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SPECTRUM TRIMMING OPERATIONS
BY

K. URBANIK (WROCLAW)

Abstract. The paper deals with the study of a family of spectrum
trimming operations. In terms of thesé operations a characterization of
the Pruitt clagses of limit laws is established.

1. Preliminaries and notation. Let M be a finite nonnegative Borel
measure on the half-line [0, o). For any x€(0, c0) we put

T My . y?
—_—, M, x)= ——M dy),
[y S0 = ] M
where m(x) = min(1, x2). It is clear that both functions i(M, -) and j(M, -) are
continuous on the left and

(1.1) (M, x) = x*

(12) | tim 189 _ o,
. X o x

Moreover,
(1.3) M, 0 =x? Of i (l;‘;’ 23
Ly M([0, )= | | y(” dji(M, y)

, ‘ 0
and ‘
(1.5) i(M, y) j(M, x)x* <i(M, x)(M, y)y* if x<y.
Further, for xe(0, o) put ' '
(1.6) kM, %) = | (M; Y)

x

Starting from (1 3) and 1ntegrat1ng by parts we get, by (1.2),
%) M, x) = —j(M, x)+2x2k(M X),

which, in particular, shows that for any x (0, o) the integral k(M, x) is finite.
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Thus

(1.8) jM, x) = —x3 d%; k(M, x)

and, by (1.7),

(1.9) i(M, x) = x> % kM, x)+2x2k(M, x).
Moreover, by a standard calculation we get from (1.4)
(1.10) M([o, -x)) = —x3 % k‘(M, x) if xe(0,1)
and |

(1.11)  M([o, x).)‘»;'zk(M,"1)';zk(M, x)——x%k(M, x) if xe[l, o).

Conséquently, the function k(M, -) determines the measure M. Notice that, by
(1.2), (1.6) and (1.8),

(112) ’ | M([0, o)) = 2k(M, 1).

In the sequel, by s(M) we shall denote the support of a measure M, and by
M the set of all measures M fulfilling the condition 0 € s(M). As an immediate
consequence of (1.10) and (1.11) we get the following statement:

ProrosiTiON 1.1. Let M, Ne.#, and ce(0, oo). If k(M, x) = ck(N, x)
for xela, b), then M([a, x)) = cN([a, x)) for xe[a, b). :

In the sequel we shall use the following simple criterion:

PropPOSITION 1.2. Necessary and sufficient conditions for a function
f defined on (0, ©) to be of the form f(x)=k(M, x) (xe(0, ) with some
Me#, are that

(i) the function f is differentiable and monotonic nonincreasing on (0, ),

(i) the derivative dfjdx is continuous on the left and negative in a neighbor-
_hood of 0,

(iii) lim,., f(x) =0,

(iv) the function

o) = —x* & 1(x)

is monotonic nondecreasing on (0, o).

Proof. The necessity of the above conditions is an immediate conse-
quence of (1.6) and (1.8). To prove the sufficiency assume the function f fulfils
all the conditions (i}(iv). First observe that, by (i) and (ii), the function g is
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positive on (0, co). Further, by (iv), for any x(0, c0) we have the inequality

10—r@9 =1 Qay> g0 T %=,
WhiCh,. by (iii), yields : n
(1.13) tim 9% _ o,
Put g(0) = 0 and for x&(0, oo)xm |
(114 M([o, x))=x£_ m—y(f—)dg(y)-

Since, by (ii), the function g is continuous on the left, the above formula defines
a Borel measure M finite on every bounded subset of the half-line [0, o0). In
particular, for x (0, 1] we have M([0, x)) = g(x) which, by (ii), yields 0 s(M).
Starting from (1.14) and integrating by parts we get, according to (1.12),

M([0, %)) = g(1)+ j dg(y) g( )

1

=AM)-2Ax)—"7

for any xe(1, 00). Now using (iii) and (1.13) and letting x — co we obtain the
equality M (0, o0) = 2f(1) which shows that M e.# . Notice that, by (1.14),
j(M, x) = g(x) and, consequently, by (1.6) and (iii),

KM, x) = f“’ny)dy e

which completes the proof. m

Given Me . #, the function (M, x) = i(M, x)/J(M x) 'is well defined on
(0, o). From (1.8) and (1.9) we get, by a standard calculation,

d _ 2k(M, %)
1.15 - kO, x)"——__—x(nl(M, 5

Solving the above equation we obtain

kM, x)=k(M, 1) exp( §—~—(1+1(M y)))

which, by (1.12), yields the formula

k(M, x)=1 M([o, OO)CXP( 25 (1+I(M y))>

This shows that the function I(M, -) and the constant M([0, o)) determine the
measure M. : ~
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2. A family of operations on measures. Our first purpose is to define
a family of operations on .#,. We begin by proving the following existence
theorem:

