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Abstract. The so-called v-level grade discrimmant function is 
introduced and its properties are investigated. In particular, its 
distributions in class 1 and class 2 serve to characterize somc natural 
ordenng of dlscrimnant models. Rdes defied by comparing the value 
of a chosen grade drscriminant funchon with constant thresholds are 
presented as solutions of some discriminant problems (forced and 
partial). The role of the "sample based" counterparts of the grade 
discriminant functions in inference based on ranks of discriminant 
scores is mentioned. 

1. Introduction: Classification is called partial whenever a decision is 
allowed to be deferred for doubtful cases, and it is called forced whenever 
a decision has to be taken with no exception. Broffitt [2] gave an overview of 
procedures corresponding to partial and forced classifications based on ranks 
of discriminant scores. In particular, he mentioned the papers by Broffitt 'et al. 
[3], Randles et al. [7], and Conover and Iman (1978). 

In the two-class case the general idea of ranking discriminant scores 
consists in the following. Let X = (XI, . . . , X,) and Y= (Y,, . . . , Y,) be the 
learning samples from both classes, where Xi (5) is the k-variate vector of 
observations for the i-th (j-th) object from the respective sample. Let Z be 
a vector of observations for the classified object and let L be a chosen 
transformation of (2, X, Y) which is meant as a "sample based" discriminant 
function to be applied to the values of Z (e.g., L may be a linear discriminant 
function). We will use the notation L(z; x, y ) .  It is assumed that L ( Z ;  X, Y) is 
a continuous random variable. The discriminant score L ( Z ;  X, Y) for the 
classified object is separately compared with the sets of discriminant scores for 
the objects from both Iearning samples, and the respective ranks are calculated. 
Let 

rankf(z; x, y )  = # {i E (1, . . . , n ) :  L(xi;  x,  y) < L(z; x, y)], 

rank$(z; x ,  y) = # { j ~ { l ,  ..., m): L(yj;  x, y) < L(z; x, y) ) ,  

E,(z; x, y) = [v(ranki(z; x, y)  + l)/(n + 1) 

+ (1 - v)(ranki(z; X, y) + l)/(m + 1)]/2, 



44 M. Niewiadomska-Bugaj and W. Szczesny 

where V E ( O ,  1). Evidently, 1 may be used as a "sample based" discriminant 
function, valued in [0, 11. Its properties depend on the performance of L. In the 
two-class case the distributions of a "good" discriminant function in both 
classes should be distinctly separated one from another. Intuitively, it is clear 
that this property of L would be preserved by L. 

A rigorous background of the inference based on ranks of discriminant 
scores has not been given yet. It should be started with separate treatment of 
the probabilistic stage, which is considered in this paper. At the probabilistic 
stage the densities of Z in both classes are supposed to be known, as well as the 
distribution of the membership index I valued i (i = 1, 2) when the classified 
object belongs to the class 'i. AU "sensible" forced and partial two-class 
discriminant problems for a known distribution of (I, 2) are solved by 
threshold rules based on the likelihood ratio h or, equivalently, on the 
superposition t,h o h for some increasing function $. Of course, $ may depend 
on the known distrib.ution of (I, 2). If h(Z) is a continuous random variable, 
then @ may be of the form UP': +(I - v ) F ~ ,  0 E (0, I), where F: is the distribution 
function of h(Z)  under the condition that I = i. The resulting superposition is 
called here a v-level grade discriminant function and is denoted by 
r" = (vF2 + (1 - u)Fh,) o h, The term "grade" refers to the tradition according to 
which the value of a distribution function at some point z is called the grade 
of z. If v = P(1 = I), then vF?+(l-v)F$ is the distribution function of h(Z),  
and therefore T"(Z) is then uniformly distributed on [0, 11. 

It will be shown that the grade discriminant functions are in a sense "least 
redundant" among other discriminant functions $oh.  The family of dis- 
tributions of (I, r"(2)) may be usually parametrized more economically than 
the primary family of distributions of (I, Z) ,  and the respective parameters may 
be interpreted as measures of separability of the conditional distributions of 
Z in both classes. Moreover, the values of P ( z )  are normalized so that they 
seem to be comparable for different models of (I, 2). These remarks are 
formalized in Section 3. 

