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ON INTEGRATED SQUARE ERRORS
OF RECURSIVE NONPARAMETRIC ESTIMATES
OF NONSTATIONARY MARKOV PROCESSES*

BY

ONESIMO HERNANDEZ-LERMA (MExico Crty)

Abstract. The lntcgrated square error (ISE) and the mean
integrated squaré error (MISE) for a class of recursive estimators of
the transition density function of a vector-valued nonstationary
Markov process are considered. Conditions are given under which the
MISE converges, and the ISE converges in probability and almost
surely.

1. Introduction. Let {x,, =0, 1, ...} be an R%valued nonstationary Mar-
kov process with a transition density function g(y|x) = f(x, y)/y(x), where y(x)
and f(x,y) are probability densities on R? and R?‘, respectively. Given
a density estimator, say, 7,(x) of y(x), a widely used measure of the global
performance of §, is the Mean Integrated Square Error (MISE)

(1.1 E(I) = E[,(x)—y(x)]*dx = [ M,(x)dx,
where I, is the Integrated Square Error (ISE):

(1.2) 1:= [[7,(0)—y(x)]%dx,

and M,(x) is the Mean Square Error:

(1.3) M,(x):= E[7,(x)—7y(x)]*.

(Unqualified integrals, as in (1.1) and (1.2), denote integration over all of R%) In
this paper, we let §, be the recursive estimators introduced by Wolverton and
Wagner [23], and further studied by Yamato [25] and other authors (cf.
Chapters 5 and 6 in [15]), and give conditions under which both the MISE and
the ISE converge to zero as t — oo, the convergence of I, being almost surely
(a.s.). These results are also extended to estlmators filx, y) and 4,(y|x) of f(x, y)
and g(y|x), respectively.

* This research was supported in part by the Conse]o Namonal de Ciencia y Tecnologm
(CONACYT) under Grant PCEXCNA-050156.
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The MISE in (1.1) was introduced by Rosenblatt [16] and it has also been
studied by many authors, mainly for independent and identically distributed
(iid.) sequences (see [1], [7], [15], [19]) as well as for stationary mixing
processes (e.g., [4], [13]). On the other hand, the study of nonparametric
estimation problems for Markov processes was initiated in the late 1960’s with
the pioneering works of Roussas [20] and Rosenblatt {17], [18], and by now
there is a large number of papers on the subject; see, e.g., [3], [11], [24] and the
extensive list of references in [15], Chapter 6. All of these papers, however, have
in common that they only consider stationary Markov processes. Two
exceptions are [6] and [10], which are closely related to our present work. In
" [6], Gillert and Wartenberg study, among other things, the mean square error
(1.3) and the MISE (but not the ISE) for scalar nonstationary Markov
processes, using the well-known nonrecursive Parzen—Rosenblatt [14], [16]
density estimators. In contrast, [10] studies the recursive Wolverton—Wagner
(WW) density estimates (cf. Section 3 below), which are shown to be uniformly
consistent in mean square as well as strongly pointwise consistent and strongly
consistent in the L,-norm. As far as the Markov process {x,} is concerned, the
context in the present paper is essentially the same as in [6] and [10].

We begin in Section 2 by introducing the assumptions on the Markov
process {x,} and we also summarize some of its properties. The WW estimates
are introduced in Section 3 together with our main results, whose proofs are all
collected in Section 4:

. NotaTioN. The Borel g-algebra of R% is denoted by #“. For a finite signed
measure y, ||z|| denotes the variation norm, whereas for a function f on R?, || f|
stands for the supremum norm. By convention, 0/0 = 0.

2. Preliminaries. Let {x,t=0,1,...} be an R’valued homogeneous
Markov process with transition density g(y|x). Thus, given an arbitrary initial
distribution p,, the distribution p, of x,, for ¢t > 1, is given by

(2.1) 1(B) = [QBIx)-1(dx), Be,

- where O(B|x) = [zq(y|x)dy is the transmon probability measure. Throughout
we suppose the following

AssUMPTION 2.1. (a) The initial distribution yu, is absolutely continuous
with a bounded density .
(b) There is a positive number o < 1 such that

QCIX)—0CIMI <20 for all x and y in R
(c) For some constant g, g(y|x) € g for all x and y in R

Assumption 2.1 (b) is a well-known ergodicity condition for Markov
processes ([2], [12], [21]), and also for Markov control (or decision) processes
(51, [8], [9]) in which the transition measure Q(-|x, @) depends also on an
“action” (or control) variable acA for some Borel space’ A. Sufficient
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conditions for Assumption 2.1 (b) are given, e.g., in [5], [8], [9] — taking A4 as
a one-point set — and in [3], Section 2.1, for Markov processes of the form
x.+1 = F(x)+¢&,, where {£,} is a sequence of iid. random vectors.