THEOREM 2.1. For every Me .# , and 0 < a < b there is a unique measure
Ne A, fulfilling the following condmons

@1) N([0, 00) = M([0, o)),
(2.2) IN,x)=1(M,x) for xe(a,b)
and

(2.3) - s(NM)n(a,b) =0

Proof. Introduce the notation h(x) = x?b~2l(M, b) for xe(a, b) and
h(x) = (M, x) elsewhere. It is clear that the function h is continuous on the left
on (0, o0). Put [EnE :

(24) ¢ = M([0, ®))
and

1 dy
@3 1= exp( iy(1+h(y)))

for xe(0, 00). Obviously, the function f is differentiable and monotonic
nonincreasing. Its derivative

d . K
&9 30w

is continuous on the left and negatlve on (0, c0). Using (1.16) one can eas1ly
check the formulae

2.6)

2.7 f(x) = f(@kM(x)/k(M, a) for xe(0, a],
2.8) f(x) = f(b)k(M, x)/k(M, b) for xe[b, )
and ‘

2.9) f) = f(I (M, b)+b2x"2)/(1+1(M, b)) for xe(a, b).
Further, from '(1.6) and (2.8) we get immediately lim,_, f(x) = 0. Put
009 =~ 2.

By (1.8), (2.7) and (2.8) we conclude thaf
(2.10) g(x) = f(a) j(M, x)/k(M, a) . for xe(0, d],
(2.11) g(x)= f(b) j(M, x)/k(M,b) for xe[b, ).
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Tn particular, g(b) = f(b) j(M, b)/k(M, b), which, by (1.8) and (1.15), yields

2.12), g(b) = sb> f(b)/(1+1(M, b)).
The above formula and (2.9) imply
(2.13) g(x) =g(b) for xe(a,b).

By the continuity of f we get from (2.9) the formula
f(@ = fB)I(M, b)+a~?b?)/(1+1(M, b))

which, by (2.6), yields -

f(x) = f(bYk(M, x)(I(M, b)+a~2b*)/k(M, a)(1+I(M, b))
for xe(0, a]. Thus, by (1.8), ‘

g(x) = f(b) j(M, x)({(M, b)+a~2b%)/k(M, a)(1+1(M, b))
for xe(0, a] and, conéé;quently,

g(a) = f(b) j(M, a)(I{(M, b)+a~?b*)/k(M, a)(1 +1(M, b)).
Taking into account (1.8) and (1.15) we get

g(a) = 2f (b)(a®I(M, b)+b*)(1+1(M, a)) (1 +1(M, b))_l.
Since, by (1.5), I(M, b)a? < (M, a)b?, we finally get the inequality

g(a) < 262 (B)(1+1(M, b)) ",

Comparing this with (2.12) we have
(2.14) g(a) < g(b).

Since the function j(M, -) is monotonic nondecreasing, we conclude,. by (2.10),
(2.11), (2.13) and (2.14), that the function g is also monotonic nondecreasing..
Thus the function f fulfils the conditions of Proposition 1.2 and, consequently,
there exists a measure Ne.#, with the property

(2.15) k(N, x)= f(x) for xe(0, c0).

By (1.12), (2.4) and (2.5) we have N([0, c0)) = M([0, 0)). Moreover, by (1.15),
I(N, x) = h(x), which yields (N, x) = (M, x) for xe(a, b). Further, by (1.8),
(2.13) and (2.15) we have j(N, x) = g(b) for xe(a, b). This implies, by (1.1),
N{(a, b)) =0, which completes the proof of the existence of a measure
N fulfilling conditions (2.1}+2.3). It remains to prove its uniqueness. Suppose
that N'e#,, N'([0, )) = M([0, ), I(N', x) = (M, x) for xe(a, b) and
S(N)n(a, b) = . The last condition implies j(N’, x) = j(N', b) and i(N’, x)
= x2b~2%i(N’, b) for xe(a, b). Thus

(N, x) = x2b~2I(N', b) = x*>b=2I(M, b)
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for xe(a, b), which yields I(N’, x) = h(x) for xe (0, o0). Consequently, by (2.5),
(1.15) and (2.15) we have k(N’, x) = k(N, x) for xe(0, o). Since the function
k determines the measure, we infer that N’ = N. This completes the proof. =

