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Abstract. Some classes of Banach spaces of measurable opera- 
tor-valued functions which are p-integrable with respect to a oertain 
operator-valued measure are introduced. As a special case one obtains 
the Hilbert sp* of square-integrable operator-valued functions 
known from the theory of stationary processes. The form of the 
bounded antilinear functionals, the denseness of the step functions, and 
some relations between these Banach spaces are investigated. 

In 1950 I. S. Kats introduced some Hilbert spaces of functions whose 
values are vectors in a q-dimensional (q <.m) space and which are squa- 
re-integrable with respect to a non-negative hermitian matrix-valued measure 
(cf. [I, pp. 252 and 2531). Later it turned out that these spaces play an 
important role in the theory of q-variate stationary stochastic processes (see 
[ll] and [14]). In his paper [ll] Rosenberg did not consider vector-valued 
functions, but more general (t x q)-rnatrix-valued (t < oo) functions. In the 
following years Mandrekar and Salehi [8] grid Rosenberg [12], [I31 succeeded 
in generalizing these results to operator-valued measures and functions in 
infinite-dimensional spaces (see also [6], [9], and [16]). However, in order to 
get more concrete results one has to assume that the non-negative opera- 
tor-valued measure has a density function N, whose values are bounded 
non-negative operators, with respect to a certain scalar measure p. 

In our paper we introduce some classes of Banach spaces of measurable 
operator-valued functions which are p-integrable (1 < p < co) with respect to 
such an operator-valued measure or which are essentially bounded. In this way 
we generalize the theory of LP-spaces of complex-valued functions. On the 
other hand, in one of the introduced classes in the case p = 2 we obtain the 
Hilbert spaces mentioned above. 

The first two sections contain some preliminary results needed in the 
sequel. In the first section we discuss some properties of measurable opera- 
tor-valued functions. The second section contains some facts on norm ideals of 
compact operators. In the third section we introduce the Banach spaces of 
measurable operator-valued functions and investigate the form of the bounded 



antilinear functionals. The fourth section deals with the denseness of the step 
functions. The f i i  section is devoted to some relations between these Banach 
spaces. Some further results concerning the inclusion relations between these 
spaces can be found in [7]. 

Throughout the paper, we use the following notation. For a bounded 
linear operator X, 1x1, X*, and X' denote its operator norm, the adjoint, and 
the generalized inverse, respectively. For a trace class operator X, sp X denotes 
the trace of this operator. By N, W, and C we denote the set of positive integers, 
red numbers, and complex numbers, respectively. 

1. Mermsmrable operator-valued functions. Let (D, TI, p) be a positive 
measure space. As usual, all relations between measurable functions on i2 are 
to be understood as relations which hold almost everywhere with respect to the 
measure p. Particularly, convergence of a sequence of measurable functions is 
convergence almost everywhere. Furthermore, for an integrable function cp, we 
will often write j qdp or even 1 rp instead of j, cp(w)p(dw), and j, cpdp instead of 
j.4 CP(W)P(~W), 

Let H and K be two separable Hilbert spaces over C. Their dimensions 
dim H and dim K may be finite or infinite. Let B ( H , . K )  be the Banach space of 
bounded linear operators on H into K. Consider a mapping T: JZ + &'(H, K). 
If T is measurable as a certain Banach-space-valued function, we call it Bochner 
measurabb. If T is strongly (or, equivalently, weakly, cf. [2, p. 1051) measurable, 
it will be simply called masurable. If T is measurable, then T*: i23 w -+ T(u)* 
is measurable. Since H is separable, the measurability of T implies the 
measurability of the function IT[: i23 w + lT(w)t (see 12, p. 1021). 