Assumption 2.1 (b) guarantees the existence of a probability measure
i such that

@2 lg—pl <26, t=0,1,...,

for an arbitrary initial distribution. Clearly, p is the unique invariant
distribution of {x,}. On the other hand, (2.1) and Assumption 2.1 (a) yield that
U, is absolutely continuous for all ¢t > 0, and this, in turn, combined with (2.2),
implies that also u is absolutely continuous. The corresponding densities of y,
and p, denoted by 7y, and 7y, respectively, satisfy

23) :0) = faI0)y-1(x)dx  and  y() = fq(Ix)y(x)dx

for all yeR? and t >'1; and since fiu,—p| = [|y,(x)—7(x)ldx, we can rewrite
(2.2) as
[y —py()ldx < 20, t=0,1,...

Finally, the latter inequality and (2.3) yield

24 )~y < § q019)17:- 169 —y(oldx < 240~ !

forall yeR? and t > 1, where §is the constant in Assumption 2.1 (c). Therefore,
we conclude

1

LeMMA 2.2. |ly,—7] = sup,|y.(x)—p(x)] < 2ga'"' >0 as t - 0.

Notice also that both y and 7y, are bounded: from (2.3) we obtain
(2.5) lvl <g and |y,| <c¢, for all t 20,

where c,:= max{g, |ol}-

Similar results can be obtained for the Jomt Markov process z,:= (x,, X;+1),
t=0,1,... For each t > 0, z, has a density f(x, y) = (ylx)y,(x) for (x, y) in
R, which is uniformly bounded, since |f(x, y)| < gc, < ¢ by (2.5) and
Assumption 2.1 (c). Furthermore, Lemma 2.2 yields

LEMMA 2.3. sup,,|fi(x, »)—f(x, I < qly,—yl =0 as t—oo, where
f(x:3) = a01x)y(x). )
For the results in the following section we need additional assumptions:

ASSUMPTION 2.4. There exist bounded measurable functions g and h on R¢
such that, for all x, y, x/, and y' in R, '

(a) lg(1x)—q(/' 1) < lg( ly—y',
(b) lg(yIx)—qy1x) < [l Ix —x].

It is easily verified that Assumption 2.4 (a) implies that y and y, are
uniformly Lipschitz-continuous, and smularly for f and f, when both Assump-
tions 2.4 (a) and (b) hold.
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3. Recursive estimation. In this section we consider the recursive Wolver-
ton—-Wagner (WW) nonparametric estimates of y(x), f(x, y), and g(y|x), and
state our main results (Theorems 3.1, 3.2, 3.3).

Let u(x) be a given probability density on R? and let {b,} be a sequence of
positive numbers. The WW estimate §, of y is defined for xeRiand t > 1 by

t—1
F,0):=t"1 Y u,x,—x) with u,(x):= b, “u(x/b,).
n=0
Similarly, the WW estimates of f (x, y) and g(y|x) are defined for (x, y)e R*' by

(3.1) Fe, y)i=171 _Zoa"(x,,—x, Xot1—Y)

and

| qO1%):= ftx, /7).
respectively, where

i1,(X, ¥):= u,(x)u,(9) = by **u(x/b,)u(y/b,).

We assume throughout that u is bounded and | |x|u(x)dx < co. Concerning
the sequence {b,}, we assume that it is nonincreasing, b, < 1, and it satisfies
some of the following conditions as t — 0:

(B1) b,— 0;

(B2) tb? - c0; (B2 th?* - w0;

(B3) Zt'mbf” <o; (B3) Zt‘:‘/zbfz" < o0.

To state the consistency results in a compact form, let us wnte the mean
square error M,(x) in (1.3) as

M,(x) = Var[,(x)]+ B} (x),
where Var denotes the variance, and B,(x) is the bias function of §,(x), ie.,
Var[7,(x)]:= E[§,(x) —E7,()1%,  B,(x):= Ej,(x)—y(x).

Thus, we can write the MISE in (1.1) as '
(3.2 E(l,) = | Var[§,(x)]dx+ | B} (x)dx.

THEOREM 3.1. Suppose that Assumptions 2.1 and 2.4 (a) hold and let t — c0.

(a) If (B1) holds, then |B}(x)dx —0.

(b) If (B2) holds, then | Var[7,(x)]dx — 0.

(c) If both (B1) and (B2) hold, then the MISE E(I) — 0, and therefore the
ISE I, -0 in probability.

(d) If (B1){(B3) hold, then I,—0 almost surely (a.s.).
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Theorem 3.1, as well as Theorems 3.2 and 3.3 below, are proved in Séc;
tion 4.

