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ON INTEGRATED SQUARE ERRORS 

OF RECURSIVE NONPARAMETWIC ESTIMATES 
OF NIPNSTATKlWARY MARKOV PROCESSES* 

Abstmct. The integrated square error (ISE) and the mean 
integrated squark error (MISE) for a class of recursive estimators of 
the transition density function of a vector-valued nonstationary 
Markov process are considered. Conditions are given under which the 
MISE converges, and the ISE converges in probability and almost 
sure1 y. 

I. Twtroductiom. Let {xt, t = 0, 1, . . .) be an p-valued nonstationary Mar- 
kov process with a transition density function qCylx) = f (x, y)/y(x), where y ( ~ )  
and f (x, y) are probability densities on Rd and RZd, respectively. Given 
a density estimator, say, v,(x) of y(x), a widely used measure of the global 
performance of vt is the Mean Integrated Square Error (MISE) 

where I, is the Integrated Square Error (ISE): 

and Mt(x) is the Mean Square Error: 

(unqualified integrals, as in (1.1) and (1.2), denote integration over all of Rd.) In 
this paper, we let Yt be the recursive estimators introduced by Wolverton and 
Wagner [23], and further studied by Yamato [25] and other authors (cf. 
Chapters 5 and 6 in [IS]), and give conditions under which both the MISE and 
the ISE converge to zero as t -, a, the convergence of I, being almost surely 
(as.). These results are also extended to estimatorsx(x, y) and d,(ylx) off (x, y) 
and q(y 1 x) , respectively. 
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(CONACYT) under Grant PCEXCNA-050156. ' 
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The MISE in (1.1) was introduced by Rosenblatt [ld] and it has also been 
studied by many authors, mainly for independent and identically distributed 
(i.i.d.) sequences (see [I], [fl, [MI, [19]) as well as for stationary mixing 
processes (e.g., [4], [13]). On the other hand, the study of nonparametric 
estimation problems for Markov processes was initiated in the late 1960's with 
the pioneering works of Roussas [20] and Rosenblatt [17], [IS], and by now 
there is a large number of papers on the subject; see, e.g., [3], [Il l ,  [24] and the 
extensive list of references in [15], Chapter 6. All of these papers, however, have 
in common that they only consider stationary Markov processes. Two 
exceptions are [6] and [IO], which are closely related to our present work. In 
[6] ,  Gillert and Wartenberg study, among other things, the mean square error 
(1.3) and' the MISE (but not the ISE) for scalar nonstationary Markov 
processes, using the well-known nonrecursive Parzen-Rosenblatt [14], [I61 
density estimators. In contrast, [lo] studies the recursive Wolverton-Wagner 
(WW) density estimates (cf. Section 3 below), which are shown to be uniformly 
consistent in mean square as well as strongly pointwise consistent and strongly 
consistent in the L,-norm. As far as the Markov process {x,) is concerned, the 
context in the present paper is essentially the same as in [63 and [lo]. 

We begin in Section 2 by introducing the assumptions on the Markov 
process (xt] and we also summarize some of its properties. The WW estimates 
are introduced in Section 3 together with our main results, whose proofs are all 
collected in Section 4. 

NOTATION. The Borel a-algebra of Rd is denoted by Bd. For a finite signed 
measure p, ( ( p ( (  denotes the variation norm, whereas for a function f on Rd, (1 f (1 
stands for the supremum norm. By convention, 0/0 = 0. 

2. Preliminaries. Let {x,, t = 0, 1, . . .) be an Rd-valued homogeneous 
Markov process with transition density qblx). Thus, given an arbitrary initial 
distribution po, the distribution p, of x,, for t 2 I, is given by 

(2.1) 
I- 

~ , (B)= jQ(Blx )~ , -~ (dx ) ,  B E @ ,  

where Q(Blx) = j, q(y 1 x)dy is the transition probability measure. Throughout 
we suppose the following 

ASSUMPTION 2.1. (a) The initial distribution p0 is absolutely continuous 
with a bounded density yo. 

(b) There is a positive number a < 1 such that 

(c) For some constant q, q(y lx)  < ij for all x and y in Rd. 