The above theorem enables us to define for any pair a, b (0 < a < b) an
operation U, , on .#,, by setting U,,M = N, where N is the unique measure
fulfilling conditions (2.1)2.3). It is clear that

(2.16) (U, oM, x) = x*b™2I(M, b) for xe(a, b)

and U,,M = M if and only if M((a, b)) = 0. Moreover, by formulae (2.7), (2.8)
and Proposition 1.1, we have

2.17) (U, »M)(B) = pM(B N[0, a))+gM(Bn [b oo))+r5
where 6, stands for the probability measure concentrated at the point a and
p=f@KM,a)>0, q=fE/kM,b)>0, r>0.
In particular, one can easily check that
(UsM)(B) = M(Bn O, a))+M([q, b))d,(B)

whenever a>>1 and M ([b oo)) 0. By a standard calculation we get the
following formulae for ¢ > 0:

Ua,b.(%(s()l-l_%:(sc) = %50 +%5c
if either ¢ <a or ¢ > b and ' '

1. 1 m(@)m(c)  m@m(e)
(25 +25> m(a)+m(c)‘S +<1_m(a)+m(c))5“
if ce(a, b).

As an immediate consequence of (2.17) we get the inclusion
_ s(M)\(a, b) = 5(U,,M) = {a} U (s(M)\(a, b))
which yields s(U,,M) = s(M)\(a, b) if either aes(M) or M((a, b)) =0
From Theorem 2.1 we get also the following statement. For any collection
of disjoint intervals (a,, b,), (5, b,), ..., (a,, b,) with the property a; >0 and
a;es(M) (j=1,2,...,n) we have
(218)  1(Ua0,Unsse- UM, X) = UM, %) if x€ U (a;, b))

and

(219) S(Ual,bl Uaz,bz . -Ua,,,b,,M) = S M)\ U (al, ]
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In the sequel by 0 we shall denote the measure vanishing identically on
[0, o0). Put # = .#, U {0}. We extend the operation U,, from .#, to .# by
setting U, ;0 =0..

By the Lévy—Khintchine canonical representation, each symmetric in-
finitely divisible probability measure on the real line is of the form (M), where
M is an arbitrary finite Borel measure on the half-line [0, o0) and the
characteristic function of e(M) is given by the formula

. M(dx)

é(M)(t) exp(!(cos tx—1) e )
with m(x) = min(1, x?). Here the integrand for x = 0 is assumed to be —%¢2,
Put 2 = {e(M). Me.#}. For any probability measure from 2and 0 <a <b
we define a spectrum trimming operation T,, by setting T, ,e(M) = (U, ,M).
Itis clear that T, , 2 < 2 and T, bu /,c if u is either §, or a symmetric Gaussian
measure.

3. The Pruitt classes Let X,,X,,... be a sequence of independent
identically distributed real-valued random variables. Lévy proved in [3] that
all possible limit laws of suitably normed sums

(3.1 ' a, (X, +X,+...+X,)+b,

with a, > 0 form the family of stable laws. Khintchine showed in [2] that every
infinitely divisible law can be obtained as the limit of a.subsequence of
probability distributions of (3.1).

Feller restricted in {1] the summands to be in a class which makes the
normed sums (3.1) stochastically compact, ie., so that the sequence of
probability distributions of (3.1} is conditionally compact and all its cluster
points are nondegenerate laws. Let & be the family of all possible cluster
points for sequences obeying, Feller's conditions. The first description of the
class & was found by Pruitt in [4]. His results inspired an integral
representation of limit laws from & given in [5].

Denote by %, the subset of & consisting of symmetric probability
measures. It is obvious that all measures from &, are infinitely divisible.
Given ¢ > 0 by 5, we denote the set of all finite Borel measures M on [0 o0)
fulfilling the condltlon

(3'2) ' l(M: x) < Cj(M, x)
for all xe(0, c0). The Pruitt class &, is defined by setting
P, = {e(M): Me#,}.

The importance of the Pruitt classes is that in terms of them we can describe
the class &, of limit laws. Namely, by Pruitt’s Theorem ([4], p. 963)

sym ( U 2 )\{50}

c>0

10 — PAMS 121
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Our dim is to describe the Pruitt classes #, in terms of spectrum trimming
operations.

For our purpose it is convenient to use the following representation of
p-stable symmetric probability measures with pe(0, 2):

. Gy = e(bN,),
where b > 0 and

p(2—p) [ mx) .