Set @(H, H) =: B(W. Let N: i2 + B(H) be a measurable function such 
that Ntw) 2 0 and 

for almost all o E D. Here N(w) 2 0 means that (N(o)x, x) 2 0 for all x EH. 
(The symbol (-, -) stands for the scalar product in H.) Condition (1) is just 
a technical one (cf. Remark 8). For almost all o c  4 let N(o) = lEm(dA) be 
the spectral representation of the self-adjoint operator N(co). For a continuous 
compIex-valued function f on [0, 11 and k~ N, we consider the following 
operator-valued functions : 

(3) E,: 623 o + Ew((l/k, 11). 

Now let 

(4) (P,),", be a non-decreasing sequence of orthoprojections of finite rank 
in H, which tends to the identity operator with respect to the strong 
operator topology if n -+ oo. 
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The following lemma provides us with the measure-theoretic basis for the 
definition of the Banach spaces of measurable operator-valued functions. 

LEMMA 1. The functions P,  f'(lV), and E,  are measurable. 

P r  o of. In the case dim H < co , the result follows from Fieger's paper [4, 
p. 3911. Now assume dimH = m. Then it is not hard to see that 

lim f (P ,  NP,) = f (N) 
n+ m 

with respect to the strong operator topology. Since P J P ,  is measurable, 
f (Po NP,) is also measurable by Fieger's result, n E N. Hence f (N) is measur- 
able. Since there exist sequences of complex-valued functions { fjk}T= and 
{f j}y=l  continuous on LO, 11 and such that 

lirn f j , (N)  = E, and lim &(N) = P 
j - t  m j+ m 

with respect to the strong'.operator topology, E,  and P are measurable,  EN. 
Particularly, Lemma 1 insures the measurability of the function 

For the sake of convenience we make the following convention: NIIP : = P if 
p =  03. 

Denote by N# the function N' : In3 o j N ( o ) # .  

COROLLARY 2. For k E N ~ n d  l < p < co, the function (IV#)lIp E,  is 
measurable. 

Proof.  Use [lo, Theorem 2.21 and Lemma 1. 

2. Norm ideals of compact operators. In this section we state some results 
on norm ideals of compact operators. We refer the reader to the monograph of 
Gokhberg and Krein [ 5 ] ;  for a comprehensive description of these operators, 
see also [15]. Let G,(H, K) be the Banach space of a11 compact linear 
operators from H to K. In 151 only the case H = K is considered. But all facts 
we need in our paper are equally true for H # K. Moreover, we will assume in 
the sequel that the spaces H and K are fixed and thus mostly omit the letters 
H and K in the notation. For example, we will write and 6, instead of 
g ( H ,  K) and G,(H, K ) ,  respectively. For X E G,, s ( X )  : = (sj(X)}T= =, denotes 
the sequence of s-numbers of X with s , (X)  2 sz(X) 2.. . 

Now we introduce the notion of a symmetric gauge function and show in 
which way it defines a norm ideal of compact operators. Let c, be the linear 
space of all real sequences 

t:  = (Sj}j"= = {5=,, . . . , t,, . . .) with lim 5, = 0. 
n+m 

Let c  ̂ be the set of all ~ E C , ,  such that only finitely many members of 5 are 
different from 0. A function a: E + R is called a symmetric gauge function if the 
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following conditions hold: 
(a) a(<)> 0, t E E ,  t # O ;  
04 a ( a 8  = lela(t), 5 € 4  Q E R ;  
Ic) dC+?) s dt)+dd, r ,  V E ~ ;  
(dl ?({I> Q ,  0, , . .}) = 1; 

I (el k ( { l l y  l 2 5  tn7 0 ,  Q ,  =a({ l<j l l ,  l t j 2 1 7  ltlnl~ 03 0 ,  ...])> 
where (j,, . . ., j,,) is an arbitrary permutation of the first n positive integers, 
tl, ..., ~ , E R ,  n ~ l V  (see [5, p. 961). 