When the distribution of (I, Z) is only known to belong to some family of 
distributions but the data include learning samples from both classes, the 
"sample based" classification rules are usually chosen as sample counterparts of 
rules selected when the distribution of (I, Z) is known. Let us consider "sample 
based" rules in which the value of z(z; n, y) is compared with constant 
thresholds. If L is selected so that for any z  and for n ,  rn + + oo L(z; X, Y) 
converges with probability 1 to $ o h(z) for some increasing function $, then 

converges in the same way to the v-level grade discriminant function and the 
rules based on are asymptotically equivalent to the respective grade rules 
with the same constant thresholds. The latter rules are the solutions of some 
important discriminant problems discussed in Section 4. 

2. Grade discriminant functions. Let Z be a vector of observations which 
is valued in Z G Rn, and let I be an unobservable index function such that I = i 
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iff the object being classified belongs to the i-th class (i = 1, 2). Let x denote the 
probability of the event I = 1 (0 < .R < 1) and let (i = 1, 2) denote the density 
of (211 = i) with respect to a a-measure p. Thus the joint distribution P of 
(I, 2) is defined by n, f,, f,, p. It is assumed that 

Let h be the likelihood ratio f,lf, (the symbol h will sometimes be replaced 
by h('sZ) to indicate the respective pair (I, 2). Let 5fl be the family of 
distributions of (I, Z) such that the distribution of h(Z) is absolutely con- 
tinuous with respect to the Lebesgue measure. For ( I ,  Z) E y and u E (0, 1) we 
define the transformation 

where FF (i = 1, 2) denote the distribution function of (h(Z)II = i ) ;  this 
transformation will be .called a. v-leuel grade discriminant function for (I, Z). 

If Z is univariate &nd h is increasing, then r" (where n = P(I = 1)) is the 
distribution function of 2. 

Evidently, for any increasing function $: R + $ TV may be presented as 

where g = $oh and Ff is the distribution function of ( g ( Z ) ) I  = i). 
The grade transformations are increasing transformations of h, valued in 

[O ,  11. Theorem 1 below shows that their distribution functions for I = 1 and 
1 = 2 are somehow normalized. 

For i = 1, 2 let Gi,, denote the distribution function of (rU(Z)lI = i) and 
Iet fih be the density of (h(z ) l I  = i). 

THE ORE^ 1. For any v ~ ( 0 ,  1) 

and 

Pr o of. Let A = {u E R: f.(u) = 0). Since h(x*h(Z)) = id, we have 

f!(u)=uf:(u) for UER, 

ft(u) > f,f(u) for 14 ~ ( 1 ,  + co)\A. 

Therefore 

F:(t)<F:(t) for t€(O,l)\A, 

and 
1 - F ( ) - ( t )  for t i (1 ,  +m)\A. 
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Since p(h- (A)) = 0, we have F i  < F! . It follows that for any v E (0, 1) and for 
t d O ,  1) 

i.e., G,,,(t] > t. Analogously one can prove ihat for t ~ ( 0 ,  1) we have 
G,,,(t) < t .  

Let us give several examples of a 0.5-level grade transformation for some 
parametric families of pairs ('I, Z). 

EXAMPLE 1. Consider the set of all pairs ( I ,  2) such that for i = 1 ,  2 
(ZII = i) has an exponential distribution with parameter R i ,  where 1, > A,. Let 
g(z) = R,z; the conditional distributions of (g(Z)II = i) for i = I, 2 are ex- 
ponential with parameters 1 = 1,/11, and 1, respectively. Since the likelihood 
ratio is increasing the distribution functions of (g(Z)II = i) may be used 
to define rv, and' therefore the grade transformations will be identical for all 
(I, Z) with the same 1. Fig. 1 presents Gi,, for i = 1, 2, v = 0.5 and 

