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Abstmct. Let { x ,  n 2 1) be a sequence of random variables and 
{N,, k k 1) a sequence of positive integer valued rmdom variables. 
Laws of the iterated logarithm ror IFN,, k 2 I) are established. An 
application to record tunes is given. 

1. HntPdnctiiiw. Let ('Y,, n 2 1) be a sequence of random variables and 
( N , ,  k 3 1) a family of positive integer valued random variables (indices). The 
aim of this paper is to establish laws of the iterated logarithm for (YN,, k 2 1). 
We also provide an application to record times. 

As a background we begin with some results concerning distributional 
convergence. 

We say that (Y,, n 2 1) satisfies the Anscornbe condition A if 

CONDITION A. For every E > 0 and q > 0 there exist 6 > 0 and no such 
that 

P(max I&-Y,] B E )  < q  for all n>n, ,  
k€A,(S) 

where 
A,(6) = (k: Ik- nl < n6). B 

Anscornbe's theorem [I] is as follows: 

THEOREM A. Suppose that 

that (I.',, n 2 1) satisfies Condition A and that there exists a sequence ofpositive 
numbers Ink, k 2 1), tending to injinity, such that 

(1.2) 

Then 
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Remark  1.1. Sometimes the time parameters of the sequences in (1.2) are 
discrete, sometimes continuous. We confine ourselves to the discrete case. rn 

The case = (a JT;)-lS,, where S,, n 3 1, are partial sums of i.i.d. 
random variables with mean 0 and positive, finite variance a', YE N ( 0 ,  1) and 
n, = k, yields a central limit theorem for stopped random walks. For direct 
proofs see Rbnyi [9], Chung [2], pp. 216-217, and Gut [6], p. 16. 

Verifying Condition A then, essentially, amounts to applying Kolmogo- 
rov's inequality. The restriction n, = k is no real loss of generality; it is, 
essentially, only a matter of parametrization. 

A natural generalization of the central limit theorem for stopped random 
walks is to consider sums of independent random variables with mean 0 and 
positive finite variances mz, k 2 1, such that s,Z = z;=, ui + co as a + co. It is 
then natural to combine condition (1.2) with the assumption that 

in order to conclude that 

and that 

Remark  1.2. The assumption (1.4) means that, although the variances of 
the summands may differ, on the average they do not differ very much from 
c2. 

The important idea in Csorgo and Rychlik [3] is that this is not the best 
way to approach this generalization. Instead they introduce a generalized 
Anscombe condition as follows: 

Let (k,, n 2 1) be nonnegative numbers tending to infinity. The sequence 
{Y,, n 2 1) satisfies the generalized Anscombe condition GA with norming 
sequence (k,, n 2 1) if 

CONDITION GA. For every E > 0 there exist 6 > 0 and no such that 

P(max 15- Y,I > E) < E for all n > no, 
j ~ G d 6 )  

where 

G,(6) = {i: Ik> k,"l < 6k3.  H 

In Theorem 2 of [3], which generalizes Theorem A above, the assumption 
that {Y,, n 2 1) satisfies Condition A is replaced by the assumption that 
Condition GA is satisfied, and the assumption (1.2) is replaced by the 
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assumption that 

for some family {nj, j 2 1) as above. A further generalization is given in Csdrgo 
and Rychlik [4]. 

For sums of independent random variables with mean 0 the natural 
norming sequence (k,, n 3 1) is k, = s, = ,J'-. In this case (1.6) becomes 

and the conclusion is that 

(1.8) s 0 I) and s;lSNk 5 N(0, 1) as k + rn 

(provided, of course, that the Lindeberg condition is satisfied, but that was 
implicitly assumed in i1.1)). 

Remark 1.3. The important point here is that the assumption (1.4) is not 
needed; the essential assumption is (1.7). If, however, (1.4) is satisfied, then so is 
(1.2), and (1.8) is equivalent to (1.5). Note also that (1.2) and (1.4) together imply 
(1.7) and that (1.7) may hold and, at the same time, (1.2) and (1.4) may fail to 
hold. 

