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SPECTRUM TRIMMING OPERATIONS 
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Abstract. The paper deals with the study of a family of spectrum 
trimming operations. In terms of thed operations a characterization of 
the Pruitt classes of limit laws is established. 

I. Preliminaries and motation. Let M be a finite nonnegative Bore1 
measure on the half-line [0, m). For any x ~ ( 0 ,  oo) we put 

where m(x) = min(1, x2). It is clear that both functions i(M, -) and j(M, .) are 
continuous on the left and 
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Moreover, 

and 

(1.5) i(M,y)j(M,x)~~<i(M,x)(M,y)~~ if x < Y .  

Further, for x ~ ( 0 ,  a) put 

Starting from (1.3) and integrating by parts we get, by (1.2), 

(1.7) i(M, x) = -j(M, x)+2x2k(M,  x), 

which, in particular, shows that for any x E (0, CO) the integral k ( M ,  x) is finite. 
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Thus 
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and, by (1.71, 

Moreover, by a standard calculation we get from (1.4) 

and 

Consequently, the function k ( M ,  7 )  determines the measure Ad. Notice that, by 
(1.21, (1.6) and (l.8), 

In the sequel, by s(M) we shaIl denote the support of a measure M, and by 
4, the set of all measures M fulfilling the condition 0 E s(M).  As an immediate 
consequence of (1.10) and (1.11)' we get the following statement: 

PROPOSITION 1.1. Let M ,  N E ~ ,  and C E ( O ,  a). I f  k(M,  x) = ck (N ,  x) 
for x € [ a ,  b), then M([a ,  x)) = cN([a ,  x)) for x € [ a ,  b). 

In the sequel we shall use the following simple criterion: 

PROPOSITION 1.2. Necessary and sufJicient conditions for a function 
f defined on (0, co) to be of the form f ( x )  = k ( M ,  x) ( x ~ ( 0 ,  a)) with some 
M E & ,  are that 

(i) the function f is diflerentiable and monotonic nonincreasing on (0, a), 
(ii) the deriuative dfldx is continuous on the left and negative in a neighbor- 

hood of 0, 
(iii) limx+m f (x) = O7 
(iv) the function 

is monotonic nondecreasing on (0, co). 

Proof.  The necessity of the above conditions is an immediate conse- 
quence of (1.6) and (1.8). To prove the sufficiency assume the function f fulfils 
all the conditions (iHiv). First observe that, by (i) and (ii), the function g is 
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positive on (0, co). Further, by (iv), for any XE(O, a) we have the inequality 

which, by (iii), yields 

gfx) lirn T =  0. 
r - m  X 

Put g(0) = 0 and for x ~ ( 0 ,  co) 

Since, by (ii), the function g is continuous on the left, the above formula defines 
a Borel measure M finite on every bounded subset of the half-line [Q, m). In 
particular, for x E (0, 11 we have M([O, x)) = g(x) which, by (ii), yields 0 E s(M). 
Starting from (1.14) and integrating by parts we get, according to (1.12), 

for any x ~ ( 1 ,  GO). NOW using (iii) and (1.13) and letting x 4 co we obtain the 
equality M(0 , -m)  = 2f(l) which shows that M E A ~ ' , .  Notice that, by (1.141, 
j (M,  x) = g(x) and, consequently, by (1.6) and (iii), 

which completes the proof. ra 

Given M E  M, the function Z(M, x) = i(M, x)/j(M, x) is well defined on 
(0, co). From (1.8) and (1.9) w.e get, by a standard calculation, 

Solving the above equation we obtain 

k(M, x) = k(M, 1) exp 

which, by (1.12), yields the formula 

This shows that the function E(M, -) and the constant M([o, a)) determine the 
measure M. 
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2. A family of operations on measures. Our first purpose is to define 
a family of operations on A,. We begin by proving the following existence 
theorem: 

THEOREM 2.1. For every ME A, and 0 < a < b there is a unique measure 
N E do fuEJiIEiny the following conditions: 

(2.1) N([07 a)) = M(C0, m ) ) ,  

(2.2) I(N, x) = 1(M, x) for X E ( L Z ,  b) 

s(N) n (a,  6) = 0. 