Fig. 1. Plots of the distribution functions of ( T O . ~ I I  = i) for pairs (I ,  2) such that (ZII = i )  for 
i = 1, 2 is distributed exponentially with parameters dl and 1, for d = J.,/d, = 1,2, 5 ,  10, + ca 

A = 1, 2, 5, 10. Evidently, for 1 -, 1 the grade transformations in both classes 
tend to be uniformly distributed on (0, 1). On the other hand, for R + + co, 
GI,, and Gz,, tend to the distribution functions of the distributions which are 
uniform on disjoint intervals (0, v) and (v, I), respectively. 
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EXAMPLE 2. Consider the set of all pairs (I, 2) such that for i = 1, 2 
(21 I = i )  w N,(pi, E)  for some mean vectors p,, p, and covariance matrix L, 
where p1 # p,. Let 

g (2) = y - l ln h('aZ) (zl+ ~ / 2 ,  where y2 = (PI --pdTZ.- 1 ( ~ 1 - ~ 2 ) .  
. 

Thus g is the linear function modified in order to standardize (g(Z)II = 1); it 
follows that the conditional distributions of (g(Z)I I = i )  for i = 1, 2 are N(O, 1) 
and N ( y ,  I), respectively. Since g is an increasing transformation of h('.ZJ, the 
distribution functions of (g(Z)I I  = i) may be used to define ru, and therefore the 
grade transformations will be identical for all (I ,  Z )  with the same y. Fig. 2 
presents Gi,, for i = 1, 2, v = 0.5 and y = 0,0.5, 1, 2, 3. For i = 1, 2 the limit 

Fig. 2. Plots of the distribution functions of (T0-511 = i )  for pairs (I, Z) such that 
( Z ( I = i ) = N k ( p i , I ; ) f o r i = 1 , 2 a n d y = 0 , 0 . 5 , 1 , 2 , 3 , + m  

distributions of ( rU(Z) l I  = i) for y + 0 and y + + cm are the same as the 
distributions in Example 1 for IZ- + 1 and rZ -, + oo, respectively. 

EXAMPLE 3. Consider the set of all pairs ( I ,  Z) such that, for i = 1, 2 ,  
( Z l l =  i) x N ( p ,  ai) for some p, a l  , az,  where a, < a,. Let g(z) = (z -p)2/aq 
and let Ffr (i = 1, 2 )  denote the distribution function of (g(2)11= i). We have 
F f ( t )  = @(t) and F%(t) = $(t/#12), where B = a2/cr, and $ denotes the dis- 
tribution function of the x2-distribution with 1 degree of freedom. It is easy to 
see that 
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Since g is an increasing transformation of h, Ff  may be used to define Tv, and 
therefore the grade transformations are identical for all ( I ,  Z) with the same /I. 
Fig. 3 presents Gin, for i = 1, 2, u = 0.5 and #I = 1, 1.5, 2, 3, 5. For i = 1, 2  the 
limit distributions of (rU(Z)l I = i) for /? 4 1 and fi  4 + oo are the same as the 
limit distributions in Example 1 for R 4 1 and 1 -+ + m, respectively. 

Fig. 3. Plots of the distribution functions of (T0.511 = i) for pairs (I, Z) such that 
(Zll=i)=N(p,rri)for i = 1 , 2  a n d ~ = a 2 / u , = l , l . 5 , 2 , 3 , 5 , + a o  

3. Ordering of pairs (I, 2). It is clear that parameters 1, y and ap- 
pearing in Section 2 in Examples 1 ,  2, 3 may serve as measures of discrepancy 
between the distributions of (211 = i) for i = 1 ,  2. Niewiadomska-Bugaj [6] 
introduced an ordering of pairs ( I ,  Z )  which coincides for the parametric 
families from Examples 1, 2, 3 with the natural orderings given by parameters 
A, y and 8, respectively. This ordering is based on the ordering of discriminant 
rules for the two-class case, which was introduced and discussed in 141 and [ 5 ] .  
In this section the said ordering of pairs (I, 2) will be characterized by means 
of the grade transformations. This will be preceded by a short recollection of 
the properties of this ordering. 