Assumption 2.1 (b) is a well-known ergodicity condition for Markov 
processes ([2], [12], [21]), and also for Markov control (or decision) processes 
(151, [8], [9]) in which the transition measure Q(-lx, a) depends also on an 
"action" (or control) variable a E A for some Borel space ' A. Sufficient 
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conditions for Assumption 2.1 (b) are given, e.g., in [5], [8], [9] - taking A as 
a one-point set - and in [3], Section 2.1, for Markov processes of the form 
x , + ~  = F(x,)+(,, where (&] is a sequence of i.i.d. random vectors. 

Assumption 2.1 (b) guarantees the existence of a probability measure 
p such that 

for an arbitrary initial distribution. Clearly, p is the unique invariant 
distribution of (x,). On the other hand, (2.1) and Assumption 2.1 (a) yield that 
p, is absolutely continuous for all t 0, and this, in turn, combined with (2.21, 
implies that also p is absolutely continuous. The corresponding densities of p, 
and p, denoted by y, and y ,  respectively, satisfy 

for all y E Rd and t 2 1, and since jlpt -pll = j Iyt(x) - y (x)ldx, we can rewrite 
(2.2) as 

jIyt(x)-~(x)ldx < 26,  t = 0, 1, .. . 
Finally, the latter inequality and (2.3) yield 

for all y~ R' and t 2 1, where is the constant in Assumption 2.1 (c). Therefore, 
we conclude 

Notice also that both y and y, are bounded: from (2.3) we obtain 

(2.5) l l y l l < i j  and llyrll<cofor all t 2 0 ,  

where co : = max {tj, 1 1  yo 11). 
Similar results can be obtained for the joint Markov process z,: = (x,, x ,+~),  

t = 0, 1, ... For each t 2 0, z, has a density f,(x, y) = q(ylx)y,(x) for (x, y) in 
Rzd, which is uniformly bounded, since y)l < qCo < C; by (2.5) and 
Assumption 2.1 (c). Furthermore, Lemma 2.2 yields 

LEMMA 2.3. ~up,,~lf,(x,y)-f(x,y)l<~lly,-yll-,O as t + m ,  where 
f (x, Y) = qCylx)y(x). 

For the results in the following section we need additional assumptions: 

A s s m ~ n o ~  2.4. There exist bounded measurable functions g and h on Rd 
such that, for all x, y, x', and y' in Rd, 

(a) I4(Ylx)-q(Yflx)J Ig(x)l lY -yfl, 
04 lq(~lx)-qdVlx')l G Ih(y)l lx-x'l. 
It is easily verified that Assumption 2.4 (a) implies that y and y, are 

uniformly Lipschitz-continuous, and similarly for f and f ,  when both Assump- 
tions 2.4 (a) and (b) hold. 



3. Recursive estimation. In this section we consider the recursive Wolver- 
ton-Wagner (WW) nonparametric estimates of y(x), f ( x ,  y ) ,  and q(y 1 x) ,  and 
state our main results (Theorems 3.1, 3.2, 3.3). 

Let u(x)  be a given probability density on Wd and let {b,) be a sequence of 
positive numbers. The WW estimate j, of y is defined for xfRd and t 2 1 by 

t -1  

f,(x):= t L 1  C un(x,-x) with u,(x): = bidu(x/b,).  
n=O 

Similarly, the WW estimates off ( x ,  y) and q(y I x )  are defined for (x, y) E RZd by 

and 

c ,  a,br x )  : = A(x ,  y)/f,(x), 

respectiveIy, where 

I 

! We assume throughout that u is bounded and j Ixlu(x)dx < c ~ .  Concerning 
I 
I the sequence ( b , ) ,  we assume that it is nonincreasing, b, < 1, and it satisfies 
I some of the following conditions as t 4 0: 

( B l )  bt + 0; 

To state the consistency results in a compact form, let us write the mean 
square error Mt(x) in (1.3) as 

M,(x) = VarCV,(x)l + B: ( x ) ,  

where Var denotes the variance, and B,(x) is the bias function of f,(x), i.e., 

Var [f, (x)]  : = E [ft ( x )  - Evt (x)]  ', B, ( x )  : = Eft ( x )  - y ( x )  . 
Thus, we can write the MISE in (1.1) as 

(3 -2) E(I,) = 1 Var If ,(x)] dx + j ~ Z ( x ) d x .  

THEOREM 3.1. Suppose that Assumptions 2.1 and 2.4 (a) hold and let t -, co. 
(a) If ( B  1) holds, then j B,2 (x)dx + 0. 
(b) If (B2) holds, then 1 Var [i;,(x)] dx -, 0. 
(c) If both (Bl) and (B2) hold, then the MISE E(It) 0, and therdore the 

ISE It + 0 in probability. 
(d) If ( B l H B 3 )  hold, then I,  -, 0 almost surely ( a x ) .  
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Theorem 3.1, as well as Theorems 3.2 and 3.3 below, are proved in Sec- 
tion 4. 