Remark 1.4. In the i.i.d. case ki = u2.n (where a-s the common 
variance), (1.7) reduces to (1.2) and Condition GA reduces to Condition A. 

Remark 1.5. A direct proof of (1.8) does, again, essentially, follow 
through an application of Kolmogorov's inequality. H 

A further argument supporting this approach is that in the theory of weak 
convergence the subdivision of the time interval [0, 11 is made at the points 
(k/rz, k = 0, 1, 2, . . . , n)  in the random walk case (Donsker's theorem) and at 
the points {sz/s,2, k = 0, 1 , 2, . . = , n} in the more general case. 

The purpose of this paper is to establish analogous extensions for the law 
of the iterated logarithm. The motivation for this is on the one hand the 
theoretical interest, on the other hand the fact that limit theorems for randomly 
indexed sequences of random variabIes, such as stopped random waIks, have 
wide applicability. A specific example motivating the present study is the 
theory of record times and the associated counting process, because this is an 
example where (1.7) is fulfilled, whereas (1.2) and (1.4) are not. 

In the foIlowing section the framework for this example is given. In 
Section 3 the general results are established, and in Section 4 those for sums of 
independent random variables. Section 5, finally, contains the application to 
record times and some remarks. 

2. Record times and the counting process. Let {X,, k 2 1) be i.i.d. random 
variables whose distribution function is continuous. The sequence of record 

i 
I 9 - PAMS 12.1 
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times is, recursively, defined as follows: 

The associated counting prbcess ( ~ ( n ) ,  n > 1) is defined through the relation 

(2.2) 'P(n) = # records in 11, n] = max(k: L(k) < n). 

For details, see Resnick [Ill, Chapter 4. 
It  turns out that one can write 

where {I,, k 2 1) are independent indicator variables such that P ( I ,  = 1) 
= 1 -P{Ik  = 0) = k"', k > 1. Consequently, 

- 
n 

(2.4a) m,=E,u(n)= k- '=logn+y+o(l)  as n + m  
k = 1  

and 

where y = 0.577.. . is Euler's constant. 
It is easy to see that (p(n) -log n)/& 5 N(0, 1) as n + co; this was first 

proved by Rknyi [lo]. He then uses inversion (recall (2.2)) in order to establish 
the asymptotic normality of log L(n) as n + CQ. In Gut [7], Section 6, it was 
shown that an alternative way to prove asymptotic normality of log L(n) was to 
combine the asymptotic normality of the counting process, a strong law for 
logL(n) (which. yields (1.7)) and Theorem 2 of Csorgo and Rychlik [3]. 

The relevance of the example for the present investigation is that 
(i) the strong law, n-I log L(n) I as n + co, shows that (1.2) is not 

satisfied; 
(ii) it follows from (2.4b) that n-ls; -+ 0 as n -, oo, i.e. (1.4) is not satisfied; 

(iii) the strong law and (2.4b) together show that (1.7) is satisfied with 
n, = [ek] ,  k 2 1. 

3. Anscombe laws of the iterated logarithm. The results in this section are 
obtained by replacing "the assumptions in probability" made in Section 1 by 
a.s. or Borel-Cantelli versions. 

Thus, let {Y,, n 2 1) and {N,, k 2 1) be given as in the Introduction. We 
say that (Y,, n B 1) satisfies the Anscombe condition ALIL if - 
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CONDITION ALIL. For every E > 0 there exists 6 > 0 such that 

where A,@) = (k: Ik-nl d nJ). r 
Let C({x , ] )  denote the set of limit points of the sequence {x,]. 