P r o  of. Introduce the notation h(x) = x2 b p 2  1(M, b) for x E (a, b) and 
h(x) = I(M, x) elsewhere. It is clear that the function h is continuous on the left 
on (0, m). Put . 

and 

for x ~ ( 0 ,  co). Obviously, the fmction f is differentiable and monotonic 
nonincreasing. Its derivative 

is continuous on the left and negative on (0, a). Using (1.16) oile can easily 
check the formulae 

and 

(2.9) f ( x ) = f ( b ) ( l ( ~ , b ) + b ' x - ' ) / ( l + l ( M , b ) )  f o r x ~ ( a , b ) .  

Further, from '(1.6) and (2.8) we get' immediately lim,,, f (x) = 0. Put 

By (1.8), (2.7) and (2.8) we conclude that 

(2.10) g (x) = f (a) j(M7 x)/k(M, a) for x E (0, a1 , 
(2.1 1) g(x) = f (b) j ( M ,  x)/k(M, b) for x E [b ,  ao). . 



Spectrum trimming operations 143 

In particular, g(b) = f (b) j ( M ,  b)/k[M, b), which, by (1.8) and (1.15), yields 

The above formula and (2.9) imply 

By the continuity of f we get from (2.9) the formula 

which, by (2.61, yields 

for x ~ ( 0 ,  a]. Thus, by (1.8), 

for x E (0, a] and, consequently, 

Taking into account (1.8) and (1.15) we get 

Since, by (1.51, 1(M, b)a2 < l(M, a)b2, we finally get the inequality 

g(a) < 2b2f(b)(l+l(M, b))-'. 

Comparing this with (2.12) we have 

Since the function j ( M ,  .) is monotonic nondecreasing, we conclude, by (2.10), 
(2.11), (2.13) and (2.141, that the function g is also monotonic nondecreasing. 
Thus the function f fulfils the conditions of Proposition 1.2 and, consequently, 
there exists a measure N E A ,  with the property 

(2.15)' k (N,x)=  f ( x )  for x ~ ( 0 ,  a). 

By (1.12), (2.4) and (2.5) we have N (10, co)) = M([O, m)). Moreover, by (1.15), 
E(N, x) = h(x), which yields 1(N, x) = l (M, x) for x €fa ,  b). Further, by (1.8), 
(2.13) and (2.15) we have j (N,  x) = g(b) for x €(a,  6). This implies, by (1.1), 
N((a, b)) = 0, which completes the proof of the existence of a measure 
N fulfilling conditions (2.1H2.3). It remains to prove its uniqueness. Suppose 
that N I E A ~ ,  N'(E0, m)) = M([O, a)), I(N', X) = I(M, x) for x ~ ( a ,  b) and 
s(N') n (a, b) = 8. The last condition implies j (N,  x) = j(W, b) and i(Nf , x) 
= ~ ' b - ~ i ( N ' ,  b) for X E ( ~ ,  b). Thus 
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for x E (a, b), which yields I(Nf , x) = h(x)  for x ~ ( 0 ,  a). Consequently, by (2.5), 
(1.15) and (2.15) we have k(Nf , x) = k(N, x) for x E (0 ,  a). Since the function 
k determines the measure, we infer that N' = N. This completes the proof. H 

The above theorem enables us to define for any pair a, b (0 < a < b) an 
operation U,,, on do b y  setting Zia,bM = N ,  where N is the unique measure 
fulfilling conditions (2.1H2.3). It is dear that 

(2.16) E(Ua-bM, x )  = ~ ' b - ~ l ( M ,  b )  for x ~ ( a ,  b) 

and UaPbM = M if and only if ~ ( ( a ,  b)) = 0. Moreover, by formulae (2.7), (2.8) 
and Proposition 1.1, we have 

(2.17) (Ua,bM)IB) = pM(B n LO, a)) + qM(B n [b, m))+ rd,, 

where 6 ,  stands for the probability measure concentrated at the point a and 

In particular, one can easily check that 

(Ua,,M)@) = M ( B  n LO, a)) + M([a ,  A))6,(B) 

whenever a 2 1 and M ( [ b ,  LO)) = 0. By a standard calculation we get the 
following formulae for c > 0: 