It follows that a symmetric gauge function o! is continuous: 

(see [5, p. 1021). For E c,, we define ttn) : = ( t , ,  . . . , t,, 0, 0, . . .}. The 
sequence {a(<("))},", is non-decreasing. We set 

c,: = (~.E.c,:  ". , .s@ a(<(")) < oa) and a ( t ) :  = sup 
~ E N   EN 

for E C ,  (see [S ,  p. 1061). 
We denote by (5, the set of all XE 6, such that s(X)EC,. We define 

The set G, is a Banach space under the norm 1 . 1 ,  having the additional property 

(7) Y X Z  E G, and I YXZI, < 1 Yl lXlajZl for X E G,,  Y E  B(K), Z E a(H) 
(see [5, p. 107-J). Throughout the rest of the paper, a will denote a symmetric 
gauge function and 6, the appropriate Banach space. 

LEMMA 3. Let T: 52 + 6, be a measurable function. Then the function 
1 TI,: D 3 w 4 1 T (w)l, is measurable. 

Proof. The measurability of T ensures the measurability of T* T, and 
hence, by Lemma 1, the measurability of (T*T)'". According to [8, p. 5471, 
this implies the measurability of the eigenvalues of (T* T)lj2, and hence the 
measurability of the s-numbers of T. Now the measurability of ITI, follows 
from (5) and (6). 

The function u is called mononorming if for arbitrary 5 = {tj}j"= E C, the 
relation 

lim C 4 { t n + 1 7  5 n + 2 ,  ...I = 0 
n-r m 

holds true. It is called binorming if it is not mononorming [5,  p. 1161. For 
example, if 1 6 q < m, then the function 
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is a mononorming symmetric gauge function. The same is true for the function 

The appropriate spaces Gag, 1 < q d m, are the well-known Schatten classes 
[5, pp. 120 and 1211. To give an example for a binoming function we consider 
the following construction (see [5, pp. 177 and 1781). For [ E 2, set {y : = llnjl 
and <* : = {{r)j"= where (n,, n,, . . .) is a permutation of positive integers such 
that the sequence {](,,I, 1(,,1, . . .} is non-increasing. Now define 

i i.7 
(9) a,(() : = sup + , SE2. 

" C jpl 
j= 1 

The function a, is a binqrming' symmetric gauge function. 
It turns out that 6, is'separable if and only if a is a mononorming function 

[5, p. 1191. In that case the following useful result holds: 

LEMMA 4 (cf. [5,  p. 1191). Let a be rnononorming and X E 6,. Assume that 
the sequences {Z,)F==l G a(H) and (x),"=, E d(K) conuerge to Z and Y, 
respectively, in the strong operator topology if n + XI. Then . 

lim I X X Z ,  - YXZI, = 0. 
n+ m 

Using Lemma 4 we can improve the result of Lemma 3 if a is 
mononorming. 

LEMMA 5. Let ol be mononorming. Let T: B -t 6, be a measurable function. 
Then T is Bochner measurable as an G,-valued function. 

P r o  of. Let {P,),", , be the sequence of orthoprojections defined in (4). Let 
{Q,),"=l be an anaIogous sequence of orthoprojections in K. Obviously, the 
finite-dimensional operator-valued functions Q, TP,, n E N, are Bochner 
measurable as 6,-valued functions. But Lemma 4 implies 

lim ]Q, TP,  - TI, = 0. 
A--' m 

Hence T is also Bochner measurable as an 6,-valued function. 

3. Definition of the spaces. Let d be the set of all (not necessarily densely 
defined and not necessarily bounded) linear operators of H to K. 

For 1 < p < ao (p = oo), let @: L? + d be a function with the following 
properties: 

(i) @N1i* is defined and measurable, 
(ii) QjN1lp is 5,-valued almost everywhere, 

(iii) II@IIp,,:= ( ~ J @ N ~ ~ P ~ ~ ~ , u ) ~ ~ P  < co ( I I @ J ~ ~ ~ , , : =  ess sup I@Pj, < co). 