THEOREM 3.1. Suppose that for some sequence {n,, k 2 1) of positive 
integers increasing to infinity we have 

(3.1) C ( { X k ,  k 2 11) = E a.s., 

where E c (- rn , m), 

and {Y,, k 2 1) satisfies condition ALIL. 
I Then 

Proof.  Since Y,, = Y,, + (Y,, - 'Y,,), the conclusion follows if we can 
show that 

Towards this end, let E > 0 and 6 > 0 be given. For j > 1 we then have (cf. 
Torring 1121, [13], Sections 6) 

00 m 

< C P( max 1 ~ -  Y,,I > E ) + P ( U  {[Nk-nkl > 6nJ) < oo. 
k =  j kAnk(J) k =  j 

It follows that 

w 

P ( U ~ t X V k - K , J > ~ ) ) + O  a s j + a ,  
k = j  

which proves (3.4). si 

In order to obtain a generalization corresponding to the distributional 
result of Csorgo and Rychlik [3] we need a further Anscombe condition. 

Let (a j ,  j > 1) be nonnegative numbers tending to infinity and let 
{n,, k 2 1) be as before, We say that (I.',, n 2 1) satisfies the generalized 
Anscombe condition GALIL with norming sequence ( d j ,  j 2 1) if . 
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CONDITION GALIL. For every E > 0 there exists S > 0 such that 

where G,(6) = ( i :  Id: -d,ZI 4 Sd,2). BI 

With the aid 'of this condition we can now establish the following 
generalization of Theorem 3.1 : 

THEOREM 3.2. Suppose that for some sequence (n , ,  k 2 1) of posititre 
integers increasing to inJinity we have 

I . ,  (i) for some E c (- a, m) 

(3.5) C((x , ,  k 2 1)) = E u.s.; 

(ii) there exists a (norming) sequence {d,, ie 2 1) of positive numbers 
increasing to infinity such that 

(iii) ITk, k 3 1) satisfies Condition GALIL with norming sequence 
{dj ,  j 3 I}. 

Then 

(3-7) C((YNk,  k 2 1)) = E a.s. 

Proof.  The obvious modification of the proof of Theorem 3.1, now 
departing from the relation 

yields the desired conclusion. 

Re mark  3.1. Theorem 3.1 remains true if the equalities in (3.1) and (3.3) 
are replaced by 3.  The same remark applies to Theorem 3.2. A typical 
example is when E equals the extreme limit points of {qk, k 2 1). 

Remark  3.2. Theorem 2 of Csorg6 and Rychlik [4] can be adapted to 
the law of the iterated logarithm in a similar fashion. We omit the details. 

4. Sams of independent random variables. The first natural application of 
the results of Section 3 is to sums of independent random variables. For 
a direct proof of such an Anscombe law of the iterated logarithm in the i.i.d. 
case see Torring [12]. 
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This section is devoted to the corresponding problem for sums of 
independent, but not identically distributed, random variables. However, only 
results for the extreme limit points are obtained. 

Thus, let {X,, k 2 I] be independent random variables with mean 0 and 
positive finite variances {cr:, k 2 1 )  and let {S , ,  n 3 1) denote their partial 
sums. We further set s,2 = z;', uz, n 3 1, and assume that s,2 + co as n -+ a. 
Finally, for sequences (x,, k 2 1) of positive reals, we define 

where logt x = max (1,  log x). 
The following result is Theorem 2.1 of Torring [13]; in the i.i.d. case it 

reduces to Theorems 2.2 and 2.1 of Gut [ 5 ] .  

THEOREM T.  Set, for n 3 . 1 ,  
, . 

9 = Js: logt logt s: and bn = ,/s:flogt log' s:, 

and let (n,, k 2 1 )  be a sequence of positive integers, strictly increasing to 
infinity. Assume that, for some y > 0 and each q > 0, 

and 

m 

C a;' j . x2dF,(x) < co. 
. i= l  qbi<lxl<gai 

Then 

2 

lirn sup (hm inf) = (+)c*({s:,}) a.s. if lim sup < 1 
k+m k+m anlc k+co S n k + ,  

and 

2 

lim sup (lun i d )  = (k) JI as.  $ lirn inf > 0. H 

k - r m  k+m k+m ' n k + ~  

Our aim is to establish the following result: 