The corresponding result for the 2d-dimensional estimator f(x, y) is
a natural extension of Theorem 3 1 (see the Remark following Theorem 3.2).
The ISE for f, is

IL:= {[[f(x, y)—f (x, y)*dxdy,
and the MISE can be written as

B(I):= [ M(x, y)dxdy,
where M, is the mean square error |
M,(x, y):= ELf(x,5)—f (x, y)]* = Var[f(x, y)]+ B?(x, y)

with B,(x, y):= Ef(x, y)—f (x, y), the bias function. With this notation, we
have

THEOREM 3.2. Suppose that Assumptlons 2.1 and 2.4 (both (a) and (b)) hold
and let t — 0.

(a) If (B1) holds, then [ BZ(x, y)dxdy — 0.

(b) If (B2) holds, then || Var[f(x, y)ldxdy - 0.

(c) If both (Bl) and (B2') hold, then E(I,)— 0, and I,— 0 in probability.

() If (B1), (B2) and (B3) hold, then I, -0 a.s.

Remar k'. Suppose that instead of the estimator f, in (3.1) we consider
t—1
fFx, y):=1t71 Y by tul(x,—x)/ba*Jul(x,+1—y)/ba'*].
n=0

Then Theorem 3.2 holds when f; is replaced by f;*, and conditions (B2’) and
(B3') are replaced by (B2) and (B3), respectively. However, we decided to use f;
(and not f£;*) as an estimator of f(x, y) because with f, the calculations in the
proof as Theorem 3.1 are more directly extended to the 2d-dimensional
situation of Theorem 3.2. Other authors, of course, use f*(x, y), or some
variant, to estimate f(x, y); see, e.g, Prakasa Rao [15], p- 320.

Finally, let us consider the ISE for the estimator 4,(y|x):

J,(x):= [ [4,(v1x)—q(y|x)]*dy, xeR°.

THEOREM 3.3. Suppose that Assumptions 2.1 and 2.4 hold together with

conditions (B1), (B2), and (B3). Let xeR? be such that y(x) > 0 and let t — 0.
(@) If (B2) holds, then EJ,(x)— 0, and therefore J,(x) —» O in probability.
(b) If (B2) and (B3') hold, then J,(x)— 0 as.

4. Proofs. For ease of reference, we restate here some results from [10].

LeMMA 4.1. Suppose that Assumptions 2.1 and 2.4 (a) hold and let t — 0.
(a) If (B1) holds, then sup |B,(x)] = 0, ie., 7,(-) is uniformly asymptotzcally
unbiased.
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(b) If (B1) and (B2) hold, then sup,M,(x)—0, ie, () is uniformly
consistent in mean square.

(c) If (B1), (B2), and (B3) hold, then j,(x) - y(x) a.s. for all xe R?, i.e., §,(-) is
strongly pointwise consistent.

Suppose, in addition, that Assumption 2.4 (b) holds. Then the corresponding
results for fi(x, y) are the following:

(@) If (B1) holds, then sup, ,|B,(x, y)| -0. ,

(b") If (B1) and (B2') hold, then supxyM (x, y)—0.

(¢) If (B1), (B2) and (B3’) hold, then fix, ») = f(x,y) as. for all
(x, y)e R*, |

Proof See Theorems 3.1 and 4.1 in [10]. &

Proof of Theorem 3.1. (a) This part follows from Lemma 4.1 (a) since
sz(x)dx < suplB (x)|f|B (x)|dx =0 as t— oo.

(b) Let us write the variance of y,(x) as Var[§,(x)] =172 Y 0l 'um(x),

where the sum is over n,m=0,1,...,t—1, and I',,(x) is the covariance
function:
(41) an(x):= COV[u,,(X,,—“X), um(xm_x)]-

By Ueno’s [21] Lemma 3, we have
T ()] < ||ut]| by 0™ "Bu,(x,—x) for all 0<n<m,

where ‘ ‘

Eu,(x,—x) = {4,y —%)7,()dy = [7,(b,y +X)u(y)dy,
and «e(0, 1) is the coefficient of ergodicity in Assumption 2.1 (b). Therefore,
since {b,} is nonincreasing and |Eu,(x,—x)dx =1, we obtain
4.2) [ IFm()ldx < |ulb %am™" for 0K n<m<t,
so that the variance of §, satisfies
(43) [Var[f(x)]dx <t~? Z I ()| dx

< lullt=2b7 dzalm "'<Ct‘1b a

with C:= 2ull/(1—«),
which results from the inequality Y, o™ ™ < 2t/(1—a). Thus condition (B2)
implies part (b).
(c) This part follows from (a), (b) and ‘equation (3.2).

(d) Adding and subtracting E7,(x) inside the brackets in (1.2), and using
the inequality (a+b)? < 2(a*+b?), we see that the ISE I, satisfies

I, < 2[ [$,(x)— Bf,(x)]%dx+2 | B2(x)dx.