Note that (iii) is meaningful because of (i), (ii), and Lemma 3. Note further 
that, for a mononorming function a, (i) and (ii) are equivalent to the condition 
that @N1lp is a Bochner measurable S,-valued function (cf. Lemma 5). Two 
&-valued functions @ and ?P with properties (i) and (ii) are called equivalent if 
I@N1lp- YN1IP[, = 0. The set of a11 equivalence classes of fulictions satisfying 
conditions (iHiii) is denoted by LP,(Ndp), 1 < p d co. AS usual, we will work 
with representatives, i,e., with functions, instead of equivalence classes. 

The set L$(Ndp} is a normed linear space under the norm 1) . ) ) , , ,  and (7) 
yields that X B  €L:(Ndp) and IIX@llp,, < 1x1 l I @ l l p p a  for X E a ( K )  and 
@E LP,(Ndp). Now we prove the completeness of the space L:(Ndp), 1 d p 
< co, by showing that it is isometrically isomorphic to some Banach space. 

For 1 < p < a, Ip = m), the symbol L!'(dp; 6,) stands for the normed 
linear space of equivalence classes of measurable 6,-valued functions T under 
the norm ([]T1$4p)'lp < rn (esssuplTl, < m). Note that our definition of 
LP(dp; 6,) differs, from the usual definition of LP-spaces of vector-valued 
functions because we do not require that the functions T are Bochner 
measurable as G=-valued functions. However, if a is a mononorming function, 
the definitions coincide because of Lemma 5. It can be shown in essentially the 
same way as in the case of the usual LP-spaces that the Gpaces LP(dy; 6,) are 
complete, where u is an arbitrary symmetric gauge function (cf. [2, pp. 
224-2241). Let Dt denote the subspace 

D z : =  {T€LP(dp; 63: T = TP}, 1 < p d oo. 

LEMMA 6 (cf. [16, p. 3911). For 1 d p G a ,  the mapping 

is an isometric linear operator from L$(Ndp) onto D,P. 

Proof.  Clearly, Up,, is an isometric linear operator from LP,(Ndp) to Dg, 
1 < p d co. Let T be an arbitrary element of Dt. Then for @ :  = T(N#)llp we 
have @NilP = T (N#)'lpN1Ip = TP = T; hence @ E L<(Ndp), and the range of 
Up,, coincides with Dc. 

Thus we have proved the following theorem: 

THEOREM 7. For 1 G p < a,  LP,(Ndp) is a Banach space under the 
norm I I  - 1lp.a. 

Remark  8. Let q be an arbitrary positive measurable function. If we 
replace N by N / q  and p by p,: 

we do not change the spaces L$(Ndp). Therefore condition (1) does not detract 
from the generality of our investigations. 
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Using Lemma 6 we can describe the Banach space of bounded antilinear 
functionals on LP,(Ndp) under certain additional assumptions. For 1 4 p < oo, 
let p' be the real number for which l/p + l/pf = 1, where we use the convention 
l / p  = 0 iff p = Q. By  a* we denote the so-called associate function of the 
symmetric gauge function a. The function a* is also a symmetric gauge function 
and the equality 

(10) (a*)* = CX 

holds [5,  p. 1621. For example, the associate function of a, (see (8) and (8') for 
the definition d a,) is a,,, 1 < q < m [5, p. 1641. We mention that two 
symmetric gauge functions M and fi  are called equivalent (see [5 ,  p. 1023) if 

a) P (5 )  sup - < CQ and sup - < co. 
c ~ t  P(51 g ~ e  act> 

Furthermore, we assume to the end of this section that the measure p has 
the so-called direct sub. property (cf. [2, p. 1791). 

THEOREM 9. Let I < p < m. Let a be such that u and a* are mononorming 
functions and that a is not equivalent to a,. Suppose that the measure p has the 
direct sum property. Then for each Y E  LPh+(Ndp) 

defines a bounded wtilinear functional on LP,(Ndp), whose norm coincides with 
1 1  !Pllp,,a*. Converseiy, for each bounded antilinear functional 1 on L$(Ndp), there 
exists a unique Y E  L$(Ndp) such that ( 1  1 )  holds. 