THEOREM 4.1. Suppose that t4e assumptions of Theorem T are satisfied and, 
further, that (N , ,  k 2 1 )  is a sequence of positive integer valued random variables 
such that 
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(i) If lirn sup,, , s ik/s ik+,  < 1, then 

lirn sup (lirn i d )  Sh = ( & ) E *  ({s:~)) U.S., 

k+ m k+ m .,,/sik log+ log+ s;, 

lim sup (lim inf) = ( - & ~ u . s .  
* k + m  J&G& 

(ii) If lirn in&,, s,Z,/s,2,, , > 0, then 

lim sup (lim inf) = (f ) $ a s .  
k-oo li+m , /sik log+ log+ sik 

P r o  o L A comparison with Theorem 3.2 shows that the sequence 
{ d i ,  n 3 1) there corresponds to the sequence {s:, n 2 1) here (cf. Section 1) 
and that the conclusion follows if we can show that (Snk/an,, k 2 13 satisfies 
Condition GALE with norming sequence is:, n 2 1) (recall Remark 3.1). 
However, this will only work in the proof of part (i); cf. 5.2 and 5.3 below. 

Now, in Torring [12], [13] direct proofs are given for results of this kind; 
in the former paper for the i.i.d. case, in the latter paper under the assumptions 
(3.2) and (1.4) instead of (4.2). By using the observation that the sequence 
(sik, k > 1) here plays the role of the sequence (n,, k 2 1) there we can modify 
her computations and obtain a corresponding direct proof of the first part of (i). 

Somewhat more precisely, we truncate Xi at i q b i  and &yai (note that 
qb, < ya, for i large) and set 

We then wish to show that 

Instead of splitting as in Torring [13], formula (6.10) (cf. also Torring 
[12], formula (6.3)), we split as in the proof of Theorem 3.2 above, after which 
we split the sum into the two obvious halves. We then proceed as in the 
Torring papers (keeping in mind the observation that s2k H nJ. This yields 
(4.2). The other portions of (S, ,  n 2 1) are taken care of as in Torring [13], 
Section 6, and the first part of (i) follows. 

The second part of ti) follows by modifying the first part of the proof 
exactly as in Torring L-131, and (ii) follows from the first part by thinning as 
there (see also Gut [ 5 ]  and Torring 1123). We omit further details. 

Remark  4.1. In view of (4.2) we may replace sik by s& in all denomi- 
nators. 

Remark  4.2. Note that we have actually shown that the sets of limit 
points of the nonrandom subsequences and the random ones coincide. How- 
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ever, since Theorem T only gives the extreme limit points, this is also what we 
obtain here. 

Remark  4.3. Results for C({S,,/a,,, k 2 1)) and C({S,Ja,,, k 2 1) are 
given in Torrdng [13], Theorems .2.5 and 5.4, respectively. However, an 
assumption slightly stronger than (1.4) is already used in the proof of the results 
for deterministic subsequences. 

5. An application to record times and some remarks. 
5.1. We now indicate how Theorem 4.1 can be used to prove the law of 

the iterated logarithm for record times via Anscombe laws of the iterated 
logarithm for the counting process. (The law of the iterated logarithm for the 
counting process follows from (2.3) and the bounded law of the iterated 

* 
logarithm (since (I,-k-'1 < 1 for all k); see R h y i  [lo].) 

For notation and preliminaries, recall Section 2. In particular, we recall 
that for the record times {L(n), n 2 1) we have 

1 6 ~  L (n) 
1 a s n + m  

and for the counting process (p(n), n 2 I )  we have 

It thus follows that (4.2) is satisfied with nk = [eT (and Nk = L(k)). 
Furthermore, since Il , -k- l l  < 1, the conditions of Theorem T are trivially 
satisfied. Finally, s ~ , J s ~ ~ + ,  + 1 as k -t m. An application of Theorem 4.1 (ii) 
therefore yields 

(5.2) lim sup (h inf) 
p(l(n)) -1% L(n) 

= (&) JZ a,s. 
n-l  m n+ m ,/log ~ ( n ) l o g l o ~ l o g ~ ( n )  

From the fact that p ( ~ ( n ) )  = n and a further application of (5.1) we finally 
conclude that 

log L (n) - n 
lim sup (lim i d )  , = (+)& a.s., 

n+m Jnloglogn 

which is the desired result. rn 

5.2. An attempt to prove (5.2) directly via Theorem 3.2 would fail. 
Namely, by using estimates from Gut [8], Section 5, one can show that the 
generalized Anscombe condition GALIL is not satisfied (thus, in spite of the 
fact that the conclusion of the theorem holds). 