Ua,b(460'+ $6,) = + $6, 

if either c < a or c 2 b and 

if c ~ ( a ,  b). 
As an immediate consequence of (2.17) we get the inclusion 

which yields s ( U , , M )  = s(M)\(a, b) if either a ~ s ( M )  or M((a,  b)) = 0. 
From Theorem 2.1 we get also the following statement. For any collection 

of disjoint intervals (a , ,  b,), (a,, b,), . . ., (a,, b,J with the property aj  >'O and 
a j € s ( M )  ( j =  1,  2,  ..., n) we have 

and 
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In the sequel by 0 we shall denote the measure vanishing identically on 
LO, m). Put A = A, u { O ) .  We extend the operation Wa,, from A, to by 
setting U,,,O = 0. 

By the Livy-Khintchine canonical representation, each symmetric in- 
finitely divisible probability measure on the real line is of the form e ( M ) ,  where 
M is an arbitrary finite Borel measure on the half-line [O, m) and the 
characteristic function of e ( M )  is given by the formula 

(cos t x  - 1)- 

with m(x)  = min(1, x2). Here the integrand for x = 0 is assumed to be -itZ. 
Put 2 = (e(M): M E  A). For any probability measure from 4 and 0 < a < b 
we define a spectrum trimming operation T,,, by setting T,,be(M) = e(U,,bA4). 
It is clear that x,bL2 c 2 and K q b p  = p if p is either 6, or a symmetric Gaussian 
measure. 

I The Pruitt clr&s. Let XI, X,, ... be a sequence of independent 
identically distributed real-valued random variables. Lkvy proved in [3] that 
all possible limit laws of suitably normed sums 

with a, > 0 form the family of stable laws. Khintchine showed in [2 ]  that every 
infinitely divisible law can be obtained as the limit of a subsequence of 
probability distributions of (3.1). 

Feller restricted in [I] the summands to be in a class which makes the 
normed sums (3.1) stochastically compact, i.e., so that the sequence of 
probability distributions of (3.1) is conditionally compact and all its cluster 
points are nondegenerate laws. Let 46 be the family of all possible cluster 
points for sequences obeyingFeller's conditions. The first description of the 
class F was found by Pruitt in 141. His results inspired an integral 
representation of limit laws from F given in [ 5 ] .  

Denote by F,?, the subset of F consisting of symmetric probability 
measures. It is obvlous that all measures from S,,, are infinitely divisible. 
Given c > 0 by X c  we denote the set of all finite Borel measures M on [0, a) 
fulhlling the condition 

for all XE(O, a). The Pruitt class 9, is defined by setting 

The importance of the Pruitt classes is that in terms of them we can describe 
the class g,,, of limit laws. Namely, by Pruitt's Theorem ( [ 4 ] ,  p. 963) 

10 - PAMS 12.1 
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Our aim is to describe the Pruitt classes 9, in terms of spectrum trimming 
operations. 

For our purpose it is convenient to use the following representation of 
p-stable symmetric probability measures with p E (0, 2): 

gp,b = e ( b N p ) ~  
where b > 0 and 

Notice that Np is a probability measure and 

(3.4) j(bNp,,) = 2-p - for XE(O,  m). 
P 

We begin with the . , following simple observation: 

PROPOSI~ON 3.L The Pruitt class 9, is a closed subset of 2 invariant under 
convolution and spectrum trimming operations xPb (0 < a < b). Moreover, 
a,, €9, for all b > 0 and p 2 2/(l +c). 

P r o  of. The relation E 9, whenever b > 0 and p 2 2/11 +c) is an 
immediate consequence of (3.4). Consequently, to prove the assertion it suf'fices 
to show that 2, is a closed subset of J# invariant under addition and 
operations Ua,b (0 < a < b). Suppose that M E X,  and 0 $ s ( M )  or, equivalently, 
M([O, a)) = 0 for a certain a > 0. Using (3.2) we have i(M, a) = 0, which yields 
M([a, a)) = 0. Thus M = 0 and the inclusion A?, c A holds. 