Proof.  Let S E D : ~ .  From [2, p. 2321 and [5,  pp. 167 and 1681 it follows 
that T -F j sp(ST*), T E  LP(dp; GJ, defines a bounded antilinear functional on 
LP(dp; G,), whose norm coincides with the LP'(dp; Gci*)-norm of S. It is not 
hard to see that the restriction of the functional to Dz has the same norm. 
Using Lemma 6 we obtain the first part of the theorem. Conversely, let I be 
a bounded antilinear functional on L$(Ndp). By Lemma 6,  we can consider this 
functional as a bounded antilinear functional on D:. Then 4 ~ )  : = E(TP), T E 

LP(dp; G,), is a bounded antilinear functional on LP(dp; 6,). According to [2, 
p. 2821 and 15, pp. 167 and 1681, there exists a unique S E LP'(dp; G,,) such that 
I"(T) = j sp(ST*), T E LP(dp; G,). I t  is not hard to see that S E DPL*. Using again 
Lemma 6 we obtain the second part of the theorem. 

COROLLARY 10. Let 1 < p < CQ.  If 01 and p meet the assumptions of 
Theorem 9, then the spaces LP,(Ndp) are reflexive. 

Proof.  The result is an immediate consequence of Theorem 9 and of (10). 

4. Denseness of step functions. A function @: SZ -+a is called a step 
function if it is of the form 



where n is an arbitrary positive integer, Xj E &?, A j  E with fi(Aj) < cc and X A j  
is the characteristic function of Aj, j = 1,. . . . , n. By 8 we denote the set of all 
step functions @ such that there exists an orthogonal projector Q of finite rank 
in H for which @ = @Q. ClearIy, for 1 < p < m , C G LP,(Ndp), but an arbitrary 
step function need not belong to L:(Ndp). The following example shows that 
the step functions which belong to LP,(Ndp) are not dense in LP,(Ndp) in general 
if or is binorming. 

EXAMPLE 11. Let (el, . . . , en, . . .) be an orthonormal basis in H = K. Let 
a, be the binorming function defined in (9). Let 9 : = (w,) and p(oo): = 1. In 
that case L1(dp; Gad may be identified with Gar. Set 

If we could show that the set {XN(w,) :  XEB(H)) is not dense in Gar, then 
Lemma 6 would imply that the step functions are not dense in Ltr(Ndp). For 
X ~ & i ( m ,  we havk . ' 

' 

sj(XN(r21,)) < 1x1 sj(N(o,)). = 1x1 j - 2 ,  j E  

(cf. C5, p. 471). Thus 

By [5, p. 1151, this means that XN(w,) belongs to the subspace GLy) of 
Gar which is spanned by the operators of finite rank. By 15, p. 1161, G;:' is 
separable. But since 6,* is not separable (cf. [5, p. 119]), the set 
{XN(oo): X E B(H)} G 6g) cannot be dense in G,=. 

The aim of this section is to show that, for 1 < p < m, d is dense in 
L:(Ndp) if u is a mononorming function. 

THE~REM 12. Let dimH < co. Then for 1 < p < co the step functions are 
dense in LP,(Ndp). 

'We omit the proof, since it is similar to Rosenberg's proof for p = 2, 
a = a,, and a finite measure p [ll ,  p. 2961. 

Now suppose that dimH = co. The proof of the denseness of the set d is 
adapted from 18, pp. 554-5591; see also [12, pp. 177 and 1781. 