Decisions to be taken will be denoted by 0, 1 ,  2, where the symbol 
1 (symbol 2) means that the classified object is recognized as belonging to the 
class 1 (class 2), and 0 means that the decision is deferred. A decision rule S is 
a triple of Bore1 measurable functions ( d l ,  S,, d3), where Si :  Z -t [O, I] for 
i = 0, 1 , 2  and d,(z) + 6, (2) + 6,(z) = 1 a.e. p. Given z E Z, S,(z) is the probabil- 
ity of the deferring of decision and 6,(z) is the probability of deciding that I = i 
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(i = 1,2). A particular attention is paid to the so-called threshold rules. 
A decision rule 6 is called a threshold rule (with respect to statistic g) 8 either 
there exist k,, kz E R  such that 

fil(z)=l for g ( ~ ) < k , ,  

do(z)+G,(z)=l for g(z)=kl, 

S , ( z )= l  for k,<g(z)<k,,  

6,(z)+ 6,(z) = 1 for g(z) = k,, 

6,(z) = 1 for g(z) > k, 

or there exists ~ E R  such that 

dl(z)=l  for g ( z ) < k ,  

d,(z)=l for g ( z ) z ) > k .  
, . 

Evidently, each threshold rule with respect to g is equal to a threshold rule 
with respect to $ 0 0  for any increasing function @, the primary thresholds 
being transformed by $. Let A be the set of all rules S based on Z and let 

The set A is naturally ordered as follows: 

S < S '  iff a(S)aa(6'). 

The relation < is a-quasi-order. The respective equivalence is defined by . 
6 x 6 '  iff a(d)=a(S'). 

For any (I, Z) we put 

A rule 6 E A is said to be adtnissibIe in A with respect to < iff a(6) is a minimal 
element of A(','). 

THEOREM 2 (Bromek and Niewiadomska-Bugaj [4]). A decision rule 6 is 
admissible in 'd with respect to < i$ S is a threshold rule with respect to h. 

Let us now recall the ordering of pairs ( I ,  Z) which refers in a natural way 
to the definition of and to the ordering of the set A. We say that 

(I, ) c (I, iff A ( I s Z )  c A('*'). 

The interpretation of (I, Z) < ( I ,  a is that the value of I could be better 
identified by means of 2 than by means of 2. 

4 - PAMS 121 
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THEOREM 3 (Bromek and Szczesny 151). 
(i) (I, 2) < (I,z) !f ((a12(6), ~ , I @ ) ) I ~ E A )  ((a12(6), a , l@>>l8~a)  
(ii) For any statistic g, ( I ,  g(Z)) < (I ,  2). 

Theorem 4 below provides a condition which is necessary and sufficient 
for the relation (I, Z) < (I, 2) to hold. This condition refers to the respective 
grade transformations P and p. The distribution fmction of (~(z)JI = i) will 
be denoted by &,,, (i = 1 ,  2). 

THEOREM 4. For any (I, Z ) ,  ( I ,  Z ) ' ) E ~ ,  

(I, Z )  < (I, 2) i# GlVu < and G,,,  2 c2., for some UE(O,  1). 

Proof .  By Theorem 3 (i) one may restrict oneself to rules in which S = 0; 
this implies that threshold rules with two thresholds will not be considered. If 
GI,, 6 GI,, and Gz,, 2 G",,,, then any threshold rule with respect to P' is not 
worse than the threshold rule with respect to which has the same threshold. 
Hence in view of Theorem 2 we have A(',') c ~ ( ' 1 ~ ' .  

