. To prove (9.15) consider the function 

It is periodic in each variable, and therefore by a theorem of S. Mazur and 
W. Orlicz (see [lo], p. 15) the equality (9.15) follows. 

10. Comments. The procedure of finding the optimal size of the window 
parameter as described in the previous section has been implemented by 
L. Chaliko, T. Figiel ahd the author on the IBM PC, and the ESTIMPACK 
package of programs is available. 
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