LEMMA 13. Let a be a mononorming function. Let 1 < p < co. For 
@ E  LP,(Ndp) set @, := @E,, where E, was dejined in (3), k~ N. Then 8, is 
6,-valued, @, E L< (Ndp) , k E N, a d  

lim l l @ - @ k l l p , a  = 0. 
k'a3 

Proof. By Corollary 2, the function (N#)'lpEk is measurable. Since @Nilp 
is measurable because of @~Li(Ndp),  we obtain the measurability of 
@, = @E, = @N1ip(N')l/p E,. Moreover, for almost all o E Q @(w)N(~) l /~  E Ga 
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and ( N # ( O ) ) ~ / ~ E ~ ( W ) E B ( H ) .  Because of (7) we get @,(~)EB,, and because of 
(7) and (1) we obtain I@,NlipJa < I@N1lpla. Hence @,E LP,(Ndp),  EN. Since ol is 
a mononorming function, we get 

lim I@Nilp - @kN1iPlu = 0 
k+ m 

using Lemma 4. Now an application of Lebesgue's dominated convergence 
theorem yields 

LEMMA 14. Let 1 < p < a. Suppose that @ELt(Ndp) is a 6,-valued 
function. Then there exists a sequence of 6,-valued functions (Y,)p' G LP,(Ndp) 
such that jI!FkI; < m,  EN, and 

The proof is similar to that of Lemma 4.27 in 181. 
LEMMA 15. Let a be a mononorming function. Let 1 < p < m. If 

@E L$(Ndp) is a G,-valued function with j 181; < m, then 

where P,,  EN, are the projectors of (4). 

P r o  of. Use Lemma 4 and the dominated convergence theorem. 

THEOREM 16. Suppose that a is a mononorming function. Let 1 < p < m. 
Then the set d is dense in L$(Ndp). 

Proof.  Let @ be an arbitrary element of LP,(Ndp) and let Pj,  EN, be the 
projectors of (4). By Lemmas 13-15 it is enough to show that for  EN the 
function @Pj may be approximated by functions of d in the topology of 
L%(Ndp). But since LP,(PjNPjdp) may be considered as a subspace of L$(Ndp) 
and since @Pj.sLP,(PjNPjdp), the result follows from Theorem 12. 

5. Relatiom between the spaces L:(Ndp). Now we prove some results which 
can be found, e.g., in [2, pp. 239-2411 in the case of the classical LP-spaces. 
Unfortunately, the desired results cannot be obtained directly from Lemma 
6 and [2] because the isometry of Lemma 6 depends on p. The following 
lemma, which is contained implicitly in [ 5 ] ,  is useful for our considerations. 

LEMMA 17. Let X E  6, and let {Xk)F=i G Ga be a sequence such that 
IXkI, < IX],, k~ A', (IXk],)?=, is an increasing sequence and limk+, X ,  = X with 
respect to  the strong operator topology. Then 

lim lXkla = 1x1,. 
k+m 
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P r o  of. If a is equivalent to or,, then 6, is separable and the result follows 
from Lemma 4. If a is not equivalent to a,, then the result follows from 55, 
p. 1131. 

THEOREM 18. Let 1 < r < p < s < co. Let u be a real number such that 

I j  @ belongs to LL(Ndp) and to L",(Ndp), then @ is also an element of LP,(Ndp) 
and 

(12) II@llp.a 6 Il@ll;,a I l@ll~,~".  
P r o  of. Let d i ~  L',(Ndp) and @E E,(Ndp). Set @, : = QE,, k~ N. For 

almost all o E 9 the function C 3 z -+ @ k ( ~ ) N ( ~ y  is G,-valued and analytic in 
the strip l / s  4 Rez < l / r ,   EM. By the three lines theorem, it follows that 
@ h ( ~ ) N ( ~ ) l J P  G G, : and 

(13) I@k(w)N(o)ltpl,  d [@,(w)N(w)llrl~l@h(w)N(w)llsl~-" 

for  EN and for almost aII o~ S1 (cf. [3, p, 5201). Using (13) and Hclder's 
inequality for s < m , and a simple estimation for s = a, we obtain 

Now Lemma 17 implies lim,,, I @ , N ~ / ~ ~ ,  = I @ N ~ / ~ ~ ,  for q ~ [ r ,  s ] .  Thus we get 
lim,, , 1 1  @,)JP,,  2 1 1  @I1 p,u by Fatou's lemma. Moreover, by the dominated 
convergence theorem, limA+m I l @ k l l r , a  = II@IIr,a and 

for s < oo. It is easy to see that (15) is also true for s = co. Hence, if k -, oo in 
(14), we obtain (12). 