Suppose now that A''.Z) c ~ ( ' 1 ~ ' .  Then for any admissible rules 6~ At'*Z) 
and 8 ' ~  A('") we obtain 

6) a12@) = &,(4*a21(6) 2 zz~(J)- 

The set of points a(6) for all admissible 6 (i.e., the "lower" part of the boundary 
of A('sZ)) can be parametrized by 

The respective set of points a"(@ can be analogously parametrized by &,,,(t). 
~ v i d e n t l ~ ,  we have vG,,,(t) +(1 - v)G,,,(t) = t, so that for t E [0, 11 and u ~ ( 0 ,  1) 

1 
G,,v(t) = --t+(1 l - v  -A) ~ ~ , . ( t ) .  

and analogous statements hold for ( I ,  2). Let us suppose that a,,(S) = a",,(@, 
i.e., there exist t,, t, €10, 11 such that Gz,,(t,) = e2,,(t,). From (2) and (4) it 
follows that t ,  < t,, and hence G"z,u < Gz,,. The equality alz(S) = a"12(@ 
together with (3) and (5) implies that el,, 2 GI,,. H 

As a corollary to Theorem 4, we state that, for (I, Z), (I, BE'@, 
( I  ( I  iff G = for i= 1, 2. 

It is evident that the c~ndition specified in Theorem 4 is satisfied either for 
any v E (0, 1) or for none. 
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One can easily check that for any two pairs (I, 2) and (I, 2) from the 
family considered in Example 1 (Example 2, Example 31, the condition specified 
in Theorem 4 is satisfied for any v iff A < 6 T, P < ,#I. This is illustrated in 
Figs. 1-3. It follows that the families from Examples 1-3 are linearly ordered. 

As an example of two pairs which are not ordered, let ( I ,  Z )  and ( I ,  2) be 
sQch that 

As shown in Fig. 4, the condition specified in Theorem 4 is not satisfied in this 
case: there exists to (equal approximately to 0.71) such that G ~ , ~ , ~  (t) - (t) 
is positive for t < to and negative for t > t,. On the other hand, it follows from 
(5) that ~ ~ . ~ . ~ ( t ) - G " ~ . ~ , ~ ( t )  is negative for t < to and positive for t > to. 

1 

1.00 - 
0.91 - 
0.82- 

0.73- 

aoo 0.10 a20 a30 a40 a50 0.60 12.713 m ago 1.00 

Fig. 4. Plots of the distribution functions Gi and Gi of (I'0.511 = i) (i = 1 ,  2) for pairs (I, Z) and 
(I, 3 such that the codditions (*) are satisfied 

4. Selected threshold mles with respect to the grade discriminant func- 
tions. For certain discriminant problems and for (I, Z ) E Y  it is convenient to 
find a solution in the form of a threshold rule with respect to TV for some 
suitably chosen v. In particdar, this is desirable for problems in which these 
thresholds are constant over '@. 

EXAMPLE 4. The problem ~onsists in minimizing ~ ~ ~ ( 6 )  provided that 
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(i) for some arbitrarily chosen positive number ( 

(ii) the deferment of decision is not allowed. 

Note first that the set of rules satisfying (6) contains exactly one admissible 
and threshold rule with respect to h. It is easy to see that this rule is the 
solution of the problem. For (I, Z ) E ~ ,  this solution may be presented as 
a threshold rule with respect to FU for any VE(O, 1). Let us consider the 
corresponding threshold, denoted by ku. In view of (61, k, has to satisfy the 
equation 

(1 - Gl,~(k"~)/~2,U(k"I = t ,  
which can be rewritten as 

If we put u, = I/((+ I),  then (7) would be transformed into the equality 

where G = uG1,,,+(l-v)G, ,,,. Consequently, for (I, Z)E'$, k, = v, (since 
G(Tu) has a uniform distribution on (0, I)), i.e., the threshold is constant 
over Q. In particular, if = 1, then v = k ,  = 0.5. 