However, if we choose Nk = L([eY) and n, = [ere"]], k 2 1, it is easy to see 
that 

lim inf s;Jsik + , > 0. 
k+ m 
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Moreover, sik/s ik -, 1 as k + a. Further, by using the Livy inequalities and 
the exponential bounds of Gut [a ] ,  Section 5 (and (2.4)) it is possible to show 
that the sequence 

,/log n, log log log n, 

satisfies Condition GALIL. We can therefore, via the second part of Theorem 
T, apply Theorem 3.2 to codclude that 

15-41 lim sup (lim inf) ''Nk)-logNk = ( k ) & a , s .  
k + m  j i ~ ~ ~ , i ~ g i ~ g i ~ g ~ ,  

Finally, since the sequence considered in (5.2) on the one hand contains the 
sequence in (5.4) and on the other hand is a subsequence of the full sequence 

, . .  , p(n)-logn 
' ,. 

n log log log n 

whose extreme limit points are +$ as., it follows that (5.2) holds. 
We have thus managed to find a subsequence of (5.2) which is sparse 

enough for Theorem 3.2 to apply and dense enough to have the same extreme 
limit points as the full sequence. 

5.3. A closer inspection of the results of Sections 4 and 5 so far reveals the 
following. 

The proof of Theorem 4.1 (ii) follows from the proof of Theorem 4.1 (i) via . 

thinning (cf. Gut [5] and Torriing [12], [13]) and so did the proof of (5.2) via 
Theorem 3.2 (i.e. (5.4)). Part of the reason for this is that in these cases the 
verification of an Anscombe condition is closely connected with the evaluation 
of e*({sik)) (recall (4.1)). This in turn is due to the fact that the probabilities 
involved in Condition GALIL in these cases are estimated by Ltvjr inequalities 
and exponential bounds (and sometimes truncation) and the resulting estimates 
are of the oder of magnitude of logf s:k raised to some negative power (again, 
for details, see Gut [5] and Torring [12], [13]). From such estimates it follows 
that the corresponding E* is finite (roughly) iff the sequence (sik) increases at 
least geometrically. In Theorem 4.1 this is the case in part (i) and for the 
application in 5.2 this is the case in formula (5.4). 

The conclusion thus is that an Anscombe law may hold even if the 
Anscombe condition is not satisfied. The trick to circumvent this problem is to 
thin the original sequence so much that the relevant Anscombe condition is 
satisfied, but not more than is ailowed in order for the (extreme) limit points to 
coincide (a.s.) with those of the desired conclusion. 

We also note that there is, in fact, a somewhat analogous situation in the 
proof of the ordinary law of the iterated logarithm for sums of independent 
random variables. Namely, there the sums are Borel-Cantelli sums, such that 
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the full sums are divergent. One therefore begins by picking a geometrically 
increasing subsequence for which the sums are convergent (and then uses LCvy 
inequalities to take care of what happens between the points of the subse- 
quence). 

5.4. We close by recalling that the important feature was that we make 
assumptions like (3.6) or (4.2) instead of (3.2) together with (1.7). Moreover, in 
our application (4.2) was satisfied, whereas neither (3.2) nor (1.7) were satisfied. 
In general, it follows, of course, that (3.2)+(1.7) e- (4.2) but not vice versa. 

Acknowledgement. I wish to thank Professor Zdzislaw Rychlik for several 
interesting and stimulating discussions about Anscombe conditions and 
Anscombe theorems. 
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