For a function 8: Q +d,  we d e h e  

I,,, : = {p: l < p < a, @ E w'w). 
From Theorem 18 we get the following result: 

COROLLARY 19. For a given @: SZ + d ,  the set I,,, is either empty or an 
interval. The function p + In I (  @ 1 1  , , , ,  is convex on I;,: : = { r  - l : r E I,,,}. 

Let @ be an arbitrary d-valued function. By Corollary 19, the function 

is continuous at the interior points of I , , .  Now we discuss its continuity at the 
boundary points of lo,.. For this we make the following convention: To the 
end of this section the symbol q denotes an interior point of I,,. Let a be the 
left-hand boundary point of I,,,. The case a = oo is trivial. Thus assume 
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a < CQ . Since @N1!" is G,-valued, the integral (1 /8N11a1~)1!u = : 11 @Il, , ,  d cc is 
well defined. Corollary 19 implies the existence of lim,,, 11911n,, d a and the 
inequality 

On the other hand, lim,,,l@N1/ql: 2 IQiN1/"l& and hence lim,,, l I @ l l q , .  
2 lISlla,, by Fatou's lemma. The last inequality and (17) imply lim,,, I @ l l , , a  
= IIcPII,,~. Let b, b 6 m, be the right-hand boundary point of I,,,. Again by 
Corollary 19, lim,,, l t @ l i a , a  < m exists. It could happen that @Nilb is not an 
6,-valued function. Therefore we have to assume that @ N ' / ~  is measurable and 
(-5,-valued. In this case, set 

and 

11@1141,a:=e~~supI@PI,d~ far b = w .  

Then Lemma 17 implies 

Forb = m ,  we easily obtain lim,,, ]l@/ l , , ,  = I I @ I I , , ,  from (18). For b < m ,  we 
use again (18) to obtain lim,,, II@Jj, , ,  = l l @ l l b , a  in a similar way to that for the 
left-hand boundary point. 

Summing up we obtain the following result: 

THEOREM 20. For @: i2 -, d, the function (16) is continuous at the interior 
points of I@,, and hmfinite or infinite limits at the boundary points of I,,,. The 
limit at the left-hand boundary point coincides with theJinite or infinite value of 
the function (16) at this point. I f  a possibly infinite value of the function (16) can be 
defined at the right-hand boundary point, then it coincides with the appropriate 
limit. 

I 
t , Let us conclude with the following remark. We can introduce a further 

class of Banach spaces of measurable operator-valued functions in the 
following way. 

For 1 d p < m (p = a), LP(Ndp) denotes the set of all(equivalence classes 
of) functions @: Q.+d such that 

(i') @N1lp is defined and measurable, 
(ii') @N1lp is 9$-valued almost everywhere, 
(iii') /l@llp:= (SI@N1lP]Pdp)llp < rn (ll@llm := esssupI@P] < a). 
Here two d-valued functions 8 and !P with the properties (if) and (ii') are 

called equivaknt if I@NII*- YNIIPI = 0. 



96 L. ~ l o t z  

In a similar way to that for L$(Ndp) it can be proved that LP(Nd,u) is 
a Banach space under the norm II.II, with the additional property 
X @ € L P ( N d p )  and IlX@ll, d 1x1 II@II, for X E ~ ( K ) ,  @€LP(Ndp) ,  1 G p 4 a. 
Repeating the arguments of the preceding sections with some obvious changes 
one can prove analogues of Theorems 18 and 20 and of Corollary 19 for 
LP(IVdp). However, one can easily construct examples of LP(Ndp)-spaces such 
that the set of the step functions is not dense. Furthermore, it seems to be 
difficult to describe all bounded antilinear functionals on LP(Ndp). 
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discussions. I am much indebted to Dr. J. Friedrich for his generous help with 
the preparation ,of the paper. 