Nonstationary Markov processes 31

The second term on the right-hand side converges to zero (by part (a)), and
therefore to prove (d) it suffices to.show that, as t — o,

4.4 Y,:= [[$,(x)—Ej,(x)]?dx - 0 as.
In turn, to prove (4.4), it suffices to prove that
4.5) Y > Las. for some finite limit L,

since, by part (b), E(Y)) = | Var[J,(x)]dx — 0, so that necessarily L = 0 as. To
prove (4.5) we will use van Ryzin’s Lemma of [22], pp. 1765 and 1766. First
note that, by the definition of §,(x),

@6 Ferr(0) = (C+ )7 [,00 + 1, (x, — x)].
Hence, defining ‘
Z,(x):=9,(x)—Ef,(x) and U,(x):= u,(x,—x)—Eu,(x,—x),
we obtain co
Z71(x) = Z2(x) +(t+1) 72 [UF (x) + 2tU (%) Z,(x) — 2t + 1) Z2(x)]
< ZZ)+ @+ 1) 72 [UF () + 20U, (x) Z(x)],
whence '
Yoo = [Z2 1 (x)dx < Y+e+1)” 2[[U2(x)+2tU (%) Z,(x)] dx.

Now for t =1, 2, ... let &, be the g-algebra generated by x,, ..., x,—, and
notice that Y, is & -measurable, and also E(Y;+1|#,) < Y,+ Y/, where ¥/ is an
F -measurable random variable defined by

=+ )2 E{f[U3(x)+2tU,(x) Z,(x)]dx| F,}.
To conclude (4. 5) from van Ryzin’s Lemma [22], we have to show that
@.7 _ Z E|Y’| < 00.

To prove this, note that E [ UZ(x)dx = | I'y(x)dx < ||u| b, by (4.2), whereas by
4.3) and repeated applications of the Schwartz inequality we obtain
E[|U,)IZ,(x)ldx < ([ Var[y,(x)](ilx)”z(j'I‘,,(x)dx)”2
: < (Ct lbt d)1/2(”u|| bt d)1/2 < 1t 1/2bt—d
for some constant C,. Thus, for some constant C,, E|Y;| < C,t73?b; %, so that

(4.7) follows from condition (B3). This completes the proof of (4.5), which, as
noted earlier, yields part (d). =

Proof of Theorem 3.2, This proof is, of course, the same as that of
Theorem 3.1 with obvious changes. For instance, part (a) follows from Lem-
ma 4.1 (a'), and, similarly, the covariance function '

fnm(xs y)= Cov[ﬁ,,(x,,—x, xn+1_y)’ L_‘m(xm—x’ xm+1_y)]
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can be estimated by using Ueno’s [21] Lemma 3 again, to obtain

_ b2 |u)?a™ " B, (X, — X, Xy41—y) for n+1<m
P, 3 < 0 Ao - C
bn ”u” Eun(xn_x’ xn+1“y) for n=m.

Thus, the 2d-dimensional analogue of (4.2) is

_ b7 % uj2a™ "t for n+1<m<t,

dxdy <
IV, pldxdy {b,‘“!lullz for n=m<t.

The other changes in the proof of Theorem 3.1 are just as obvious. m

Moreover, from Lemma 4.1 (a'}{(c’) and Theorem 3.2 the following can be
seen:

LEMMA 4.2. For each x€R’ as t — o,

(@) [M,(x, y)dy = [E[f,(x, y)—f(x, y)]dy >0, and

(b) [1fi(x, )’) ~f (x, y*dy -0 as. _

Proof of Theorem 3.3. Let xeR® be such that 7(x) = &¢ > 0. Then, by
Lemma 4.1 (c), J,(x) > ¢/2 a.s. for all ¢ sufficiently large, and therefore, since

4:(y1x)—q(ylx)
= [y)7:x)1~  {y)Lfilx, »)—f (x, Y141 (x, YY) ~7.1},
we obtain ‘
4. (v1)— g 1x)| < 262 {YCNF (%, Y)—F G, WI+f (%, Y=y} -
Hence, by the inequality (a+b)> < 2(a®+b?), the ISE J,(x) satisfies
J(x) < 874 {2 () [14,(x, »)—f Cx, MRy +15,09— (oI | £2(x,3)dy}
< C{f 16, ) —f (e, yPdy+17,69— (o)}

for some counstant C. Thus, part (b) follows from Lemmas 4.1 (c) and 4.2 (b),
and on the other hand, taking expectations, we obtain

BJ,(x) < C{f M,(x, y)dy+ M (x)},
so that part (a) follows from Lemmas 4.1 (b) and 4.2 (a). =
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