The corresponding result for the 2d-dimensional estimator. X(x, y) is 
a natural extension of Theorem 3.1 (see the Remark following Theorem 3.2). 
The ISE for jf is 

and the MISE can be written as 

where jilt is the mean square error 

with &(x, y):= EJ(x, y)-f (x, y), the bias function. With this notation, we 
have 

Rieom~ 3.2. Suppose that Assumptions 2.1 and 2.4 {both (a) and (b)) ?wid 
and let t + a. 

(a) lf (Bl) holds, then jjB:(x, y)dxdy -+ 0. 
(b) If (B2') holds, then j J ~ a r [ x ( x ,  y)]dxdy -, 0. 
(c) If both (Bl) and (B2') hold, then E(&) -, 0, and & 4 0 in probability. 
(d) I f  {Bl), (B23 and (B3') hold, then < + 0 a.s. 

Remark. Suppose that instead of the estimator $ in (3.1) we consider 

Then Theorem 3.2 holds when is replaced by A*, and conditions (B2') and 
(B3') are replaced by (B2) and (B3), respectively. However, we decided to use 
(and not A*) as an estimator off (x, y) because with 3: the calculations in the 
proof as Theorem 3.1 are more directly extended to the 2d-dimensional 
situation of Theorem 3.2. Other authors, of course, use f,*(x, y), or some 
variant, to estimate f (x, y); see, e-g., Prakasa Rao [15],  p. 320. 

Finally, let us consider the ISE for the estimator (i,(ylx): 

THEOREM 3.3. Suppose that Assumptions 2.1 and 2.4 hold together with 
conditions (BI), (B2), and (B3). Let x € R d  be such that y(x) > 0 and let t + a. 

(a) If (B2') holds, then EJ,(x) + 0, and therefore J,(x) + 0 in probability. 
(b) If (B2') and (BY) hold, then J,(x) -, 0 as.  

A Proofs. For ease of reference, we restate here some resuits from [lo]. 

LEMMA 4.1. Suppose that Assumptions 2.1 and 2.4 (a) hold and let t + m. 
(a) If (Bl) holds, then sup,lB,(x)l -+ 0, i.e., f t ( - )  is uniformly asymptotically 

unbiased. 



(b) If (E l )  and (B2) hold, then sup, M,(x) -+ 0, i.e., j,(.) is uniformly 
consistent in mean square. 

{c) If @I), (B2), and (B3) hold, then f t ( x )  + y(x) a.s. for a22 x E Rd, i.e., f t ( - )  is 
strongly pointwise consistent. 

Suppose, in addition, that Assumption 2.4 (b) holds. Then the corresponding 
results for x ( x ,  y) are the following: 

(a3 If {B l )  holds, then sup,,, (B,(x, y)l + 0. 
(b') If (B l )  and (82') hold, then sup,,,.ht(x, y )  -r 0. 
(c') If (Bl), (B2') and (B3') hold, then f ( x ,  y )  + f ( x ,  y )  a.s. for all 

( x ,  y ) ~  RZd. 

Proof. See Theorems 3.1 and 4.1 in [lo].  H 

Proof of Theorem 3.1. (a) This part follows from Lemma 4.1 (a) since 

1 BI(x)dx < suplB,(x)l J IB,(x)ldx -+ 0 as t + oo . 
c .  

X 

Ib) Let us write the variance of ft(x) as Var [ii,(x)J = t-2 Em,, r,,(x), 
where the sum is over n, m = 0,  1 ,  ..., t-1, and T,,(x) is the covariance 
function: 

By Ueno's [21] Lemma 3, we have 

Irnm(x)l < llull b;dam-nEun(x,-x) for all 0 < n < my 
where 

and a ~ ( 0 ,  1) is the coefficient of ergodicity in Assumption 2.1 (b). Therefore, 
since {b,] is nonincreasing and jEu,(x,-x)dx = 1, we obtain 

(4.2) J lrnm(x)ldx < ~ l u i l b ; ~ a ~ - ~  for O < n < r n < t ,  

so that the variance of .F, satisfies 

(4.3) JVar [y ,̂(x)j dx < t y2  C j ILmtx)ldx 
n,m 

< llull t-2b;d C ~1"-"1 < Ct-lb-d t 

n.m 

with C:= 2llull/(l-a), 

which results from the inequality En,, aim-"I 6 2t/(l -a). Thus condition (B2) 
implies part (b). 