REFERENCES 

I 

I [I] N. I. Achieser und I. M. Glasmann,  Theorie der linearen Operatoren im Hilbertraum, 
Akademie-Verlag, Berlin 1975. 

123 N. Din c ul e a n u, Vector Measures, VEB Deutscher Veriag der Wissenschaften, Berlin 1966. 
[3] N. D u n f o r d and J. T. Schwartz, Linear Operators. Part I :  General Theory, Interscience 

Publishers, New York 1964. 
[4] W. Fieger, Die Anwendung einiger map- und integrationstheoretischer Siitze auf matrizielle 

Riemandtieltjes-lntegrale, Math. Ann. 150 (1963), pp. 387-410. 
[5] I. Ts. Gokhbe rg  and M. G. Krein, Introduction to the Theory of Linear Non-seIf-adjoint 

Operators in Hilbert Space (in Russian), Nauka, Moscow 1965. 
[6] J. Gbrniak ,  A. Makagon  and A. Weron, An explicit form cf dilation theorems for 

semispectral measures, pp. 8S111 in: Prediction Theory and Harmonic Analysis. The Pesi 
Masani Volume, Eds. V. Mandrekar and H. Salehi, North-Holland Publishing Company, 
Amsterdam-New York-Oxford 1983. 

[7] L. Kl o tz, Inclusion relations for some LP-spaces of operator-valued functions, Math. Nachr. 
150 (1991), pp. 119-126. 

[8] V. M andre  k a r  and H. S ale hi, The square-integrability of operator-valued Junctions with 
respect to a non-negative operator-valued measure and the Kolmogorov isomorphism theorem, 
Indiana Univ. Math. J. 20 (197&1971), pp. 545-563. 

[9] - On the structure of L,,,, pp. 207-215 in: Vector and Operator Valued Measures and 
Applications, Eds. D. H .  Tucker and H. B. Maynard, Academic Press, New York and London 
1973. 

[lo] M. Z. Nashed and H. Salehi, Measurability of generalized inverses of random linear 
operators, SIAM J. Appl. Math. 25 (1973), pp. 681692. 

[ll] M. Rose n be r g, The square-integrability of matrix-valued functions with respect to 
a wn-negative Hermitian measure, Duke Math. J .  31 (1964), pp. 291-298. 

[12] - Operators as spectral integrals of operator-valued functionsfrom the study of multivariate 
stationary stochastic processes, J .  Multivariate Anal. 4 (1974), pp. 166209. 



Banach spaces of measurable iunctions 97 

[I31 - Spectral integrrrls of operator-valued functions. 11. From the study of stationary processes, 
J. Multivariate Anal. 6 (1976), pp. 538-571. 

[I41 Yu. A. Rozanov, Stationary random processes (in Russian), Gosudarstvennoe Izdatel'stvo 
Fiziko-Matematicheskoi Literatury, Moscow 1963. 

[I51 R. Sc ha t t en, Norm Ideals of Completely Continuous Opemtors, Springer-Verlag, Ber- 
lin-Gottingen-Heidelberg 1960. 

[I61 J. N. Welch, On the construction of the Hilbert space L,,, for an uperalor-valued measure, pp. 
387-397 in: k c t o r  and Operator- Valued Measures and Applications, Eds. D. H. Tucker and 
H. B. Maynard, Academic Press, New. York and London 1973. 

Sektion Mathematik 

. 1 

Universitiit 
7010 Leipzig Germany 

Received on 20.12.1988; 
, . , , new .version on 14.9.3989 

I 7 - PAMS 12.1 