For pairs (I, Z) considered in Figs. 1-4 the respective error rates a,, and 
azl can be directly read from the graphs of the distribution functions of 
(r0-511 = i) at t = 0.5; e.g., from Figs. 1 and 2 we see that 

0.401 for y = 0.5, 
0.382 for A = 2, 0.309 for y = 1.0, 
0.245 for 1 = 5, a12 = 
0.165 for 1 = 10, 0.159 for y = 2.0, 

0.067 for y = 3.0. EI 

Now we will compare two forced classification problems: the problem of 
minimization of ~ ~ ~ ( 6 )  under the restriction al,(S) = azl (8) (problem A) and 
the problem of unrestricted risk minimization (problem B). It is well known 
that problems B are solved by threshold rules with respect to h with the 
threshold equal to 

(i.e., x does not depend on the distributions (ZII = i), i = 1, 2). Presenting this 
solution as a threshold rule with respect to roe5, we deal with the threshold 

It follows that problems A and B are equivalent iff k(x) = 0.5. For 
zLl2 = (1 -z)LZ1, i.e., for x = 1, the equivalence holds if the distributions of 
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h(Z) in both classes are symmetric: 

(9) F; (t) = 1 - F.h,(l/t). 

It is easy to see that for ( I ,  Z)E'$ the symmetry postulated in (9) holds iff 

As visualized on Figs. 1-3, this symmetry occurs for the family of pairs (I, Z) 
considered in Example 2 and does not occur for the families considered in 
Examples 1 and 3. It is easy to calculate that for pairs (I, 2) presented in Fig. 1, 
the thresholds k(1) are equal to 0.63, 0.6, 0.57 for 1E = 2.0, 5.0, 10.0, respectively, 
and they tend to 0.5 for 1 + + m. 

It should be noted that the expressions (al,(d)+a,,(6))/2 for the solutions 
of problems A and B differ but slightly (e.g., for 1 = 2 they are equal to 0,382 
and 0.375, respectively). On the other hand, the values of max(a,,(d), azl(S)) 
for the solutions of problems A and B differ significantly (e.g., for A = 2 they are 
equal to 0.382 and 0.5, respectively). Therefore, it seems that problems B should 
be rather preferred than problems A. The control on the relative magnitudes of 
a12 and azl is guaranteed at almost no cost as compared with the unrestricted 
case. 

However, the values of a,, and aal are strikingly large for forced problems 
even when classes 1 and 2 daer  distinctly (e.g., 3 , ~  3, y z 2). Therefore, it is 
evident that the deference of decisions should be admitted. 

EXAMPLE 5. The problem consists in minimizing the probability that the 
decision is deferred under the restrictions 

(10) a12t8) G a, ~12(8)/~21(d) = 5: 
for some arbitrarily chosen a E (0, 1) and r > 0 (cf. [I]). We look for a solution 
presented as a threshold rule with respect to Tv, where v = v(5) = 1/(1+ 5:) .  
Depending on the value of or and the distribution of (I, Z )  there may be two 
thresholds klPv and k,,, or just one threshold k,. We will show that if there is 
only one threshold, then it is equal to v, while for two thresholds we have 
kl,, < v < kz,,. 

Let us rewrite conditions (10) as 

Now let a < 1 -Gl,,(v). Then for any threshold k, satisfying (11) we have 
v < k,. Further, for any k, satisfying (12) we obtain 

Since, by (€9, vGl,,(v)+(l -v)G2,,(v) = u, we have k, c v. Minimizing the 
probability of { z :  k, < TO(z) < k2) we are seeking k, as small as possible, and 
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k, as large as possible among k , ,  k ,  satisfying (11) and (12). Such a k, , ,  is 
determined by (1 I), i.e., 1 - Gl,v(k2,v)  = cl, and then k,,, is determined by (1 2), 
i.e., 

Let a 2 1-G,,,(v). Then conditions ( 1 1 )  and (12) are both satisfied for 
k,,, = k,,, = v,  and obviously this is the only solution for any ( I ,  Z ) E ~ .  TO 
illustrate, let u = 0.05 and 5 = 1; then from Figs. 1 and 2 we have the results 
presented in the Table. 

3 ,  . 

T A B L E  

Thresholds with respect to ro5 
the decision is 

and y deferred k i  I k ,  

It may be shown that, for any a, thresholds k ,  and k ,  are both equal to 0.5 
for sufficiently large I, or y. 
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