(c) This part follows from (a), (b), and equation (3.2). 

(d) Adding and subtracting Eft(x) inside the brackets in (1.2), and using 
the inequality (a + b)2 < 2(a2 + b2), we see that the ISE I, satisfies 
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The second term on the right-hand side converges to zero (by part (a)), and 
therefore to prove (d) it suffices to. show that, as t + co, 

In turn, to prove (4.4), it suffices to prove that 

(4.5) k; + L a.s. for some finite limit L, 
since, by part (b), E(q) = 1 Var [?,(XI] dx 4 0, so that necessarily L = 0 a.s. To 
prove (4.5) we will use van Ryzin's Lemma of [22], pp. 1765 and 1766. First 
note that, by the definition of ft[x), 

(4.6) 9t+1(~) = (t+ 1)-1Cfft(~)+~*(x,-~)3. 

Hence, defining 

Zt(x) : = &(x) - Ejt(x) and U,(x) : = ut(xt -x) - Eu,(x, - x), 

we obtain 

whence 

E;+, = IZ,2+l(x)dx < ~ + ( t + 1 ) - 2 j [ U ~ ( ~ ) + 2 t U t ( ~ ) Z t ( x ) ] d ~ , .  

Now for t = 1, 2, .. . let 9, be the c-algebra generated by x,, . .., x , - ~ ,  and 
notice that E: is St-measurable, and also E(x+ ISt) < I: + E;', where is an 
9,-measurable random variable defined by 

To conclude (4.5) from van Ryzin's Lemma [22], we have to show that 

To prove this, note that E 1 U:(x)dx = r,,(x)dx < Ilu(l b;d by (4.2), whereas by 
(4.3) and repeated applications of the Schwartz inequality we obtain 

E J lU,(x)l lZt(x)l dx G (1 var 19t(xll dx)'12(S r,(x)dx)li2 

< (Ct-' b;d)112(11~II b;d)ri2 < C,t-112b;d 

for some constant C,. Thus, for some constant C,, E I r (  < C, t-312 btd ,  SO that 
(4.7) follows from condition (B3). This completes the proof of (4.9, which, as 
noted earlier, yields part (d). 

Proof of Theorem 3.2. This proof is, of course, the same as that of 
Theorem 3.1 with obvious changes. For instance, part (a) follows from Lem- 
ma 4.1 (a'), and, similarly, the covariance function 

Fni;lm(~, y) :=  CovCii,Ix,-x, %+I-Y), ii,(x,--x, x,,, -v)l 
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can be estimated by using Ueno's [21] Lemma 3 again, to obtain 

b ~ 2 d ~ ~ ~ ~ ~ Z a m - n - 1  E n ( -  x + -  for n + l  < m, 
I ~ ~ ( ~ ~  (~;~d~llu~~2Eu.(x,,-x, x.+,-yj for n =  m. 

Thus, the 2d-dimensional analogue of (4.2) is 

for n f l  G r n G  t ,  
j J IT"nr(~3 y?Idxdy G for n = rn < t .  

The other changes in the proof of Theorem 3.1 are just as obvious. BI 

Moreover, from Lemma 4.1 (a1Hc') and Theorem 3.2 the following can be 
seen: 

LEMMA 4.2. For each x E P7 as t + co , 
(a) j ~ , ( x ,  Y ~ Y  = S~[j ; tx ,  y)-f(x, Y) ld~ and 
Ib) j lX[x, y).-f(x, y)12dy + 0 a.s. 

Proof  of The o r  e m  3.3. Let x E Rd be such that y (x) 8 E > 0. Then, by 
Lemma 4.1 (cj, ft(x) > 4 2  a.s. for all t sufficiently large, and therefore, since 

we obtain 

Hence, by the inequality (a + b)2 G 2(a2 + b2), the ISE J,(x) satisfies 

for some constant C. Thus, part (b) follows from Lemmas 4.1 (c) and 4.2 (b), 
and on the other hand, taking expectations, we obtain 

EJttx) G C(jM,(x, Y ) ~ Y  +M*(x)), 

so that part (a) follows from Lemmas 4.1 (b) and 4.2 (a). ar 
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