2 Bx1+p :

Notice that N, is a probability measure and

(3.3) N,(B) =

(3.4) I(bN, ) =2—;£ for xe(0, o).
We begin with the following simple observation:

PROPOSITION 3.1. The Pruitt class P is a closed subset of 2 invariant under
convolution and spectrum trimming operations T, (0 < a < b). Moreover,
0pp€P, for all b>0 and p > 2/1+c).

Proof. The relation ¢,,€%, whenever b >0 and p > 2/(1+c) is an
immediate consequence of (3.4). Consequently, to prove the assertion it suffices

.to show that s, is a closed subset of .# invariant under addition and

operations U, (0 < a < b). Suppose that M € #, and 0¢ s(M) or, equivalently,
M([0, a)) = O for a certain a > 0. Using (3.2) we have i(M, a) = 0, which yields
M([a, ©0)) =0. Thus M =0 and the inclusion #, < .# holds.

Suppose that M,—->M and M,es#. (n=1,2,...). Then we have
i(M,, x) > i(M, x) and j(M,, x) > j(M, x) for every continuity point x of the
limiting measure M. Since both the functions i(M, *) and j(M, -) are continuous
on the left, we infer, by (3.2), that M e 5#,, which shows that the set J#, is
closed. The invariance of 3, under addition is obvious. Let M # 0 and
Mes#, Then Oes(M) and condition (3.2) can be rewritten in the form
I(M, x) < ¢ for xe(0, o0) which, by (2.16), yields the inequality /(U,,M, x) < c
for xe(0, o0) and 0 < a < b. In other words, the set 5, is invariant under
transformations U,,, which completes the proof.

Let E be the space of all closed subsets A of [0, o) with 0€ A. Identifying
the points 0 and oo we regard the half-line [0, o0) as a circle with the usual
metric. This metric induces the Hausdorff distance g, between subsets of
[0, o0). It is clear that the metric space (E, gg) is compact. Notice that the
condition Oe A implies that the topology of (E, gg) is equivalent to that
induced by the topological limit on. [0, c0). Denote by E, the subspace of
E consisting of sets of the form .

A=10, )\ @, b),
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where a, >0 (k=1, 2, ..., n). Of course, we may always assume that the
intervals (a,, b,) are disjoint. It is clear that E, is a dense subspace of E.

It was proved in [S] that for every AeE and ¢ >0 there exists
a probability measure MY in #, with the properties s(M%)=A and
(M4, x) = ¢ for xe A\{0}. Moreover, the mapping A - M is a homeomor-
phism between E and {M%: Ae€E}. For probability measures M from 5#, the
condition (M, x) = ¢ for xes(M)\{0} implies M = Muy. In particular, by
(3.3) and (3.4) we have

(3.5) Nyt +0 = Mo, -
Further, by the integral representation theorem in [5] the following statement
is true:

PROPOSITION 3.2. The set of all linear combinations Y,_ b M%, with
b,>0 and A,cE (k=1,2,...,n; n=1,2,..) is dense in # ..

Since the subspacef'l"i‘(; 'is dense in E, the above proposition yields

ProOPOSITION 3.3. The set of all probability measures of the form
e(Zleka;k) withb, > 0and A,eE,(k=1,2,...,n;n=1,2,..)is dense in
~ the Pruitt class 2..

We are now in a position to prove the following description of the Pruitt
classes. : '

THEOREM 3.1. For any c > 0 the Pruitt class 2, is the least closed subset of
2 containing the 2/(1+c)-stable measures 65 +¢,5 (b > 0) and invariant under
convolution and spectrum trimming operations T,; (0 < a < b).

Proof. Assume that a subset Z of 2 fulfils the conditions of the theorem.
By Propositions 3.1 and 3.3, to prove that £ = £, it suffices to show that
- e(bM%)eR for b >0 and A€E,. First note that, by (3.5), the relation
G2 +0p€Z# can be rewritten in the form

(3.6) e(bMjo, ) EZ.
Let AeE, and

A=10, N\ @ b,
where a, > 0 and the intervals (q,, b)) (k =1, 2, ..., n) are disjoint. By (3.6) we
have the relation .
Tovors Tazs - - - Tap 5, @(OMfo,c0)) € R
or, equivalently,
3.7 e(bN)eZ,
where N = U, 4, Usypy--  UsppaMfo,«). It is clear that N is a probability
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measure belonging to #,. Since a, € s(Mfo,)) = [0, ), we conclude, by (2.18)
and (2.19),

I(N, x) =l(M{p,, X) =c for xeA

and s(N) = A. Thus N = M which, by (3.7), ylelds e(bM‘)e.@ ThlS com-
pletes the proof of the theorem. = .
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