Suppose that Mn+  M and M,E*, (n = 1,2, ...). Then we have 
i(Mn, x) 4 i(M, x) and j(Mn, x) + j(M, x) for every continuity point x of the 
limiting measure M. Since both the functions i (M,  .) and j(M, .) are continuous 
on the left, we infer, by (3.2), that M EX=, which shows that the set #, is 
closed. The invariance of A?, under addition is obvious. Let M # 0 and 
M EX,. Then O€s(M) and condition (3.2) can be rewritten in the form 
E(M, x) < c for x ~ ( 0 ,  co) which, by (2.16), yields the inequality l(U,,bM, x) < c 
for XE(O, w) and 0 < a < b. In other words, the set #, is invariant under 
transformations Ua,b, which completes the proof. 

Let E be the space of all closed subsets A of [0, co) with O E  A. Identifying 
the points 0 and oo we regard the half-line [0, co) as a circle with the usual 
metric. This metric induces the Hausdorff distance Q, between subsets of 
[0, oo). It  is clear that the metric space ( E ,  Q,) is compact. Notice that the 
condition O E  A implies that the topology of (E, Q,) is equivalent to that 
induced by the topological limit on [0, m). Denote by E,  the subspace of 
E consisting of sets of the form 

n 

'4 = CO, a ) \  U (a,, bb? 
k = l  
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where a, > 0 (k = 1 ,  2, . . ., n). Of course, we may always assume that the 
intervals (a,, b,) are disjoint. It is clear that E ,  is a dense subspace of E. 

It was proved in [5] that for every A E E and c > 0 there exists 
a probability measure M> in S, with the properties s(M',) = A and 
l (M>, x) = c for x E A\{O) . Moreover, the mapping A -* ML is a homeornor- 
phism between E and (Ad", A E E ) .  For probability measures M from 2, the 
condition I(M, x) = c for x E s(M)\(O) implies M = MZ(,) . In particular, by 
(3.3) and (3.4) we have 

Further, by the integral representation theorem in [ S ]  the following statement 
is true: 

PROWSITION 3.2. The set of all linear combinations x:=, b,M',, with 
bk > 0 and A k € E  (k = 1 ,  2, . .. , n; n = 1, 2 ,  . . .) is dense in A?,. 

Since the subs pace:^; is' dense in E, the above proposition yields 

PROWSITION 3.3. The set of all probability measures of the form 
b Mi,) withbk >OaradA,~E,,(k = 1,2, ..., n;n = 1 ,  2, ...) isdense in a ; = 1  - k  

the Pruttt class 9,. 

We are now in a position to prove the following description of the Pruitt 
classes. 

THEOREM 3.1. For any c > 0 the Pruitt class 9, is the least closed subset of 
9 containing the 2/(l +c)-siable measures G ~ , ( ~ ~  c),b (b > 0) and invariant under 
convolution and spectrum trimming operations Kmb (0 < a < b). 

Proof.  Assume that a subset W of 2 fulfils the conditions of the theorem. 
By Propositions 3.1 and 3.3, to prove that W = 9, it suffices to show that 
e ( b M 2  E 9 for b > 0 and AEE,. First note that, by (3.3, the relation 
az,(, +, ) ,b~B can be rewritten in the form 

(3.6) e(bM[o,m)) 9. 

Let A E  Eo and 
n 

A = CO, a)\ LJ (a,, b,), 
k = l  

where a, > 0 and the intervals (a,, b,) (k = 1, 2, . . . , n) are disjoint. By (3.6) we 
have the relation 

or, equivalently, 

where N = Ulll,blUaZ,bl ... Ulln,bnMfo,m). It is clear that N is a probability 
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measure belonging to 8,. Since a, E s(Mfo,,,) = LO, a), we conclude, by (2.18) 
and (2.19), 

Z(N,X)=I(M;~,,),X)=C for X E A  

and s ( N )  = A. Thus N = MC, which, by (3.71, yields e ( b M i ) ~ W .  This com- 
pletes the proof of the theorem. u i  
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